
Applied Combinatorics

Preliminary Edition

February 15, 2015

Mitchel T. Keller
Washington & Lee University

William T. Trotter
Georgia Institute of Technology

Copyright c© 2008–2015 Mitchel T. Keller and William T. Trotter.

This text is licensed under the CreativeCommons Attribution-NonCommercial-ShareAlike
3.0 Unported (CC BY-NC-SA 3.0) license. For more details, please see

http://creativecommons.org/licenses/by-nc-sa/3.0/

cbna
This manuscript was typeset by the authors using the LATEX document processing system.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Summary of Contents
Preface vii

Prologue xi

1 An Introduction to Combinatorics 1

2 Strings, Sets, and Binomial Coefficients 15

3 Induction 37

4 Combinatorial Basics 55

5 Graph Theory 65

6 Partially Ordered Sets 105

7 Inclusion-Exclusion 131

8 Generating Functions 147

9 Recurrence Equations 165

10 Probability 193

11 Applying Probability to Combinatorics 209

12 Graph Algorithms 217

13 Network Flows 235

14 Combinatorial Applications of Network Flows 253

15 Pólya’s Enumeration Theorem 265

16 The Many Faces of Combinatorics 287

Epilogue 303

i

SUMMARY OF CONTENTS

A Background Material for Combinatorics 305

ii cbna

Contents
Preface vii

Prologue xi

1 An Introduction to Combinatorics 1
1.1 Introduction . 1
1.2 Enumeration . 2
1.3 Combinatorics and Graph Theory . 3
1.4 Combinatorics and Number Theory . 6
1.5 Combinatorics and Geometry . 9
1.6 Combinatorics and Optimization . 10
1.7 Sudoku Puzzles . 12
1.8 Discussion . 13

2 Strings, Sets, and Binomial Coefficients 15
2.1 Strings: A First Look . 15
2.2 Permutations . 17
2.3 Combinations . 19
2.4 Combinatorial Proofs . 20
2.5 The Ubiquitous Nature of Binomial Coefficients 22
2.6 The Binomial Theorem . 26
2.7 Multinomial Coefficients . 27
2.8 Discussion . 28
2.9 Exercises . 29

3 Induction 37
3.1 Introduction . 37
3.2 The Positive Integers are Well Ordered . 38
3.3 The Meaning of Statements . 38
3.4 Binomial Coefficients Revisited . 40
3.5 Solving Combinatorial Problems Recursively 40
3.6 Mathematical Induction . 45
3.7 Inductive Definitions . 46
3.8 Proofs by Induction . 47
3.9 Strong Induction . 50
3.10 Discussion . 51

iii

Contents

3.11 Exercises . 52

4 Combinatorial Basics 55
4.1 The Pigeon Hole Principle . 55
4.2 An Introduction to Complexity Theory . 56
4.3 The Big “Oh” and Little “Oh” Notations . 59
4.4 Exact Versus Approximate . 60
4.5 Discussion . 62
4.6 Exercises . 62

5 Graph Theory 65
5.1 Basic Notation and Terminology for Graphs 65
5.2 Multigraphs: Loops and Multiple Edges . 70
5.3 Eulerian and Hamiltonian Graphs . 71
5.4 Graph Coloring . 75
5.5 Planar Graphs . 81
5.6 Counting Labeled Trees . 88
5.7 A Digression into Complexity Theory . 92
5.8 Discussion . 93
5.9 Exercises . 94

6 Partially Ordered Sets 105
6.1 Basic Notation and Terminology . 106
6.2 Additional Concepts for Posets . 110
6.3 Dilworth’s Chain Covering Theorem and its Dual 113
6.4 Linear Extensions of Partially Ordered Sets 116
6.5 The Subset Lattice . 117
6.6 Interval Orders . 118
6.7 Finding a Representation of an Interval Order 119
6.8 Dilworth’s Theorem for Interval Orders . 121
6.9 Discussion . 123
6.10 Exercises . 123

7 Inclusion-Exclusion 131
7.1 Introduction . 131
7.2 The Inclusion-Exclusion Formula . 134
7.3 Enumerating Surjections . 135
7.4 Derangements . 136
7.5 The Euler φ Function . 138
7.6 Discussion . 141
7.7 Exercises . 141

iv cbna

Contents

8 Generating Functions 147
8.1 Basic Notation and Terminology . 147
8.2 Another look at distributing apples or folders 149
8.3 Newton’s Binomial Theorem . 152
8.4 An Application of the Binomial Theorem 153
8.5 Partitions of an Integer . 155
8.6 Exponential generating functions . 156
8.7 Discussion . 159
8.8 Exercises . 159

9 Recurrence Equations 165
9.1 Introduction . 165
9.2 Linear Recurrence Equations . 169
9.3 Advancement Operators . 170
9.4 Solving advancement operator equations 172
9.5 Formalizing our approach to recurrence equations 180
9.6 Using generating functions to solve recurrences 184
9.7 Solving a nonlinear recurrence . 186
9.8 Discussion . 188
9.9 Exercises . 189

10 Probability 193
10.1 An Introduction to Probability . 194
10.2 Conditional Probability and Independent Events 196
10.3 Bernoulli Trials . 197
10.4 Discrete Random Variables . 198
10.5 Central Tendency . 200
10.6 Probability Spaces with Infinitely Many Outcomes 204
10.7 Discussion . 205
10.8 Exercises . 206

11 Applying Probability to Combinatorics 209
11.1 Small Ramsey Numbers . 211
11.2 Estimating Ramsey Numbers . 211
11.3 Applying Probability to Ramsey Theory . 212
11.4 Ramsey’s Theorem . 213
11.5 The Probabilistic Method . 214
11.6 Discussion . 215
11.7 Exercises . 216

12 Graph Algorithms 217
12.1 MinimumWeight Spanning Trees . 217

cbna v

Contents

12.2 Discussion . 220
12.3 Digraphs . 222
12.4 Dijkstra’s Algorithm for Shortest Paths . 223
12.5 Historical Notes . 229
12.6 Exercises . 230

13 Network Flows 235
13.1 Basic Notation and Terminology . 235
13.2 Flows and Cuts . 237
13.3 Augmenting Paths . 239
13.4 The Ford-Fulkerson Labeling Algorithm . 242
13.5 A Concrete Example . 245
13.6 Integer Solutions of Linear Programming Problems 248
13.7 Exercises . 249

14 Combinatorial Applications of Network Flows 253
14.1 Introduction . 253
14.2 Matchings in Bipartite Graphs . 254
14.3 Chain partitioning . 257
14.4 Exercises . 261

15 Pólya’s Enumeration Theorem 265
15.1 Coloring the Vertices of a Square . 266
15.2 Permutation Groups . 268
15.3 Burnside’s Lemma . 271
15.4 Pólya’s Theorem . 273
15.5 Applications of Pólya’s Enumeration Formula 276
15.6 Exercises . 282

16 The Many Faces of Combinatorics 287
16.1 On-line algorithms . 287
16.2 Extremal Set Theory . 290
16.3 Markov Chains . 292
16.4 Miscellaneous Gems . 294
16.5 Zero–One Matrices . 295
16.6 Arithmetic Combinatorics . 297
16.7 The Lovasz Local Lemma . 297
16.8 Applying the Local Lemma . 300

Epilogue 303

A Background Material for Combinatorics 305
A.1 Introduction . 305

vi cbna

Contents

A.2 Intersections and Unions . 306
A.3 Cartesian Products . 308
A.4 Binary Relations and Functions . 309
A.5 Finite Sets . 310
A.6 Notation from Set Theory and Logic . 312
A.7 Formal Development of Number Systems 312
A.8 Multiplication as a Binary Operation . 315
A.9 Exponentiation . 317
A.10 Partial Orders and Total Orders . 318
A.11 A Total Order on Natural Numbers . 318
A.12 Notation for Natural Numbers . 319
A.13 Equivalence Relations . 321
A.14 The Integers as Equivalence Classes of Ordered Pairs 322
A.15 Properties of the Integers . 323
A.16 Obtaining the Rationals from the Integers 325
A.17 Obtaining the Reals from the Rationals . 326
A.18 Obtaining the Complex Numbers from the Reals 327
A.19 The Zermelo-Fraenkel Axioms of Set Theory 329

cbna vii

Preface
At Georgia Tech, MATH 3012: Applied Combinatorics, is a junior-level course targeted
primarily at students pursuing the B.S. in Computer Science. The purpose of the course
is to give students a broad exposure to combinatorial mathematics, using applications
to emphasize fundamental concepts and techniques. Applied Combinatorics is also re-
quired of students seeking the B.S. in Applied Mathematics or the B.S in Discrete Math-
ematics, and it is one of two discrete mathematics courses that computer engineering
students may select to fulfill a breadth requirement. The course will also often contain
a selection of other engineering and science majors who are interested in learning more
mathematics. As a consequence, in a typical semester, some 250 Georgia Tech students
are enrolled in Applied Combinatorics. Students enrolled in Applied Combinatorics at
Georgia Tech have already completed the three semester calculus sequence—with many
students bypassing one or more of the these courses on the basis of advanced place-
ment scores. Also, the students will know some linear algebra and can at least have a
reasonable discussion about vector spaces, bases and dimension.
Our approach to the course is to show students the beauty of combinatorics and how

combinatorial problems naturally arise in many settings, particularly in computer sci-
ence. While proofs are periodically presented in class, the course is not intended to
teach students how to write proofs; there are other required courses in our curriculum
that meet this need. Students may occasionally be asked to prove small facts, but these
arguments are closer to the kind we expect from students in second or third semester
calculus as contrasted with proofs we expect from a mathematics major in an upper-
division course. Regardless, we cut very few corners, and our text can readily be used
by instructors who elect to be even more rigorous in their approach.
This book arose from our feeling that a text that met our approach to Applied Com-

binatorics was not available. Because of the diverse set of instructors assigned to the
course, the standard text was one that covered every topic imaginable (and then some),
but provided little depth. We’ve taken a different approach, attacking the central sub-
jects of the course description to provide exposure, but taking the time to go into greater
depth in select areas to give the students a better feel for how combinatorics works. We
have also included some results and topics that are not found in other texts at this level
but help reveal the nature of combinatorics to students. We want students to under-
stand that combinatorics is a subject that you must feel “in the gut”, and we hope that
our presentation achieves this goal. The emphasis throughout remains on applications,
including algorithms. We do not get deeply into the details of what it means for an algo-
rithm to be “efficient”, butwe do include an informal discussion of the basic principles of

ix

Preface

complexity, intended to prepare students in computer science, engineering and applied
mathematics for subsequent coursework.
The materials included in this book have evolved over time. Early versions of a few

chapters date from 2004, but the pace quickened in 2006 when the authors team taught
a large section of Applied Combinatorics. In the last five years, existing chapters have
been updated and expanded, while new chapters have been added. As matters now
stand, our book includes more material than we can cover in a single semester. We feel
that the topics of Chapters 1 through 9 plus Chapters 12, 13 and 14 are the core of a one
semester course in Applied Combinatorics. Additional topics can then be selected from
the remaining chapters based on the interests of the instructor and students.
We are grateful to our colleagues Alan Diaz, Thang Le, Noah Strebi, Prasad Tetali and

Carl Yerger, who have taught Applied Combinatorics from preliminary versions and
have given valuable feedback. As this text is freely available on the internet, wewelcome
comments, criticisms, suggestions and corrections from anyone who takes a look at our
work.

About the Authors

William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was
first exposed to combinatorial mathematics through the 1971 Bowdoin Combinatorics
Conference which featured an array of superstars of that era, including Gian Carlo Rota,
Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Graham, Daniel
Kleitman and Ray Fulkerson. Since that time, he has published more than 120 research
papers on graph theory, discrete geometry, ramsey theory and extremal combinatorics.
Perhaps his best known work is in the area of combinatorics and partially ordered sets,
and his 1992 researchmonograph on this topic has been very influential. (He takes some
pride in the fact that this monograph is still in print and copies are being sold in 2014.)
He has more than 70 co-authors, but considers his extensive joint work with Graham
Brightwell, Stefan Felsner, Peter Fishburn, Hal Kierstead and Endre Szemerèdi as repre-
senting his best work. His career includes invited presentations at more than 50 inter-
national conferences and more than 30 meetings of professional societies. He was the
founding editor of the SIAM Journal on Discrete Mathematics and has served on the Edi-
torial Board ofOrder since the journal was launched in 1984, and his service includes an
eight year stint as Editor-in-Chief. Currently, he serves on the editorial boards of three
other journals in combinatorial mathematics.
Still he has his quirks. First, he insists on being called “Tom”, as Thomas is his mid-

dle name, while continuing to sign as William T. Trotter. Second, he has invested time
and energy serving five terms as department/school chair, one at Georgia Tech, two
at Arizona State University and two at the University of South Carolina. In addition,
he has served as a Vice Provost and as an Assistant Dean. Third, he is fascinated by

x cbna

computer operating systems and is always installing new ones. In one particular week,
he put eleven different flavors of Linux on the same machine, interspersed with four
complete installs of Windows 7. Incidentally, the entire process started and ended with
Windows 7. Fourth, he likes to hit golf balls, not play golf, just hit balls. Without these
diversions, he might even have had enough time to settle the Riemann hypothesis.
He has had eleven Ph.D. students, one of which is now his co-author on this text.

Mitchel T. Keller is a super-achiever (this description is written by WTT) extraordinaire
fromNorth Dakota. As a graduate student at Georgia Tech, he won a lengthy list of hon-
ors and awards, including a Vigre Graduate Fellowship, an IMPACT Scholarship, a John
R. Festa Fellowship and the 2009 Price Research Award. Mitch is a natural leader and
was elected President (and Vice President) of the Georgia Tech Graduate Student Gover-
nance Association, roles in which he served with distinction. Indeed, after completing
his terms, his student colleagues voted to establish a continuing award for distinguished
leadership, to be named the Mitchel T. Keller award, with Mitch as the first recipient.
Very few graduate students win awards in the first place, but Mitch is the only one I
know who has an award named after them.

Mitch is also a gifted teacher of mathematics, receiving the prestigious Georgia Tech
2008 Outstanding Teacher Award, a campus-wide competition. He is quick to experi-
ment with the latest approaches to teaching mathematics, adopting what works for him
while refining and polishing things along the way. He really understands the literature
behind active learning and the principles of engaging students in the learning process.
Mitch has even taught his more senior (some say ancient) co-author a thing or two and
got him to try personal response systems in a large calculus section this fall.
Mitch is off to a fast start in his own research career, and is already an expert in the

subject of linear discrepancy. Mitch has also made substantive contributions to a topic
known as Stanley depth, which is right at the boundary of combinatorial mathematics
and algebraic combinatorics.
After finishing his Ph.D., Mitch received another signal honor, a Marshall Sherfield

Postdoctoral Fellowship and spent two years at the London School of Economics. He is
presently an Assistant Professor of Mathematics at Washington and Lee University, and
a few years down the road, he’ll probably be president of something.
On the personal side, Mitch is the keeper of the Mathematical Genealogy Project, and

he is a great cook. His desserts are to die for.

Mitch Keller, kellermt@wlu.edu
Tom Trotter, trotter@math.gatech.edu

Lexington, Virginia and Atlanta, Georgia

cbna xi

Prologue
A unique feature of this book is a recurring cast of characters: Alice, Bob, Carlos, Dave,
Xing, Yolanda and Zori. They are undergraduate students at Georgia Tech, they’re tak-
ing an 8:05am section of Math 3012: Applied Combinatorics, and they frequently go
for coffee at the Clough Undergraduate Learning Center immendiately after the class is
over. They’ve become friends of sorts and you may find their conversations about Ap-
pliedCombinatorics of interest, as theywillmay reveal subtleties behind topics currently
being studied, reinforce connections with previously studiedmaterial or set the table for
topics which will come later. Sometimes, these conversations will set aside in a clearly
marked Dicussion section, but they will also be sprinkled as brief remarks throughout
the text.
In time, you will get to know these characters and will sense that, for example, when

Dave comments on a topic, it will represent a perspective that Zori is unlikely to share.
Some comments are right on target while others are “out in left field.” Some may even
be humorous, at least we hope this is the case. Regardless, our goal is not to entertain—
although that is not all that bad a side benefit. Instead, we intend that our informal
approach adds to the instructional value of our text.
Now it is time to meet our characters.

Alice is a computer engineering major from Philadelphia. She is ambitious, smart and
intense. Alice is quick to come to conclusions, most of which are right. On occasion,
Alice is not kind to Bob.

Bob is a management major from Omaha. He is a hard working and conscientious. Bob
doesn’t always keep pace with his friends, but anything he understands, he owns, and in
the end, he gets almost everything. On the other hand, Bob has never quite understood
why Alice is short with him at times.

Carlos is a really, really smart physicsmajor from SanAntonio. He has three older broth-
ers and two sisters, one older, one younger. His high school background wasn’t all that
great, but Carlos is clearly a special student at Georgia Tech. He absorbs new concepts at
lightning speed and sees through to the heart of almost every topic. He thinks carefully
before he says something and is admirably polite.

Dave is a discrete math major from Los Angeles. Dave is a flake. He’s plenty smart
enough but not all that diligent. Still, he has unique insights into things and from time
to time says something worth hearing—not always but sometimes. His friends say that
Dave suffers from occasional brain–mouth disconnects.

xiii

Prologue

Xing is a computer science major from New York. Xing’s parents immigrated from Bei-
jing, and he was strongly supported and encouraged in his high school studies. Xing is
detail oriented and not afraid to work hard.

Yolanda is a double major (computer science and chemistry) from Cumming, a small
town just north of Atlanta. Yolanda is the first in her extended family to go to a college
or university. She is smart and absorbs knowledge like a sponge. It’s all new to her and
her horizons are raised day by day.

Zori is an applied math major from Detroit. She is bottom-line focused, has little time
for puzzles and always wants to see applications to justify why something is included
in the course. Zori is determined, driven and impatient at times.

xiv cbna

CHAPTER 1
An Introduction to Combinatorics

Aswe hope youwill sense right from the beginning, we believe that combinatorial math-
ematics is one of the most fascinating and captivating subjects on the planet. Combina-
torics is very concrete and has a wide range of applications, but it also has an intellectu-
ally appealing theoretical side. Our goal is to give you a taste of both. In order to begin,
we want to develop, through a series of examples, a feeling for what types of problems
combinatorics addresses.

1.1 Introduction

There are three principal themes to our course:

Discrete Structures Graphs, digraphs, networks, designs, posets, strings, patterns, dis-
tributions, coverings, and partitions.

Enumeration Permutations, combinations, inclusion/exclusion, generating functions, re-
currence relations, and Pólya counting.

Algorithms and Optimization Sorting, spanning trees, shortest paths, eulerian circuits, hamil-
tonian cycles, graph coloring, planarity testing, network flows, bipartite match-
ings, and chain partitions.

To illustrate the accessible, concrete nature of combinatorics and to motivate topics
that we will study, this preliminary chapter provides a first look at combinatorial prob-
lems, choosing examples from enumeration, graph theory, number theory, and opti-
mization. The discussion is very informal—but this should serve to explainwhywe have
to be more precise at later stages. We ask lots of questions, but at this stage, you’ll only
be able to answer a few. Later, you’ll be able to answer many more . . .but as promised
earlier, most likely you’ll never be able to answer them all. And if we’re wrong inmaking
that statement, then you’re certain to become very famous. Also, you’ll get an A++ in
the course and maybe even a Ph.D. too.

1

Chapter 1 An Introduction to Combinatorics

1.2 Enumeration

Many basic problems in combinatorics involve counting the number of distributions of
objects into cells—where we may or may not be able to distinguish between the objects
and the same for the cells. Also, the cells may be arranged in patterns. Here are concrete
examples.
Amanda has three children: Dawn, Keesha and Seth.

1. Amanda has ten one dollar bills and decides to give the full amount to her chil-
dren. How many ways can she do this? For example, one way she might dis-
tribute the funds is to give Dawn and Keesha four dollars each with Seth receiving
the balance—two dollars. Another way is to give the entire amount to Keesha, an
option that probably won’t make Dawn and Seth very happy. Note that hidden
within this question is the assumption that Amanda does not distinguish the in-
dividual dollar bills, say by carefully examining their serial numbers. Instead, we
intend that she need only decide the amount each of the three children is to receive.

2. The amounts of money distributed to the three children form a sequence which if
written in non-increasing order has the form: a1, a2, a3 with a1 ≥ a2 ≥ a3 and
a1 + a2 + a3 = 10. How many such sequences are there?

3. Suppose Amanda decides to give each child at least one dollar. How does this
change the answers to the first two questions?

4. Now suppose that Amanda has ten books, in fact the top 10 books from the New
York Times best-seller list, and decides to give them to her children. How many
ways can she do this? Again, we note that there is a hidden assumption—the ten
books are all different.

5. Suppose the ten books are labeled B1, B2, . . . , B10. The sets of books given to the
three children are pairwise disjoint and their union is {B1, B2, . . . , B10}. How
many different sets of the form {S1, S2, S3} where S1, S2 and S3 are pairwise dis-
joint and S1 ∪ S2 ∪ S3 = {B1, B2, . . . , B10}?

6. Suppose Amanda decides to give each child at least one book. How does this
change the answers to the preceding two questions?

7. Howwouldwe possibly answer these kinds of questions if ten was really ten thou-
sand (OK, we’re not talking about children any more!) and three was three thou-
sand? Could you write the answer on a single page in a book?

A circular necklace with a total of six beads will be assembled using beads of three
different colors. In Figure 1.1, we show four such necklaces—however, note that the first
three are actually the same necklace. Each has three red beads, two blues and one green.

2 cbna

1.3 Combinatorics and Graph Theory

Figure 1.1: Necklaces made with three colors

On the other hand, the fourth necklace has the same number of beads of each color but
it is a different necklace.

1. How many different necklaces of six beads can be formed using three reds, two
blues and one green?

2. Howmanydifferent necklaces of six beads can be formedusing red, blue and green
beads (not all colors have to be used)?

3. Howmanydifferent necklaces of six beads can be formedusing red, blue and green
beads if all three colors have to be used?

4. How would we possibly answer these questions for necklaces of six thousand
beads made with beads from three thousand different colors? What special soft-
ware would be required to find the exact answer and how long would the compu-
tation take?

1.3 Combinatorics and Graph Theory

A graphG consists of a vertex set V and a collectionE of 2-element subsets of V . Elements
of E are called edges. In our course, we will (almost always) use the convention that
V = {1, 2, 3, . . . , n} for some positive integer n. With this convention, graphs can be
described precisely with a text file:

1. The first line of the file contains a single integer n, the number of vertices in the
graph.

2. Each of the remaining lines of the file contains a pair of distinct integers and spec-
ifies an edge of the graph.

We illustrate this convention in Figure 1.2with a text file and the diagram for the graphG
it defines.

cbna 3

Chapter 1 An Introduction to Combinatorics

graph1.txt
9
6 2
1 5
1 7
6 8
9 1
4 3
5 7
1 3
5 9
7 9

1

5

3

6

4
2

7

8
9

Figure 1.2: A graph defined by data

Much of the notation and terminology for graphs is quite natural. See if you canmake
sense out of the following statements which apply to the graph G defined above:

1. G has 9 vertices and 10 edges.

2. {2, 6} is an edge.

3. Vertices 5 and 9 are adjacent.

4. {5, 4} is not an edge.

5. Vertices 3 and 7 are not adjacent.

6. P = (4, 3, 1, 7, 9, 5) is a path of length 5 from vertex 4 to vertex 5.

7. C = (5, 9, 7, 1) is cycle of length 4.

8. G is disconnected and has two components. One of the components has vertex set
{2, 6, 8}.

9. {1, 5, 7} is a triangle.

10. {1, 7, 5, 9} is a clique of size 4.

11. {4, 2, 8, 5} is an independent set of size 4.

Equipped only with this little bit of background material, we are already able to pose
a number of interesting and challenging problems.
Example 1.1. Consider the graph G shown in Figure 1.3.

1. What is the largest k for which G has a path of length k?

2. What is the largest k for which G has a cycle of length k?

4 cbna

1.3 Combinatorics and Graph Theory

1

53

6

4

2

7
8

9

1011

12

13

1415

16

17

18

19
20

21

2223

24

Figure 1.3: A connected graph

3. What is the largest k for which G has a clique of size k?

4. What is the largest k for which G has an independent set of size k?

5. What is the shortest path from vertex 7 to vertex 6?

Suppose we gave the class a text data file for a graph on 1500 vertices and asked
whether the graph contains a cycle of length at least 500. Raoul says yes and Carla says
no. How do we decide who is right?
Suppose instead we asked whether the graph has a clique of size 500. Helene says

that she doesn’t think so, but isn’t certain. Is it reasonable that her classmates insist that
she make up her mind, one way or the other? Is determining whether this graph has a
clique of size 500 harder, easier or more or less the same as determining whether it has
a cycle of size 500.
We will frequently study problems in which graphs arise in a very natural manner.

Here’s an example.
Example 1.2. In Figure 1.4, we show the location of some radio stations in the plane,
together with a scale indicating a distance of 200 miles. Radio stations that are closer
than 200 miles apart must broadcast on different frequencies to avoid interference.
We’ve shown that 6 different frequencies are enough. Can you do better?
Can you find 4 stations each of which is within 200 miles of the other 3? Can you find

8 stations each of is more than 200 miles away from the other 7? Is there a natural way
to define a graph associated with this problem?
Example 1.3. How big must an applied combinatorics class be so that there are either
(a) six students with each pair having taken at least one other class together, or (b) six

cbna 5

Chapter 1 An Introduction to Combinatorics

200 miles

1

34

6

5

2

4

5

1

3

4

6

5

1

4

6

1
2

4

6
5

3 6

5

Figure 1.4: Radio Stations

students with each pair together in a class for the first time. Is this really a hard problem
or can we figure it out in just a few minutes, scribbling on a napkin?

1.4 Combinatorics and Number Theory

Broadly, number theory concerns itself with the properties of the positive integers. G.H.
Hardy was a brilliant British mathematician who lived through both World Wars and
conducted a large deal of number-theoretic research. He was also a pacifist who was
happy that, from his perspective, his research was not “useful”. He wrote in his 1940
essay A Mathematician’s Apology “[n]o one has yet discovered any warlike purpose to be
served by the theory of numbers or relativity, and it seems very unlikely that anyonewill
do so for many years.”1 Little did he know, the purest mathematical ideas of number
theory would soon become indispensable for the cryptographic techniques that kept
communications secure. Our subject here is not number theory, but we will see a few
times where combinatorial techniques are of use in number theory.

Example 1.4. Form a sequence of positive integers using the following rules. Start with
a positive integer n > 1. If n is odd, then the next number is 3n + 1. If n is even, then
the next number is n/2. Halt if you ever reach 1. For example, if we start with 28, the
sequence is

28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

1G.H. Hardy, A Mathematician’s Apology, Cambridge University Press, p. 140. (1993 printing)

6 cbna

1.4 Combinatorics and Number Theory

Now suppose you start with 19. Then the first few terms are

19, 58, 29, 88, 44, 22.

But now we note that the integer 22 appears in the first sequence, so the two sequences
will agree from this point on. Sequences formed by this rule are called Collatz sequences.

Pick a number somewhere between 100 and 200 and write down the sequence you
get. Regardless of your choice, you will eventually halt with a 1. However, is there some
positive integer n (possibly quite large) so that if you start from n, youwill never reach 1?
Example 1.5. Students in middle school are taught to add fractions by finding least com-
mon multiples. For example, the least common multiple of 15 and 12 is 60, so:

2

15
+

7

12
=

8

60
+

35

60
=

43

60
.

How hard is it to find the least common multiple of two integers? It’s really easy if
you can factor them into primes. For example, consider the problem of finding the least
common multiple of 351785000 and 316752027900 if you just happen to know that

351785000 =23 × 54 × 7× 19× 232 and
316752027900 =22 × 3× 52 × 73 × 11× 234.

Then the least common multiple is

300914426505000 =23 × 3× 54 × 73 × 11× 19× 234.

So to find the least common multiple of two numbers, we just have to factor them into
primes. That doesn’t sound too hard. For starters, can you factor 1961? OK, how about
1348433? Now for a real challenge. Suppose you are told that the integer

c = 5220070641387698449504000148751379227274095462521

is the product of two primes a and b. Can you find them?
What if factoring is hard? Can you find the least common multiple of two relatively

large integers, say each with about 500 digits, by another method? How should middle
school students be taught to add fractions?
As an aside, we note thatmost calculators can’t add ormultiply two 20 digits numbers,

much less two numbers with more than 500 digits. But it is relatively straightforward
to write a computer program that will do the job for us. Also, there are some powerful
mathematical software tools available. Two very well known examples are Maple R© and
Mathematica R©. For example, if you open up aMapleworkspace and enter the command:

ifactor(300914426505000);

cbna 7

Chapter 1 An Introduction to Combinatorics

then about as fast as you hit the carriage return, you will get the prime factorization
shown above.
Now here’s howwemade up the challenge problem. First, we found a site on the web

that lists large primes and found these two values:

a =45095080578985454453 and
b =115756986668303657898962467957.

We then used Maple to multiply them together using the following command:

45095080578985454453 ∗ 115756986668303657898962467957;

Almost instantly, Maple reported the value for c given above.
Out of curiosity, we then askedMaple to factor c. It took almost 12 minutes on a pow-

erful desktop computer.
Questions arising in number theory can also have an enumerative flair, as the follow-

ing example shows.
Example 1.6. In Table 1.1, we show the integer partitions of 8. There are 22 partitions al-

8 distinct parts 7+1 distinct parts, odd parts 6+2 distinct parts
6+1+1 5+3 distinct parts, odd parts 5+2+1 distinct parts
5+1+1+1 odd parts 4+4 4+3+1 distinct parts
4+2+2 4+2+1+1 4+1+1+1+1
3+3+2 3+3+1+1 odd parts 3+2+2+1
3+2+1+1+1 3+1+1+1+1+1 odd parts 2+2+2+2
2+2+2+1+1 2+2+1+1+1+1 2+1+1+1+1+1+1

1+1+1+1+1+1+1+1 odd parts

Table 1.1: The partitions of 8, noting those into distinct parts and those into odd parts.

together, and as noted, exactly 6 of them are partitions of 8 into odd parts. Also, exactly 6
of them are partitions of 8 into distinct parts.

What would be your reaction if we asked you to find the number of integer partitions
of 25892? Do you think that the number of partitions of 25892 into odd parts equals the
number of partitions of 25892 into distinct parts? Is there a way to answer this question
without actually calculating the number of partitions of each type?

1.5 Combinatorics and Geometry

There are many problems in geometry that are innately combinatorial or for which com-
binatorial techniques shed light on the problem.

8 cbna

1.6 Combinatorics and Optimization

Example 1.7. In Figure 1.5, we show a family of 4 lines in the plane. Each pair of lines
intersects and no point in the plane belongs to more than two lines. These lines deter-
mine 11 regions.

1
2

3

4
6

7

8
9

10

5

11

Figure 1.5: Lines and regions

Under these same restrictions, how many regions would a family of 8947 lines deter-
mine? Can different arrangements of lines determine different numbers of regions?
Example 1.8. Mandy says she has found a set of 882 points in the plane that determine
exactly 752 lines. Tobias disputes her claim. Who is right?
Example 1.9. There aremany differentways to draw a graph in the plane. Some drawings
may have crossing edgeswhile others don’t. But sometimes, crossing edgesmust appear
in any drawing. Consider the graph G shown in Figure 1.6. Can you redraw G without
crossing edges?
Suppose Sam and Deborah were given a homework problem asking whether a partic-

ular graph on 2843952 vertices and 9748032 edges could be drawn without edge cross-
ings. Deborah just looked at the number of vertices and the number of edges and said
that the answer is “no.” Samquestions how she can be so certain—without lookingmore
closely at the structure of the graph. Is there a way for Deborah to justify her definitive
response?

1.6 Combinatorics and Optimization

You likely have already been introduced to optimization problems, as calculus students
around the world are familiar with the plight of farmers trying to fence the largest area
of land given a certain amount of fence or people needing to cross rivers downstream

cbna 9

Chapter 1 An Introduction to Combinatorics

1

2

3

4
5

6

7 89

10

Figure 1.6: A graph with crossing edges

11
17

4
2

1613

12

9
37

27 10

32

19
14

5

18

8

28

A

B

C

D
E

F

G

H

J

K

Figure 1.7: A labeled graph with weighted edges

from their current locationwhomust decidewhere they should cross based on the speed
at which they can run and swim. However, these problems are inherently continuous.
In theory, you can cross the river at any point you want, even if it were irrational. (OK,
so not exactly irrational, but a good decimal approximation.) In this course, we will
examine a few optimization problems that are not continuous, as only integer values for
the variables will make sense. It turns out that many of these problems are very hard to
solve in general.

Example 1.10. In Figure 1.7, we use letters for the labels on the vertices to help distinguish
visually from the integer weights on the edges.
Suppose the vertices are cities, the edges are highways and the weights on the edges

represent distance.

Q1: What is the shortest path from vertex E to vertex B?

10 cbna

1.6 Combinatorics and Optimization

16

13

12

27

18
28

A

C

E

F

G

B

D

23

19

14

25

19

12 18

A

C

E

F

G

B

D

23

19

25

19

Figure 1.8: A weighted graph and spanning tree

Suppose Ariel is a salesperson whose home base is city A.

Q2: In what order should Ariel visit the other cities so that she goes through each of
themat least once and returns home at the end—while keeping the total distance traveled
to a minimum? Can Ariel accomplish such a tour visiting each city exactly once?

Sanjay is a highway inspection engineer andmust traverse every highway eachmonth.
Sanjay’s homebase is City E.

Q3: In what order should Sanjay traverse the highways to minimize the total distance
traveled? Can Sanjay make such a tour traveling along each highway exactly once?
Example 1.11. Now suppose that the vertices are locations of branch banks in Atlanta
and that the weights on an edge represents the cost, in millions of dollars, of building a
high capacity data link between the branch banks at it two end points. In this model, if
there is no edge between two branch banks, it means that the cost of building a data link
between this particular pair is prohibitively high (here we might be tempted to say the
cost is infinite, but the authors don’t admit to knowing the meaning of this word).
Our challenge is to decide which data links should be constructed to form a network

in which any branch bank can communicate with any other branch. We assume that
data can flow in either direction on a link, should it be built, and that data can be relayed
through any number of data links. So to allow full communication, we should construct
a spanning tree in this network. In Figure 1.8, we show a graph G on the left and one of
its many spanning trees on the right.
The weight of the spanning tree is the sum of the weights on the edges. In our model,

this represents the costs, again inmillions of dollars, of building the data links associated
with the edges in the spanning tree. For the spanning tree shown in Figure 1.8, this total

cbna 11

Chapter 1 An Introduction to Combinatorics

is
12 + 25 + 19 + 18 + 23 + 19 = 116.

Of all spanning trees, the bankwould naturally like to find one havingminimumweight.
How many spanning trees does this graph have? For a large graph, say one with

2875 vertices, does it make sense to find all spanning trees and simply take the one with
minimum cost? In particular, for a positive integer n, how many trees have vertex set
{1, 2, 3, . . . , n}?

1.7 Sudoku Puzzles

Here’s an example which has more substance than you might think at first glance. It
involves Sudoku puzzles, which have become immensely popular in recent years.
Example 1.12. A Sudoku puzzle is a 9 × 9 array of cells that when completed have the
integers 1, 2, . . . , 9 appearing exactly once in each row and each column. Also (and this
is what makes the puzzles so fascinating), the numbers 1, 2, 3, . . . , 9 appear once in each
of the nine 3 × 3 subquares identified by the darkened borders. To be considered a
legitimate Sudoku puzzle, there should be a unique solution. In Figure 1.9, we show two
Sudoku puzzles. The one on the right is fairly easy, and the one on the left is far more
challenging.

Figure 1.9: Sudoku puzzles

There are many sources of Sudoku puzzles, and software that generates Sudoku puz-
zles and then allows you to play themwith an attractive GUI is available for all operating

12 cbna

1.8 Discussion

systems we know anything about (although not recommend to play them during class!).
Also, you can find Sudoku puzzles on the web at:

.

On this site, the “Evil” ones are just that.
How does Rory make up good Sudoku puzzles, ones that are difficult for Mandy to

solve? How could Mandy use a computer to solve puzzles that Rory has constructed?
What makes some Sudoku puzzles easy and some of them hard?
The size of a Sudoku puzzle can be expanded in an obvious way, and many newspa-

pers include a 16× 16 Sudoku puzzle in their Sunday edition (just next to a challenging
crosswords puzzle). How difficult would it be to solve a 1024 × 1024 Sudoku puzzle,
even if you had access to a powerful computer?

1.8 Discussion

Over coffee after their first combinatorics class, Xing remarked ”This doesn’t seem to be
going like calculus. I’m expecting the professor to teach us how to solve problems—at
least some kinds of problems. Instead, a whole bunch of problems were posed and we
were asked whether we could solve them.” Yolanda jumped in “You may be judging
things too quickly. I’m fascinated by these kinds of questions. They’re different.” Zori
grumpily layed bare her concerns “After getting out of Georgia Tech, who’s going to pay
me to count necklaces, distribute library books or solve Sudoku puzzles.” Bob politely
countered “But the problems on networks and graphs seemed to have practical applica-
tions. I heard my uncle, a very successful business guy, talk about franchising problems
that sound just like those.” Alice speculated “All those network problems sound the
same to me. A fair to middling computer science major could probably write programs
to solve any of them.” Dave mumbled “Maybe not. Similar sounding problems might
actually be quite different in the end. Maybe we’ll learn to tell the difference.” After a bit
of quiet time interrupted only by latte’s disappearing, Carlos said softly “It might not be
so easy to distinguish hard problems from easy ones.” Alice followed “Regardless, what
strikes me is that we all, well almost all of us,” she said, rolling her eyes at Bob “seem to
understand everything talked about in class today. It was so very concrete. I liked that.”

cbna 13

http://www.websudoku.com

CHAPTER 2
Strings, Sets, and Binomial

Coefficients
Much of combinatorial mathematics can be reduced to the study of strings, as they form
the basis of all written human communications. Also, strings are the way humans com-
municate with computers, as well as the way one computer communicates with another.
As we shall see, sets and binomial coefficients are topics that fall under the string um-
brella. So it makes sense to begin our in-depth study of combinatorics with strings.

2.1 Strings: A First Look

Let n be a positive integer. Throughout this text, we will use the shorthand notation [n]
to denote the n-element set {1, 2, . . . , n}. Now letX be a set. Then a function s : [n]→ X
is also called anX-string of length n. In discussions ofX-strings, it is customary to refer to
the elements ofX as characters, while the element s(i) is the ith character of s. Whenever
practical, we prefer to denote a string s by writing s =“x1x2x3 . . . xn”, rather than the
more cumbersome notation s(1) = x1, s(2) = x2, . . . , s(n) = xn.
There are several alternatives for the notation and terminology associatedwith strings.

First, the characters in a string s are frequently written using subscripts as s1, s2, . . . , sn,
so the ith-term of s can be denoted si rather than s(i). Strings are also called sequences,
especially whenX is a set of numbers and the function s is defined by an algebraic rule.
For example, the sequence of odd integers is defined by si = 2i− 1.
Alternatively, strings are called words, the setX is called the alphabet and the elements

of X are called letters. For example, aababbccabcbb is a 13-letter word on the 3-letter al-
phabet {a, b, c}.

In many computing languages, strings are called arrays. Also, when the character s(i)
is constrained to belong to a subsetXi ⊆ X , a string can be considered as an element of
the cartesian product X1 ×X2 × · · · ×Xn, which is normally viewed as n-tuples of the
form (x1, x2, . . . , xn) such that xi ∈ Xi for all i ∈ [n].
Example 2.1. In the state of Georgia, license plates consist of four digits followed by a
space followed by three capital letters. The first digit cannot be a 0. How many license

15

Chapter 2 Strings, Sets, and Binomial Coefficients

plates are possible?

LetX consist of the digits {0, 1, 2, . . . , 9}, let Y be the singleton set whose only element
is a space, and let Z denote the set of capital letters. A valid license plate is just a string
from

(X − {0})×X ×X ×X × Y × Z × Z × Z

so the number of different license plates is 9× 103× 1× 263 = 158 184 000, since the size
of a product of sets is the product of the sets’ sizes. We can get a feel for why this is the
case by focusing just on the digit part of the string here. We can think about the digits
portion as being four blanks that need to be filled. The first blank has 9 options (the digits
1 through 9). If we focus on just the digit strings beginning with 1, one perspective is
that they range from 1000 to 1999, so there are 1000 of them. However, we could also
think about there being 10 options for the second spot, 10 options for the third spot, and
10 options for the fourth. Multiplying 10×10×10 gives 1000. Since our analysis of filling
the remaining digit blanks didn’t depend on our choice of a 1 for the first position, we see
that each of the 9 choices of initial digit gives 1 000 strings, for a total of 9 000 = 9× 103.

In the case thatX = {0, 1}, anX-string is called a 0–1 string (also a binary string or bit
string.). When X = {0, 1, 2}, an X-string is also called a ternary string.
Example 2.2. A machine instruction in a 32-bit operating system is just a bit string of
length 32. Thus, there are 2 options for each of 32 positions to fill, making the number
of such strings 232 = 4 294 967 296. In general, the number of bit strings of length n is 2n.
Example 2.3. Suppose that a website allows its users to pick their own usernames for
accounts, but imposes some restrictions. The first chracter must be an upper-case letter
in the English alphabet. The second through sixth characters can be letters (both upper-
case and lower-case allowed) in the English alphabet or decimal digits (0–9). The seventh
positionmust be ‘@’ or ‘.’. The eighth through twelfth positions allow lower-case English
letters, ‘*’, ‘%’, and ‘#’. The thirteenth position must be a digit. How many users can the
website accept registrations from?

We can visualize the options by thinking of the 13 positions in the string as blanks that
need to be filled in and putting the options for that blank above. Below, we’ve used U to
denote the set of upper-case letters, L for the set of lower-case letters, and D for the set
of digits.

#
D D D D D % % % % %
L L L L L . * * * * *

U U U U U U @ L L L L L D
26 62 62 62 62 62 2 29 29 29 29 29 10

Below each position in the string, we’ve written the number of options for that position.
(For example, there are 62 options for the second position, since there are 52 letters once

16 cbna

2.2 Permutations

both cases are accounted for and 10 digits. We then multiply these possibilities together,
since each choice is independent of the others. Therefore, we have

26× 625 × 2× 295 × 10 = 9 771 287 250 890 863 360

total possible usernames.

2.2 Permutations

In the previous section, we considered strings in which repetition of symbols is allowed.
For instance, “01110000” is a perfectly good bit string of length eight. However, in many
applied settingswhere a string is an appropriatemodel, a symbolmay be used in atmost
one position.
Example 2.4. Imagine placing the 26 letters of the English alphabet in a bag and drawing
them out one at a time (without returning a letter once it’s been drawn) to form a six-
character string. We know there are 266 strings of length six that can be formed from the
English alphabet. However, if we restrict the manner of string formation, not all strings
are possible. The string “yellow” has six characters, but it uses the letter “l” twice and
thus cannot be formed bydrawing letters froma bag. However, “jacket” can be formed in
thismanner. Starting from a full bag, we note there are 26 choices for the first letter. Once
it has been removed, there are 25 letters remaining in the bag. After drawing the second
letter, there are 24 letters remaining. Continuing, we note that immediately before the
sixth letter is drawn from the bag, there are 21 letters in the bag. Thus, we can form
26 · 25 · 24 · 23 · 22 · 21 six-character strings of English letters by drawing letters from a
bag, a little more than half the total number of six-character strings on this alphabet.
To generalize the preceding example, we now introduce permutations. To do so, let

X be a finite set and let n be a positive integer. An X-string s = x1x2 . . . xn is called
a permutation if all n characters used in s are distinct. Clearly, the existence of an X-
permutation of length n requires that |X| ≥ n.

When n is a positive integer, we define n! (read “n factorial”) by

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1.

By convention, we set 0! = 1. As an example, 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040. Now for
integersm,nwithm ≥ n ≥ 0 define P (m,n) by

P (m,n) =
m!

(m− n)!
= m(m− 1) · · · (m− n+ 1).

For example, P (9, 3) = 9 · 8 · 7 = 504 and P (8, 4) = 8 · 7 · 6 · 5 = 1680. Also, a computer
algebra system will quickly report that

P (68, 23) = 20732231223375515741894286164203929600000.

cbna 17

Chapter 2 Strings, Sets, and Binomial Coefficients

Proposition 2.5. If X is an m-element set and n is a positive integer with m ≥ n, then the
number of X-strings of length n that are permutations is P (m,n).

Proof. The proposition is true since when constructing a permutation s = x1x2, . . . xn
from an m-element set, we see that there are m choices for x1. After fixing x1, we have
that for x2, there are m − 1 choices, as we can use any element of X − {x1}. For x3,
there arem− 2 choices, since we can use any element in X − {x1, x2}. For xn, there are
m− n+ 1 choices, because we can use any element of X except x1, x2, . . . xn−1. Noting
that

P (m,n) =
m!

(m− n)!
= m(m− 1)(m− 2) . . . (m− n+ 1),

our proof is complete.

Note that the answer we arrived at in Example 2.4 is simply P (26, 20) as we would
expect in light of Proposition 2.5.

Example 2.6. It’s time to elect a slate of four class officers (President, Vice President, Sec-
retary and Treasurer) from the pool of 80 students enrolled in Applied Combinatorics.
If any interested student could be elected to any position (Alice contends this is a big
“if” since Bob is running), how many different slates of officers can be elected?
To count possible officer slates, work from a setX containing the names of the 80 inter-

ested students (yes, even poor Bob). A permutation of length four chosen fromX is then
a slate of officers by considering the first name in the permutation as the President, the
second as the Vice President, the third as the Secretary, and the fourth as the Treasurer.
Thus, the number of officer slates is P (80, 4) = 37957920.

Example 2.7. Let’s return to the license plate question of Example 2.1. Suppose that
Georgia required that the three letters be distinct from each other. Then, instead of
having 263 = 17 576 ways to fill the last three positions on the license plate, we’d have
P (26, 3) = 26× 25× 24 = 15 600 options, giving a total of 140 400 000 license plates.

As another example, suppose that repetition of letters were allowed but the three dig-
its in positions two through four must all be distinct from each other (but could repeat
the first digit, which must still be nonzero). Then there are still 9 options for the first
position and 263 options for the letters, but the three remaining digits can be completed
in P (10, 3) ways. The total number of license plates would then be 9× P (10, 3)× 263. If
we want to prohibit repetition of the digit in the first position as well, we need a bit more
thought. We first have 9 choices for that initial digit. Then, when filling in the next three
positions with digits, we need a permutation of length 3 chosen from the remaining 9
digits. Thus, there are 9 × P (9, 3) ways to complete the digits portion, giving a total of
9× P (9, 3)× 263 license plates.

18 cbna

2.3 Combinations

2.3 Combinations

To motivate the topic of this section, we consider another variant on the officer election
problem from Example 2.6. Suppose that instead of electing students to specific offices,
the class is to elect an executive council of four students from the pool of 80 students.
Each position on the executive council is equal, so there would be no difference between
Alicewinning the “first” seat on the executive council and herwinning the “fourth” seat.
In other words, we just want to pick four of the 80 students without any regard to order.
We’ll return to this question after introducing our next concept.
LetX be a finite set and let k be an integer with 0 ≤ k ≤ |X|. Then a k-element subset

of X is also called a combination of size k. When |X| = n, the number of k-element
subsets ofX is denoted

(
n
k

)
. Numbers of the form

(
n
k

)
are called binomial coefficients, and

many combinatorists read
(
n
k

)
as “n choose k.” When we need an in-line version, the

preferred notation is C(n, k). Also, the quantity C(n, k) is referred to as the number of
combinations of n things, taken k at a time.
Bob notes that with this notation, the number of ways a four-member executive coun-

cil can be elected from the 80 interested students is C(80, 4). However, he’s puzzled
about how to compute the value of C(80, 4). Alice points out that it must be less than
P (80, 4), since each executive council could be turned into 4! different slates of officers.
Carlos agrees and says that Alice has really hit upon the key idea in finding a formula
to compute C(n, k) in general.
Proposition 2.8. If n and k are integers with 0 ≤ k ≤ n, then(

n

k

)
= C(n, k) =

P (n, k)

k!
=

n!

k!(n− k)!

Proof. LetX be ann-element set. The quantityP (n, k) counts the number ofX-permutations
of length k. Each of the C(n, k) k-element subsets of X can be turned into k! permu-
tations, and this accounts for each permutation exactly once. Therefore, k!C(n, k) =
P (n, k) and dividing by k! gives the formula for the number of k-element subsets.

Using Proposition 2.8, we can nowdetermine thatC(80, 4) = 1581580 is the number of
ways a four-member executive council could be elected from the 80 interested students.

Our argument above illustrates a common combinatorial counting strategy. We counted
one thing and determined that the objects wewanted to count were overcounted the same
number of times each, so we divided by that number (k! in this case).

The following result is tantamount to saying that choosing elements to belong to a set
(the executive council election winners) is the same as choosing those elements which
are to be denied membership (the election losers).
Proposition 2.9. For all integers n and k with 0 ≤ k ≤ n,(

n

k

)
=

(
n

n− k

)
.

cbna 19

Chapter 2 Strings, Sets, and Binomial Coefficients

Example 2.10. A Southern restaurant lists 21 items in the “vegetable” category of its
menu. (Like any good Southern restaurant, macaroni and cheese is one of the vegetable
options.) They sell a vegetable plate which gives the customer four different vegetables
from the menu. Since there is no importance to the order the vegetables are placed on
the plate, there are C(21, 4) = 5985 different ways for a customer to order a vegetable
plate at the restaurant.
Our next example introduces an important correspondence between sets andbit strings

that we will repeatedly exploit in this text.
Example 2.11. Let n be a positive integer and let X be an n-element set. Then there is a
natural one-to-one correspondence between subsets ofX and bit strings of length n. To
be precise, let X = {x1, x2, . . . , xn}. Then a subset A ⊆ X corresponds to the string s
where s(i) = 1 if and only if i ∈ A. For example, if X = {a, b, c, d, e, f, g, h}, then the
subset {b, c, g} corresponds to the bit string 01100010. There are C(8, 3) = 56 bit strings
of length eight with precisely three 1’s. Thinking about this correspondence, what is the
total number of subsets of an n-element set?

2.4 Combinatorial Proofs

Combinatorial arguments are among the most beautiful in all of mathematics. Often-
times, statements that can be proved by other, more complicated methods (usually in-
volving large amounts of tedious algebraic manipulations) have very short proofs once
you can make a connection to counting. In this section, we introduce a new way of
thinking about combinatorial problems with several examples. Our goal is to help you
develop a “gut feeling” for combinatorial problems.
Example 2.12. Let n be a positive integer. Explain why

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Consider an (n+ 1)× (n+ 1) array of dots as depicted in Figure 2.1. There are (n+ 1)2

dots altogether, with exactly n + 1 on the main diagonal. The off-diagonal entries split
naturally into two equal size parts, those above and those below the diagonal.
Furthermore, each of those two parts has S(n) = 1 + 2 + 3 + · · · + n dots. It follows

that
S(n) =

(n+ 1)2 − (n+ 1)

2

and this is obvious! Now a little algebra on the right hand side of this expression pro-
duces the formula given earlier.

Example 2.13. Let n be a positive integer. Explain why

1 + 3 + 5 + · · ·+ 2n− 1 = n2.

20 cbna

2.4 Combinatorial Proofs

Figure 2.1: The sum of the first n integers

The left hand side is just the sum of the first n odd integers. But as suggested in
Figure 2.2, this is clearly equal to n2.
Example 2.14. Let n be a positive integer. Explain why(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n.

Both sides count the number of bit strings of length n, with the left side first grouping
them according to the number of 0’s.
Example 2.15. Let n and k be integers with 0 ≤ k < n. Then(

n

k + 1

)
=

(
k

k

)
+

(
k + 1

k

)
+

(
k + 2

k

)
+ · · ·+

(
n− 1

k

)
.

To prove this formula, we simply observe that both sides count the number of bit strings
of lengthn that contain k+1 1’swith the right hand side first partitioning themaccording
to the last occurence of a 1. (For example, if the last 1 occurs in position k + 5, then the
remaining k 1’s must appear in the preceding k+4 positions, givingC(k+4, k) strings of
this type.) Note that when k = 1 (so k+ 1 = 2), we have the same formula as developed
earlier for the sum of the first n positive integers.
Example 2.16. Explain the identity

3n =

(
n

0

)
20 +

(
n

1

)
21 +

(
n

2

)
22 + · · ·+

(
n

n

)
2n.

cbna 21

Chapter 2 Strings, Sets, and Binomial Coefficients

Figure 2.2: The sum of the first n odd integers

Both sides count the number of {0, 1, 2}-strings of length n, the right hand side first
partitioning them according to positions in the string which are not 2. (For instance, if
6 of the positions are not 2, we must first choose those 6 positions in C(n, 6) ways and
then there are 26 ways to fill in those six positions by choosing either a 0 or a 1 for each
position.)
Example 2.17. For each non-negative integer n,(

2n

n

)
=

(
n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

.

Both sides count the number of bit strings of length 2nwith half the bits being 0’s, with
the right side first partitioning them according to the number of 1’s occurring in the first
n positions of the string. Note that we are also using the trivial identity

(
n
k

)
=
(
n

n−k
)
.

2.5 The Ubiquitous Nature of Binomial Coefficients

In this section, we present several combinatorial problems that can be solved by appeal
to binomial coefficients, even though at first glance, they do not appear to have anything
to do with sets.
Example 2.18. The office assistant is distributing supplies. In how many ways can he
distribute 18 identical folders among four office employees: Audrey, Bart, Cecilia and
Darren, with the additional restriction that each will receive at least one folder?
Imagine the folders placed in a row. Then there are 17 gaps between them. Of these

gaps, choose three and place a divider in each. Then this choice divides the folders into

22 cbna

2.5 The Ubiquitous Nature of Binomial Coefficients

Figure 2.3: Distributing Identical Objects into Distinct Cells

four non-empty sets. The first goes to Audrey, the second to Bart, etc. Thus the answer
is C(17, 3). In Figure 2.3, we illustrate this scheme with Audrey receiving 6 folders, Bart
getting 1, Cecilia 4 and Darren 7.
Example 2.19. Suppose we redo the preceding problem but drop the restriction that each
of the four employees gets at least one folder. Now howmany ways can the distribution
be made?
The solution involves a “trick” of sorts. First, we convert the problem to one that we

already know how to solve. This is accomplished by artificially inflating everyone’s allo-
cation by one. In other words, if Bart will get 7 folders, we say that he will get 8. Also,
artificially inflate the number of folders by 4, one for each of the four persons. So now
imagine a row of 22 = 18 + 4 folders. Again, choose 3 gaps. This determines a non-zero
allocation for each person. The actual allocation is one less—and may be zero. So the
answer is C(21, 3).
Example 2.20. Again we have the same problem as before, but nowwe want to count the
number of distributions where only Audrey and Cecilia are guaranteed to get a folder.
Bart and Darren are allowed to get zero folders. Now the trick is to artificially inflate
Bart and Darren’s allocation, but leave the numbers for Audrey and Cecilia as is. So the
answer is C(19, 3).
Example 2.21. Here is a reformulation of the preceding discussion expressed in terms of
integer solutions of inequalities.
We count the number of integer solutions to the inequality

x1 + x2 + x3 + x4 + x5 + x6 ≤ 538

subject to various sets of restrictions on the values of x1, x2, . . . , x6. Some of these re-
strictions will require that the inequality actually be an equation.
The number of integer solutions is:

1. C(537, 5), when all xi > 0 and equality holds.

2. C(543, 5), when all xi ≥ 0 and equality holds.

3. C(291, 3), when x1, x2, x4, x6 > 0, x3 = 52, x5 = 194, and equality holds.

4. C(537, 6), when all xi > 0 and the inequality is strict. Hint: Imagine a new variable
x7 which is the balance. Note that x7 must be positive.

cbna 23

Chapter 2 Strings, Sets, and Binomial Coefficients

(0,0)

(13,8)

Figure 2.4: A Lattice Path

5. C(543, 6), when all xi ≥ 0 and the inequality is strict. Hint: Add a new variable x7
as above. Now it is the only one which is required to be positive.

6. C(544, 6), when all xi ≥ 0.

A classical enumerationproblem (with connections to several problems) involves count-
ing lattice paths. A lattice path in the plane is a sequence of ordered pairs of integers:

(m1, n1), (m2, n2), (m3, n3), . . . , (mt, nt)

so that for all i = 1, 2, . . . , t− 1, either

1. mi+1 = mi + 1 and ni+1 = ni, or

2. mi+1 = mi and ni+1 = ni + 1.

In Figure 2.4, we show a lattice path from (0, 0) to (13, 8).
Example 2.22. The number of lattice paths from (m,n) to (p, q) isC((p−m)+(q−n), p−m).

To see why this formula is valid, note that a lattice path is just an X-string with X =
{H,V }, where H stands for horizontal and V stands for vertical. In this case, there are
exactly (p−m) + (q − n) moves, of which p−m are horizontal.
Example 2.23. Let n be a non-negative integer. Then the number of lattice paths from
(0, 0) to (n, n) which never go above the diagonal line y = x is the Catalan number

C(n) =
1

n+ 1

(
2n

n

)
.

To see that this formula holds, consider the family P of all lattice paths from (0, 0)
to (n, n). A lattice path from (0, 0) to (n, n) is just a {H,V }-string of length 2n with
exactly n H’s. So |P| =

(
2n
n

)
. We classify the paths in P as good if they never go over

24 cbna

2.5 The Ubiquitous Nature of Binomial Coefficients

(0,0)

(n,n)
(n-1,n+1)

Figure 2.5: Transforming a Lattice Path

the diagonal; otherwise, they are bad. A string s ∈ P is good if the number of V ’s
in an initial segment of s never exceeds the number of H’s. For example, the string
“HHVHV V HHHVHV V V ” is a good lattice path from (0, 0) to (7, 7), while the path
“HVHVHHV V V HV HHV ” is bad. In the second case, note that after 9 moves, we
have 5 V ’s and 4 H’s.
Let G and B denote the family of all good and bad paths, respectively. Of course, our

goal is to determine |G|.
Consider a path s ∈ B. Then there is a least integer i so that s has more V ’s thanH’s in

the first i positions. By the minimality of i, it is easy to see that imust be odd (otherwise,
we can back up a step), and if we set i = 2j + 1, then in the first 2j + 1 positions of s,
there are exactly j H’s and j+1 V ’s. The remaining 2n−2j−1 positions (the “tail of s”)
have n− j H’s and n− j− 1 V ’s. We now transform s to a new string s′ by replacing the
H’s in the tail of s by V ’s and the V ’s in the tail of s byH’s and leaving the initial 2j + 1
positions unchanged. For example, see Figure 2.5, where the path s is shown solid and
s′ agrees with s until it crosses the line y = x and then is the dashed path. Then s′ is a
string of length 2n having (n− j) + (j + 1) = n+ 1 V ’s and (n− j − 1) + j = n− 1 H’s,
so s′ is a lattice path from (0, 0) to (n − 1, n + 1). Note that there are

(
2n
n−1
)
such lattice

paths.
We can also observe that the transformation we’ve described is in fact a bijection be-

tween B and P ′, the set of lattice paths from (0, 0) to (n−1, n+1). To see that this is true,
note that every path s′ in P ′ must cross the line y = x, so there is a first time it crosses it,

cbna 25

Chapter 2 Strings, Sets, and Binomial Coefficients

say in position i. Again, imust be odd, so i = 2j + 1 and there are j H’s and j + 1 V ’s in
the first i positions of s′. Therefore the tail of s′ contains n+ 1− (j + 1) = n− j V ’s and
(n− 1)− j H’s, so interchanging H’s and V ’s in the tail of s′ creates a new string s that
has n H’s and n V ’s and thus represents a lattice path from (0, 0) to (n, n), but it’s still a
bad lattice path, as we did not adjust the first part of the path, which results in crossing
the line y = x in position i. Therefore, |B| = |P ′| and thus

C(n) = |G| = |P| − |B| = |P| − |P ′| =
(

2n

n

)
−
(

2n

n− 1

)
=

1

n+ 1

(
2n

n

)
,

after a bit of algebra.

It is worth observing that in the preceding example, we made use of two common
enumerative techniques: giving a bijection between two classes of objects, one of which
is “easier” to count than the other, and counting the objects we do notwish to enumerate
and deducting their number from the total.

2.6 The Binomial Theorem

Here is a truly basic result from combinatorics kindergarten.

Theorem 2.24 (Binomial Theorem). Let x and y be real numbers with x, y and x+y non-zero.
Then for every non-negative integer n,

(x+ y)n =

n∑
i=0

(
n

i

)
xn−iyi.

Proof. View (x+ y)n as a product

(x+ y)n = (x+ y)(x+ y)(x+ y)(x+ y) . . . (x+ y)(x+ y)︸ ︷︷ ︸
n factors

.

Each term of the expansion of the product results from choosing either x or y from one
of these factors. If x is chosen n − i times and y is chosen i times, then the resulting
product is xn−iyi. Clearly, the number of such terms is C(n, i), i.e., out of the n factors,
we choose the element y from i of them, while we take x in the remaining n− i.

Example 2.25. There are timeswhenwe are interested not in the full expansion of a power
of a binomial, but just the coefficient on one of the terms. The Binomial Theorem gives
that the coefficient of x5y8 in (2x− 3y)13 is

(
13
5

)
25(−3)8.

26 cbna

2.7 Multinomial Coefficients

2.7 Multinomial Coefficients

LetX be a set of n elements. Suppose that we have two colors of paint, say red and blue,
andwe are going to choose a subset of k elements to be painted red with the rest painted
blue. Then the number of different ways this can be done is just the binomial coefficient(
n
k

)
. Now suppose that we have three different colors, say red, blue, and green. We will

choose k1 to be colored red, k2 to be colored blue, with the remaining k3 = n− (k1 + k2)
colored green. We may compute the number of ways to do this by first choosing k1 of
the n elements to paint red, then from the remaining n − k1 choosing k2 to paint blue,
and then painting the remaining k3 green. It is easy to see that the number of ways to
do this is (

n

k1

)(
n− k1
k2

)
=

n!

k1!(n− k1)!

(n− k1)!

k2!(n− (k1 + k2))!
=

n!

k1!k2!k3!

Numbers of this form are called multinomial coefficients; they are an obvious generaliza-
tion of the binomial coefficients. The general notation is:(

n

k1, k2, k3, . . . , kr

)
=

n!

k1!k2!k3! . . . kr!
.

For example, (
8

3, 2, 1, 2

)
=

8!

3!2!1!2!
=

40320

6 · 2 · 1 · 2
= 1680.

Note that there is some “overkill” in this notation, since the value of kr is determined by
n and the values for k1, k2, . . . , kr−1. For example, with the ordinary binomial coeffients,
we just write

(
8
3

)
and not

(
8
3,5

)
.

Example 2.26. How many different rearrangements of the string:
MITCHELTKELLERANDWILLIAMTTROTTERAREREGENIUSES!!

are possible if all letters and characters must be used?
To answer this question, we note that there are a total of 45 characters distributed as

follows: 3 A’s, 1 C, 1 D, 7 E’s, 1 G, 1 H, 4 I’s, 1 K, 5 L’s, 2 M’s, 2 N’s, 1 O, 4 R’s, 2 S’s, 6 T’s,
1 U, 1 W, and 2 !’s. So the number of rearrangements is

45!

3!1!1!7!1!1!4!1!5!2!2!1!4!2!6!1!1!2!
.

Just as with binomial coefficients and the Binomial Theorem, the multinomial coeffi-
cients arise in the expansion of powers of a multinomial:
Theorem 2.27 (Multinomial Theorem). Let x1, x2, . . . , xr be nonzero real numbers with∑r
i=1 xi 6= 0. Then for every n ∈ N0,

(x1 + x2 + · · ·+ xr)
n =

∑
k1+k2+···+kr=n

(
n

k1, k2, . . . , kr

)
xk11 x

k2
2 · · ·xkrr .

cbna 27

Chapter 2 Strings, Sets, and Binomial Coefficients

Example 2.28. What is the coefficient of x99y60z14 in (2x3 + y − z2)100? What about
x99y61z13?
By the Multinomial Theorem, the expansion of (2x3 +y− z2)100 has terms of the form(

100

k1, k2, k3

)
(2x3)k1yk2(−z2)k3 =

(
100

k1, k2, k3

)
2k1x3k1yk2(−1)k3z2k3 .

The x99y60z14 arises when k1 = 33, k2 = 60, and k3 = 7, so it must have coefficient

−
(

100

33, 60, 7

)
233.

For x99y61z13, the exponent on z is odd, which cannot arise in the expansion of (2x3 +
y − z2)100, so the coefficient is 0.

2.8 Discussion

Over coffee, Xing said that he had been experimenting with the Maple software dis-
cussed in the introductory chapter. He understood that Maple was treating a big integer
as a string. Xing enthusiastically reported that he had askedMaple to find the sum a+ b
of two large integers a and b, each having more than 800 digits. Maple found the answer
about as fast as he could hit the enter key on his netbook. “That’s not so impressive”
Alice interjected. “A human, even Bob, could do this in a couple of minutes using pencil
and paper.” “Thanks for your kind remarks,” replied Bob, with the rest of the group
noting that that Alice was being pretty harsh on Bob and not for any good reason.
Dave took up Bob’s case with the remark that “Very few humans, not even you Alice,

would want to tackle finding the product of a and b by hand.” Xing jumped back in with
“That’s the point. Even a tiny netbook can find the product very, very quickly. In fact,
I tried it out with two integers, each having more than one thousand digits. It found
the product in about one second.” Ever the skeptic, Zori said “You mean you carefully
typed in two integers of that size?” Xing quickly replied “Of course not. I just copied
and pasted the data from one source to another.” Yolanda said “What a neat trick that
is. Really cuts down the chance of an error.”
Dave said “What about factoring? Can your netbookwith its fancy software for strings

factor big integers?” Xing said that he would try some sample problems and report
back. Carlos said “Factoring an integer with several hundred digits is likely to be very
challenging, not only for a netbook, but also for a super computer. For example, suppose
the given integer was either a prime or the product of two large primes. Detectingwhich
of these two statements holds could be very difficult.”
Undeterred, Dave continued ”What about exponentiation? Can your software calcu-

late ab when a and b are large integers?” Xing said “That shouldn’t be a problem. After
all, ab is just multiplying a times itself a total of b times, and if you can do multiplication

28 cbna

2.9 Exercises

quickly, that’s just a loop.” Yolanda said that the way Xing was describing things, he
was actually talking about a program with nested loops so it might take a long time for
such a program to halt. Carlos was quiet but he thought there might be ways to speed
up such computations.
By this time, Alice reinserted herself into the conversation “Hey guys. While you

were talking, I was looking for big integer topics on the web and found this problem. Is
838200020310007224300 a Catalan number? How would you answer this? Do you have
to use special software?”
Zori was not happy. She gloomily envisioned a future job hunt in which she was

compelled to use big integer arithmetic as a job skill. Arrgghh.

2.9 Exercises

1. The Hawaiian alphabet consists of 12 letters. How many six-character strings can
be made using the Hawaiian alphabet?

2. How many 2n-digit positive integers can be formed if the digits in odd positions
(counting the rightmost digit as position 1) must be odd and the digits in even
positions must be even and positive?

3. Matt is designing a website authentication system. He knows passwords are most
secure if they contain letters, numbers, and symbols. However, he doesn’t quite
understand that this additional security is defeated if he specifies in which posi-
tions each character type appears. He decides that valid passwords for his system
will begin with three letters (uppercase and lowercase both allowed), followed by
two digits, followed by one of 10 symbols, followed by two uppercase letters, fol-
lowed by a digit, followed by one of 10 symbols. How many different passwords
are there for his website system? How does this compare to the total number of
strings of length 10made from the alphabet of all uppercase and lowercase English
letters, decimal digits, and 10 symbols?

4. How many ternary strings of length 2n are there in which the zeroes appear only
in odd-numbered positions?

5. Suppose we are making license plates of the form l1l2l3 − d1d2d3 where l1, l2, l3
are capital letters in the English alphabet and d1, d2, d3 are decimal digits (i.e., in
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) subject to the restriction that at least one digit is nonzero
and at least one letter isK. How many license plates can we make?

6. Mrs. Steffen’s third grade class has 30 students in it. The students are divided into
three groups (numbered 1, 2, and 3), each having 10 students.

cbna 29

Chapter 2 Strings, Sets, and Binomial Coefficients

a) The students in group 1 earned 10 extra minutes of recess by winning a class
competition. Before going out for their extra recess time, they form a single
file line. In how many ways can they line up?

b) When all 30 students come in from recess together, they again form a single
file line. However, this time the students are arranged so that the first student
is from group 1, the second from group 2, the third from group 3, and from
there on, the students continue to alternate by group in this order. In how
many ways can they line up to come in from recess?

7. How many strings of the form l1l2d1d2d3l3l4d4l5l6 are there where
• for 1 ≤ i ≤ 6, li is an uppercase letter in the English alphabet;
• for 1 ≤ i ≤ 4, di is a decimal digit;
• l2 is not a vowel (i.e., l2 6∈ {A,E,I,O,U}); and
• the digits d1, d2, and d3 are distinct (i.e., d1 6= d2 6= d3 6= d1).

8. In this exercise, we consider strings made from uppercase letters in the English
alphabet and decimal digits. Howmany strings of length 10 can be constructed in
each of the following scenarios?
a) The first and last characters of the string are letters.
b) The first character is a vowel, the second character is a consonant, and the last

character is a digit.
c) Vowels (not necessarily distinct) appear in the third, sixth, and eighth posi-

tions and no other positions.
d) Vowels (not necessarily distinct) appear in exactly two positions.
e) Precisely four characters in the string are digits and no digit appears more

than one time.

9. A database uses 20-character strings as record identifiers. The valid characters
in these strings are upper-case letters in the English alphabet and decimal digits.
(Recall there are 26 letters in the English alphabet and 10 decimal digits.) How
many valid record identifiers are possible if a valid record identifier must meet all
of the following criteria:
• Letter(s) from the set {A,E, I,O, U} occur in exactly three positions of the
string.
• The last three characters in the string are distinct decimal digits that do not
appear elsewhere in the string.
• The remaining characters of the stringmay be filledwith any of the remaining
letters or decimal digits.

30 cbna

2.9 Exercises

10. Let X be the set of the 26 lowercase English letters and 10 decimal digits. How
many X-strings of length 15 satisfy all of the following properties (at the same
time)?
• The first and last symbols of the string are distinct digits (which may appear
elsewhere in the string).
• Precisely four of the symbols in the string are the letter ’t’.
• Precisely three characters in the string are elements of the set V = {a, e, i, o, u}
and these characters are all distinct.

11. A donut shop sells 12 types of donuts. A manager wants to buy six donuts, one
each for himself and his five employees.
a) Suppose that he does this by selecting a specific type of donut for each person.

(He can select the same type of donut formore than one person.) In howmany
ways can he do this?

b) How many ways could he select the donuts if he wants to ensure that he
chooses a different type of donut for each person?

c) Suppose instead that hewishes to select one donut of each of six different types
and place them in the breakroom. In how many ways can he do this? (The
order of the donuts in the box is irrelevant.)

12. The sport of korfball is played by teams of eight players. Each team has four men
and four women on it. Halliday High School has seven men and 11 women inter-
ested in playing korfball. In how many ways can they form a korfball team from
their 18 interested students?

13. Twenty students compete in a programming competition in which the top four
students are recognized with trophies for first, second, third, and fourth places.
a) How many different outcomes are there for the top four places?
b) At the last minute, the judges decide that they will award honorable men-

tion certificates to four individuals who did not receive trophies. In how
many ways can the honorable mention recipients be selected (after the top
four places have been determined)? Howmany total outcomes (trophies plus
certificates) are there then?

14. An ice cream shop has a special on banana splits, and Xing is taking advantage of
it. He’s astounded at all the options he has in constructing his banana split:
• He must choose three different flavors of ice cream to place in the asymmet-
ric bowl the banana split is served in. The shop has 20 flavors of ice cream
available.

cbna 31

Chapter 2 Strings, Sets, and Binomial Coefficients

• Each scoop of ice creammust be topped by a sauce, chosen from six different
options. Xing is free to put the same type of sauce on more than one scoop of
ice cream.
• There are 10 sprinkled toppings available, and he must choose three of them
to have sprinkled over the entire banana split.

a) Howmany different ways are there for Xing to construct a banana split at this
ice cream shop?

b) Suppose that instead of requiring that Xing choose exactly three sprinkled
toppings, he is allowed to choose between zero and three sprinkled toppings.
In this scenario, how many different ways are there for him to construct a
banana split?

15. Suppose that a teacher wishes to distribute 25 identical pencils to Ahmed, Bar-
bara, Casper, and Dieter such that Ahmed and Dieter receive at least one pencil
each, Casper receives no more than five pencils, and Barbara receives at least four
pencils. In how many ways can such a distribution be made?

16. How many integer-valued solutions are there to each of the following equations
and inequalities?
a) x1 + x2 + x3 + x4 + x5 = 63, all xi > 0

b) x1 + x2 + x3 + x4 + x5 = 63, all xi ≥ 0

c) x1 + x2 + x3 + x4 + x5 ≤ 63, all xi ≥ 0

d) x1 + x2 + x3 + x4 + x5 = 63, all xi ≥ 0, x2 ≥ 10

e) x1 + x2 + x3 + x4 + x5 = 63, all xi ≥ 0, x2 ≤ 9

17. How many integer solutions are there to the equation

x1 + x2 + x3 + x4 = 132

provided that x1 > 0, and x2, x3, x4 ≥ 0? What if we add the restriction that
x4 < 17?

18. How many integer solutions are there to the inequality

x1 + x2 + x3 + x4 + x5 ≤ 782

provided that x1, x2 > 0, x3 ≥ 0, and x4, x5 ≥ 10?

19. A teacher has 450 identical pieces of candy. Hewants to distribute them to his class
of 65 students, although he is willing to take some leftover candy home. (He does
not insist on taking any candy home, however.) The student who won a contest in
the last class is to receive at least 10 pieces of candy as a reward. Of the remain-
ing students, 34 of them insist on receiving at least one piece of candy, while the
remaining 30 students are willing to receive no candy.

32 cbna

2.9 Exercises

a) In how many ways can he distribute the candy?
b) In howmanyways can he distribute the candy if, in addition to the conditions

above, one of his students is diabetic and can receive atmost 7pieces of candy?
(This student is one of the 34 who insist on receiving at least one piece of
candy.)

20. Give a combinatorial argument to prove the identity

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Hint: Think of choosing a team with a captain.

21. Letm and w be positive integers. Give a combinatorial argument to prove that for
integers k ≥ 0,

k∑
j=0

(
m

j

)(
w

k − j

)
=

(
m+ w

k

)
.

22. How many lattice paths are there from (0, 0) to (10, 12)?

23. How many lattice paths are there from (3, 5) to (10, 12)?

24. How many lattice paths are there from (0, 0) to (10, 12) that pass through (3, 5)?

25. Howmany lattice paths from (0, 0) to (17, 12) are there that pass through (7, 6) and
(12, 9)?

26. How many lattice paths from (0, 0) to (14, 73) are there that do not pass through
(6, 37)?

27. A small-town bank robber is driving his getaway car from the bank he just robbed
to his hideout. The bank is at the intersection of 1st Street and 1st Avenue. He needs
to return to his hideout at the intersection of 7th Street and 5th Avenue. However,
one of his lookouts has reported that the town’s one police officer is parked at the
intersection of 4th Street and 4th Avenue. Assuming that the bank robber does not
want to get arrested and drives only on streets and avenues, in how many ways
can he safely return to his hideout? (Streets and avenues are uniformly spaced and
numbered consecutively in this small town.)

28. The setting for this problem is the fictional town of Mascotville, which is laid out
as a grid. Mascots are allowed to travel only on the streets, and not “as the yellow
jacket flies.” Buzz, the Georgia Tech mascot, wants to go visit his friend Thundar,
the North Dakota State University mascot, who lives 6 blocks east and 7 blocks
north of Buzz’s hive. However, Uga VIII has recently moved into the doghouse 2

cbna 33

Chapter 2 Strings, Sets, and Binomial Coefficients

blocks east and 3 blocks north of Buzz’s hive and already has a restraining order
against Buzz. There’s also a pair of tigers (mother and cub) from Clemson who
live 1 block east and 2 blocks north of Uga VIII, and they’re known for setting traps
for Buzz. Buzz wants to travel from his hive to Thundar’s pen every day without
encounteringUgaVIII or The Tiger andThe Tiger Cub. However, hewants to avoid
the boredom caused by using a route he’s used in the past. What is the largest
number of consecutive days on which Buzz can make the trip to visit Thundar
without reusing a route (you may assume the routes taken by Buzz only go east
and north)?

29. Determine the coefficient on x15y120z25 in (2x+ 3y2 + z)100.

30. Determine the coefficient on x12y24 in (x3 + 2xy2 + y + 3)18. (Be careful, as x and
y now appear in multiple terms!)

31. For each word below, determine the number of rearrangements of the word in
which all letters must be used.
a) OVERNUMEROUSNESSES
b) OPHTHALMOOTORHINOLARYNGOLOGY
c) HONORIFICABILITUDINITATIBUS (the longestword in the English language

consisting strictly of alternating consonants and vowels1)

32. How many ways are there to paint a set of 27 elements such that 7 are painted
white, 6 are painted old gold, 2 are painted blue, 7 are painted yellow, 5 are painted
green, and 0 of are painted red?

33. There are many useful sets that are enumerated by the Catalan numbers. (Volume
two of R.P. Stanley’s Enumerative Combinatorics contains a famous (or perhaps in-
famous) exercise in 66 parts asking readers to find bijections that will show that
the number of various combinatorial structures is C(n), and his web page boasts
an additional list of at least 100 parts.) Give bijective arguments to show that each
class of objects below is enumerated by C(n). (All three were selected from the list
in Stanley’s book.)
a) The number of ways to fully-parenthesize a product of n+ 1 factors as if the

“multiplication” operation in question were not necessarily associative. For
example, there is one way to parenthesize a product of two factors (a1a2),
there are two ways to parenthesize a product of three factors ((a1(a2a3)) and
((a1a2)a3)), and there are five ways to parenthesize a product of four factors:

(a1(a2(a3a4))), (a1((a2a3)a4)), ((a1a2)(a3a4)), ((a1(a2a3))a4), (((a1a2)a3)a4).

1http://www.rinkworks.com/words/oddities.shtml

34 cbna

http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www.rinkworks.com/words/oddities.shtml

2.9 Exercises

b) Sequences of n 1’s and n −1’s in which the sum of the first i terms is nonneg-
ative for all i.

c) Sequences 1 ≤ a1 ≤ · · · ≤ an of integers with ai ≤ i. For example, for n = 3,
the sequences are

111 112 113 122 123.

Hint: Think about drawing lattice paths on paper with grid lines and (basi-
cally) the number of boxes below a lattice path in a particular column.

cbna 35

CHAPTER 3
Induction

The twin concepts of recursion and induction are fundamentally important in combina-
torial mathematics and computer science. In this chapter, we give a number of examples
of how recursive formulas arise naturally in combinatorial problems, and we explain
how they can be used to make computations. We also introduce the Principle of Mathe-
matical Induction and give several examples of how it is applied to prove combinatorial
statements. Our treatment will also include some code snippets that illustrate how func-
tions are defined recursively in computer programs.

3.1 Introduction

A professor decides to liven up the next combinatorics class by giving a door prize. As
students enter class (on time, because to be late is a bit insensitive to the rest of the class),
they draw a ticket from a box. On each ticket, a positive integer has been printed. No
information about the range of ticket numbers is given, although they are guaranteed to
be distinct. The box of tickets was shaken robustly before the drawing, so the contents
are thoroughly mixed, and the selection is done without looking inside the box.
After each student has selected a ticket, the professor announces that a cash prize of

one dollar (this is a university, you know) will be awarded to the student holding the
lowest numbered ticket—from among those drawn.
Must the prize be awarded? In other words, given a set of positive integers, in this

case the set of ticket numbers chosen by the students, must there be a least one? More
generally, is it true that in any set of positive integers, there is always a least one? What
happens if there is an enrollment surge and there are infinitely many students in the
class and each has a ticket?

3.2 The Positive Integers are Well Ordered

Most likely, you answered the questions posed above with an enthusiastic “yes”, in part
because you wanted the shot at the money, but more concretely because it seems so
natural. But you may be surprised to learn that this is really a much more complex

37

Chapter 3 Induction

subject than you might think at first. In Appendix A, we discuss the development of
the number systems starting from the Peano Postulates. Although we will not devote
much space in this chapter to this topic, it is important to know that the positive integers
comewith “some assembly required.” In particular, the basic operations of addition and
multiplication don’t come for free; instead they have to be defined.
As a by-product of this development, we get the following fundamentally important

property of the set N of positive integers:

Well Ordered Property of the Positive Integers: Every non-empty set of positive inte-
gers has a least element.

An immediate consequence of the well ordered property is that the professor will
indeed have to pay someone a dollar—even if there are infinitely many students in the
class.

3.3 The Meaning of Statements

Have you ever taken standardized tests where they give you the first few terms of a
sequence and then ask you for the next one? Here are some sample questions. In each
case, see if you can determine a reasonable answer for the next term.

1. 2, 5, 8, 11, 14, 17, 20, 23, 26, . . .

2. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

3. 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

4. 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, . . .

5. 2, 3, 6, 11, 18, 27, 38, 51, . . .

Pretty easy stuff! OK, now try the following somewhat more challenging sequence.
Here, we’ll give you a lot more terms and challenge you to find the next one.

1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, . . .

Trust us when we say that we really have in mind something very concrete, and once it’s
explained, you’ll agree that it’s “obvious.” But for now, it’s far from it.
Here’s another danger lurking around the corner when we encounter formulas like

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

What do the dots in this statementmean? In fact, let’s consider amuch simpler question.
What is meant by the following expression:

38 cbna

3.3 The Meaning of Statements

1 + 2 + 3 + · · ·+ 6

Are we talking about the sum of the first six positive integers, or are we talking about
the sumof the first 19 terms from themore complicated challenge sequence given above?
You are supposed to answer that you don’t know, and that’s the correct answer.
The point here is thatwithout a clarifying comment or two, the notation 1+2+3+· · ·+6

isn’t precisely defined. Let’s see how to make things right.
First, let f : N −→ N be a function. Set

1∑
i=1

f(i) = f(1)

and if n > 1, define
n∑
i=1

f(i) = f(n) +

n−1∑
i=1

f(i)

To see that these two statements imply that the expression
∑n
i=1 f(i) is defined for all

positive integers, apply the Well Ordered Property to the set of all positive integers for
which the expression is not defined and use the recursive definition to define it for the
least element.
So if we want to talk about the sum of the first six positive integers, then we should

write:
6∑
i=1

i

Now it is clear that we are talking about a computation that yields 21 as an answer.
A second example: previously, we defined n! by writing

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1

By this point, you should realize that there’s a problem here. Multiplication, like addi-
tion, is a binary operation. And what do those dots mean? Here’s a way to do the job
more precisely. Define n! to be 1 if n = 1. And when n > 1, set n! = n(n− 1)!.

Definitions like these are called recursive definitions. They can be made with different
starting points. For example, we could have set n! = 1 when n = 0, and when n > 0, set
n! = n(n− 1)!.

Here’s a code snippet using the C-programming language:

int sumrecursive(int n) {
if (n == 1) return 2;
else return sumrecursive(n-1)+(n*n -2*n+3);

}

cbna 39

Chapter 3 Induction

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Figure 3.1: Pascal’s Triangle

What is the value of sumrecursive(4)? Does itmake sense to you to say that sumrecursive(n)
is defined for all positive integers n? Did you recognize that this program provides a
precise meaning to the expression:

2 + 3 + 6 + 11 + 18 + 27 + 38 + 51 + · · ·+ (n2 − 2n+ 3)

3.4 Binomial Coefficients Revisited

The binomial coefficient
(
n
k

)
was originally defined in terms of the factorial notation,

and with our recursive definitions of the factorial notation, we also have a complete
and legally-correct definition of binomial coefficients. The following recursive formula
provides an efficient computational scheme.
Let n and k be integers with 0 ≤ k ≤ n. If k = 0 or k = n, set

(
n
k

)
= 1. If 0 < k < n, set(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

This recursion has a natural combinatorial interpretation. Both sides count the number
of k-element subsets of {1, 2, . . . , n}, with the right-hand side first grouping them into
those which contain the element n and then those which don’t. The traditional form of
displaying this recursion is shown in Figure 3.1. This pattern is called “Pascal’s triangle.”
Other than the 1s at the ends of each row, an entry of the triangle is determined by adding
the entry to the left and the entry to the right in the row above.
Xing was intrigued by the fact that he now had two fundamentally different ways to

calculate binomial coefficients. One way is to write
(
n
m

)
= P (n,m)/(n − m)! and just

carry out the specified arithmetic. The second way is to use the recursion of Pascal’s
triangle, so that you are just performing additions. So he experimented by writing a
computer program to calculate binomial coefficients, using a library that treats big inte-

40 cbna

3.5 Solving Combinatorial Problems Recursively

gers as strings. Which of the two ways do you think proved to be faster when n say was
between 1800 and 2000 andmwas around 800?

3.5 Solving Combinatorial Problems Recursively

In this section, we present examples of combinatorial problems for which solutions can
be computed recursively. In chapter 9, we return to these problems and obtain even
more compact solutions. Our first problem is one discussed in our introductory chapter.
Example 3.1. A family of n lines is drawn in the plane with (1) each pair of lines crossing
and (2) no three lines crossing in the same point. Let r(n) denote the number of regions
into which the plane is partitioned by these lines. Evidently, r(1) = 2, r(2) = 4, r(3) = 7
and r(4) = 11. To determine r(n) for all positive integers, it is enough to note that
r(1) = 1, andwhen n > 1, r(n) = n+r(n−1). This formula follows from the observation
that if we label the lines asL1,L2, . . . , Ln, then the n−1 points on lineLnwhere it crosses
the other lines in the family divide Ln into n segments, two of which are infinite. Each
of these segments is associated with a region determined by the first n− 1 lines that has
now been subdivided into two, giving us nmore regions than were determined by n−1
lines. This situation is illustrated in Figure 3.2, where the line containing the three dots
is L4. The other lines divide it into four segments, which then divide larger regions to
create regions 1 and 5, 2 and 6, 7 and 8, and 4 and 9. With the recursive formula, we thus

1
2

3

4
6

7

8
9

10

5

11

Figure 3.2: Lines and regions in the plane

have r(5) = 5 + 11 = 16, r(6) = 6 + 16 = 22 and r(7) = 7 + 22 = 29. Even by hand, it
wouldn’t be all that much trouble to calculate r(100). We could do it before lunch.
Example 3.2. A 2 × n checkerboard will be tiled with rectangles of size 2 × 1 and 1 × 2.
Find a recursive formula for the number t(n) of tilings. Clearly, t(1) = 1 and t(2) = 2.
When n > 2, consider the rectangle that covers the square in the upper right corner.
If it is vertical, then preceding it, we have a tiling of the first n − 1 columns. If it is
horizontal, then so is the rectangle immediately underneath it, and proceeding them is

cbna 41

Chapter 3 Induction

a tiling of the first n−2 columns. This shows that t(n) = t(n−1)+ t(n−2). In particular,
t(3) = 1 + 2 = 3, t(4) = 2 + 3 = 5 and t(5) = 3 + 5 = 8.
Again, if compelled, we could get t(100) by hand, and a computer algebra system

could get t(1000).
Example 3.3. Call a ternary string good if it never contains a 2 followed immediately by a
0; otherwise, call it bad. Let g(n) be the number of good strings of length n. Obviously
g(1) = 3, since all strings of length 1 are good. Also, g(2) = 8 since the only bad string
of length 2 is (2, 0). Now consider a value of n larger than 2.
Partition the set of good strings of length n into three parts, according to the last char-

acter. Good strings ending in 1 can be preceded by any good string of length n − 1, so
there are g(n− 1) such strings. The same applies for good strings ending in 2. For good
strings ending in 0, however, we have to be more careful. We can precede the 0 by a
good string of length n− 1 provided that the string does not end in 2. There are g(n− 1)
good strings of length n− 1 and of these, exactly g(n− 2) end in a 2. Therefore there are
g(n − 1) − g(n − 2) good strings of length n that end in a 0. Hence the total number of
good strings of length n satisfies the recursive formula g(n) = 3g(n−1)−g(n−2). Thus
g(3) = 3 · 8− 3 = 21 and g(4) = 3 · 21− 8 = 55.
Once more, g(100) is doable by hand, while even a modest computer can be coaxed

into giving us g(5000).

3.5.1 Finding Greatest Common Divisors

There is more meat than you might think to the following elementary theorem, which
seems to simply state a fact that you’ve known since second grade.

Theorem 3.4 (Division Theorem). Let m and n be positive integers. Then there exist unique
integers q and r so that

m = q · n+ r and 0 ≤ r < n.

We call q the quotient and r the remainder.

Proof. We settle the claim for existence. The uniqueness part is just high-school algebra.
If the theorem fails to hold, then let t be the least positive integer for which there are
integersm and nwithm+n = t, but there do not exist integers q and r withm = qn+ r
and 0 ≤ r < n.
First, we note that n 6= 1, for if n = 1, then we could take q = m and r = 0. Also, we

cannot have m = 1, for if m = 1, then we can take q = 0 and r = 1. Now the statement
holds for the pairm− 1, n so there are integers q and r so that

m− 1 = q · n+ r and 0 ≤ r < n.

Since r < n, we know that r + 1 ≤ n. If r + 1 < n, then

m = q · n+ (r + 1) and 0 ≤ r + 1 < n.

42 cbna

3.5 Solving Combinatorial Problems Recursively

On the other hand, if r + 1 = n, then

m = q · n+ (r + 1) = nq + n = (q + 1)n = (q + 1)n+ 0.

The contradiction completes the proof.

Recall that an integer n is a divisor of an integer m if there is an integer q such that
m = qn. (We write n | m and read “n divides m”.) An integer d is a common divisor of
integers m and n if d is a divisor of both m and n. The greatest common divisor of m and
n, written gcd(m,n), is the largest of all the common divisors ofm and n.

Here’s a particularly elegant application of the preceding basic theorem:

Theorem 3.5 (Euclidean Algorithm). Let m,n be positive integers and let q and r be the
unique integers for which

m = q · n+ r and 0 ≤ r < n.

If r > 0, then gcd(m,n) = gcd(n, r).

Proof. Consider the expression m = q · n + r, which is equivalent to m − q · n = r. If a
number d is a divisor ofm and n, then dmust also divide r. Similarly, if d is a divisor of
n and r, then dmust also dividem.

Here is a code snippet that computes the greatest common divisor of m and n when
m and n are positive integers withm ≥ n. We use the familiar notationm%n to denote
the remainder r in the expressionm = q · n+ r, with 0 ≤ r < n.

int gcd(int m, int n) {
if (m%n == 0) return n;
else return gcd(n, m%n);

}

The disadvantage of this approach is the somewhat wasteful use of memory due to
recursive function calls. It is not difficult to develop code for computing the greatest
common divisor of m and n using only a loop, i.e., there are no recursive calls. With
minimal extra work, such code can also be designed to solve the following diophantine
equation problem:

Theorem 3.6. Let m, n, and c be positive integers. Then there exist integers a and b, not nec-
essarily non-negative, so that am + bn = c if and only if c is a multiple of the greatest common
divisor ofm and n.

Let’s see how the Euclidean algorithm can be used to write gcd(m,n) in the form am+
bnwith a, b ∈ Zwith the following example.

cbna 43

Chapter 3 Induction

Example 3.7. Find the greatest common divisor d of 3920 and 252 and find integers a and
b such that d = 3920a+ 252b.

In solving the problem, we demonstrate how to perform the Euclidean algorithm so
that we can find a and b by working backward. First, we note that

3920 = 15 · 252 + 140.

Now the Euclidean algorithm tells us that gcd(3920, 252) = gcd(252, 140), so we write

252 = 1 · 140 + 112.

Continuing, we have 140 = 1 · 112 + 28 and 112 = 4 · 28 + 0, so d = 28.
To find a and b, we nowwork backward through the equations we found earlier, “solv-

ing” them for the remainder term and then substituting. We begin with

28 = 140− 1 · 112.

But we know that 112 = 252− 1 · 140, so

28 = 140− 1(252− 1 · 140) = 2 · 140− 1 · 252.

Finally, 140 = 3920− 15 · 252, so now we have

28 = 2(3920− 15 · 252)− 1 · 252 = 2 · 3920− 31 · 252.

Therefore a = 2 and b = −31.

3.5.2 Sorting

One of the most common and most basic computing problems is sorting: Given a se-
quence a1, a2, . . . , an of n distinct integers, rearrange them so that they are in increasing
order. We describe here an easy recursive strategry for accomplishing this task. This
strategy is known as Merge Sort, and it is one of several optimal algorithms for sorting.
Introductory computer science courses treat this topic in greater depth. In our course,
we simply need some good strategy and merge sort works fine for our purposes.
To present merge sort, must first develop a strategy for solving a special case of the

sorting problem. Supposewehave two s+tdistinct integers {u1, u2, . . . , us, v1, v2, . . . , vt}
with u1 < u2 < · · · < us and v1 < v2 < · · · < vt. How do we merge these two sequences
into a single increasing sequence of length s + t. Imagine the two sequences placed on
two horizontal lines, one immediately under the other. Then let u be the least integer in
the first sequence and v the least integer in the second. At the moment, this implies that
u = u1 and v = v1, but integers will be deleted from the two sequences as the process
is carried out. Regardless, the meaning of u and v will be preserved. Also, set n = 1.
Then take an as the minimum of u and v and delete an from the sequence in which it

44 cbna

3.6 Mathematical Induction

occurs. Then increase n by 1 and repeat. Here is a code snippet for accomplishing a
merge operation, with up now written as u[p].

p = q = 1; for (i = 1; i < s+t+1; i++) {
a[i] = min(u[p], v[q]);
if (min(u[p], v[q])==u[p]) p = p+1;
else q = q+1;
}

Now thatwe have a good strategy formerging, it is easy to develop a recursive strategy
for sorting. Given a sequence a1, a2, . . . , an of n distinct integers, we set s = dn/2e and
t = bn/2c. Then let ui = ai for i = 1, 2, . . . , s and vj = as+j , for j = 1, 2, . . . , t. Sort the
two subsequences and then merge them. For a concrete example, given the sequence
(2, 8, 5, 9, 3, 7, 4, 1, 6), we split into (2, 8, 5, 9, 3) and (7, 4, 1, 6). These subsequences are
sorted (by a recursive call) into (2, 3, 5, 8, 9) and (1, 4, 6, 7), and then these two sorted
sequences are merged.
For running time, if S(n) is the number of operations it takes to sort a sequence of

n distinct integers, then S(2n) ≤ 2S(n) + 2n, since it clearly takes 2n steps to merge
two sorted sequences of length n. This leads to the bound S(n) = O(n log n), and in
computer science courses, you will learn (here it is an exercise) that this is optimal.

3.6 Mathematical Induction

Now we move on to induction, the powerful twin of recursion.
Let n be a positive integer. Consider the following mathematical statements, each of

which involve n:

1. 2n+ 7 = 13.

2. 3n− 5 = 9.

3. n2 − 5n+ 9 = 3.

4. 8n− 3 < 48.

5. 8n− 3 > 0.

6. (n+ 3)(n+ 2) = n2 + 5n+ 6.

7. n2 − 6n+ 13 ≥ 0.

Such statements are called open statements. Open statements can be considered as
equations, i.e., statements that are valid for certain values of n. Statement 1 is valid only
when n = 3. Statement 2 is never valid, i.e., it has no solutions among the positive

cbna 45

Chapter 3 Induction

integers. Statement 3 has exactly two solutions, and Statement 4 has six solutions. On
the other hand, Statements 5, 6 and 7 are valid for all positive integers.
At this point, you are probably scratching your head, thinking that this discussion is

trivial. But let’s consider some statements that are a bit more complex.

1. The sum of the first n positive integers is n(n+ 1)/2.

2. The sum of the first n odd positive integers is n2.

3. nn ≥ n! + 4, 000, 000, 000n2n when n ≥ 14.

How canwe establish the validity of such statements, provided of course that they are
actually true? The starting point for providing an answer is the following property:
Principle of Mathematical Induction Let Sn be an open statement involving a positive
integer n. If S1 is true, and if for each positive integer k, assuming that the statement Sk
is true implies that the statement Sk+1 is true, then Sn is true for every positive integer n.
With a little thought, you should see that the Principle of Mathematical Induction is

logically equivalent to the Well Ordered Property of Positive Integers. If you haven’t
already done so, now might be a good time to look over Appendix A on background
material.

3.7 Inductive Definitions

Although it is primarily a matter of taste, recursive definitions can also be recast in an
inductive setting. As a first example, set 1! = 1 and whenever k! has been defined, set
(k + 1)! = (k + 1)k!.

As a second example, set
1∑
i=1

f(i) = f(1) and
k+1∑
i=1

f(i) =

k∑
i=1

f(i) + f(k + 1)

In this second example, we are already using an abbreviated form, as we have omitted
some English phrases. But the meaning should be clear.
Now let’s back up and give an examplewhichwould really be part of the development

of number systems. Suppose you knew everything there was to know about the addition
of positive integers but had never heard anything about multiplication. Here’s how this
operation can be defined.
Letm be a positive integer. Then set

m · 1 = m and m · (k + 1) = m · k +m

You should see that this definesmultiplication but doesn’t do anything in terms of estab-
lishing such familiar properties as the commutative and associative properties. Check
out some of the details in Appendix A.

46 cbna

3.8 Proofs by Induction

3.8 Proofs by Induction

No discussion of recursion and induction would be complete without some obligatory
examples of proofs using induction. We start with the “Hello World” example.

Proposition 3.8. For every positive integer n, the sum of the first n positive integers is n(n +
1)/2, i.e.,

n∑
i=1

i =
n(n+ 1)

2
.

For our first version of a proof of Proposition 3.8, we clearly identify the open state-
ment Sn and describe the proof carefully in terms of Sn. As you develop more experi-
ence with writing proofs by induction, this will become less essential, as you’ll see in the
second version of the proof.

First proof. Let n be a positive integer, and let Sn be the open statement

n∑
i=1

i =
n(n+ 1)

2
.

We will prove that Sn is true for all positive integers by induction. For the basis step,
we must prove that S1 is true. When n = 1, the left-hand side of Sn is just 1, while the
right-hand side evaluates to 1(1 + 1)/2 = 1. Therefore, S1 is true.
Next we assume that for some positive integer k, Sk is true. That is, we assume

k∑
i=1

i =
k(k + 1)

2
.

We now seek to prove that Sk+1 is true, and begin by considering the left-hand side of
Sk+1. We notice that

k+1∑
i=1

i =

(
k∑
i=1

i

)
+ (k + 1) =

k(k + 1)

2
+ (k + 1),

since our inductive hypothesis that Sk is true gives us the simpler formula for the sum-
mation. Now continuing with a bit of algebra, we find

k(k + 1)

2
+ (k + 1) =

k2 + 3k + 2

2
=

(k + 1)(k + 2)

2
.

Therefore, Sk+1 is true. Since we have shown that S1 is true and that for every positive
integer k, if Sk is true, then Sk+1 is true, we conclude that Sn is true for all positive
integers n by the Principle of Mathematical Induction.

cbna 47

Chapter 3 Induction

Before looking at a refined version of this proof, let’s take a moment to discuss the
key steps in every proof by induction. The first step is the basis step, in which the open
statement S1 is shown to be true. (It’s worth noting that there’s nothing special about 1
here. If we want to prove only that Sn is true for all integers n ≥ 5, then proving that
S5 is true is our basis step.) When proving the basis step, if Sn is an equation, we do
not just write down S1 and move on. We need to prove that S1 is true. Notice how in
the proof above, we discussed the left-hand side of S1 and the right-hand side of S1 and
concluded that they were equal.
After the basis step comes the inductive step, in which we assume that Sk is true for

some positive integer k and prove that Sk+1 is true. When doing this, we call Sk our
inductive hypothesis. In the inductive step, the most common mistake students make is
starting with the entirety of Sk+1 and manipulating it until they obtain a true statement.
This is dangerous, as it is possible to start with something false and through valid al-
gebraic steps, obtain a true statement. Instead, the best option is to work as with the
basis step: if Sk+1 is an equation or inequality, work on one side until you find a place
to apply the inductive hypothesis and then continue until you obtain the other side. If
the algebra gets tricky along the way, you can also work with the left-hand side of Sk+1

and separately work with the right-hand side of Sk+1. If you’re able to manipulate both
sides to be in the same form, then you have shown they are equal and Sk+1 is true.

Now let’s take a look at a more refined proof of Proposition 3.8. From here on, when
we give a proof by induction, we’ll use this style. As you’re getting startedwith induction
proofs, you may find it useful to be more explicit about the steps as we did in the first
proof above.

Refined proof. We first prove the assertion when n = 1. For this value of n, the left-hand
side is just 1, while the right-hand side evaluates to 1(1 + 1)/2 = 1.
Now assume that for some positive integer k, the formula holds when n = k, i.e.,

assume that
k∑
i=1

i =
k(k + 1)

2
.

Then it follows that

k+1∑
i=1

i =

(
k∑
i=1

i

)
+ (k + 1) =

k(k + 1)

2
+ (k + 1) =

k2 + 3k + 2

2
=

(k + 1)(k + 2)

2
.

Thus the formula also holdswhen n = k+1. By the Principle ofMathematical Induction,
it holds for all positive integers n.

The preceding arguments are 100% correct. . . but some combinatorial mathematicians
would argue that they may actually hide what is really going on. These folks would

48 cbna

3.8 Proofs by Induction

much prefer a combinatorial proof, as was provided in the preceding chapter. Our per-
spective is that you should prefer to give a combinatorial proof—when you can find one.
But if pressed, you should be able to give a formal proof by mathematical induction.
Here’s a second example, also quite a classic. Again, recall that we gave a combinato-

rial proof in the last chapter. As you read the proof, make sure you can identify the open
statement Sn, the basis step, and the inductive step.

Proposition 3.9. For each positive integer n, the sum of the first n odd positive integers is n2,
i.e.,

n∑
i=1

(2i− 1) = n2.

Proof. We will prove this by induction. First, note that the formula holds when n = 1.
Now suppose that k is a positive integer and that the formula holds when n = k, i.e.,
assume

k∑
i=1

(2i− 1) = k2.

Then
k+1∑
i=1

(2i− 1) =

(
k∑
i=1

2i− 1

)
+ 2k + 1 = k2 + (2k + 1) = (k + 1)2.

Therefore, the proposition follows by the Principle of Mathematical Induction.

Here’s a more general version of the first result in this section, and again we note that
we gave a combinatorial proof in the last chapter.

Proposition 3.10. Let n and k be non-negative integers with n ≥ k. Then

n∑
i=k

(
i

k

)
=

(
n+ 1

k + 1

)
.

Proof. Fix a non-negative integer k. We then prove the formula by induction on n. If
n = k, note that the left hand side is just

(
k
k

)
= 1, while the right hand side is

(
k+1
k+1

)
which is also 1. Now assume thatm is a non-negative integer, withm ≥ k, and that the
formula holds when n = m, i.e., assume that

m∑
i=k

(
i

k

)
=

(
m+ 1

k + 1

)
.

cbna 49

Chapter 3 Induction

Then
m+1∑
i=k

(
i

k

)
=

m∑
i=k

(
i

k

)
+

(
m+ 1

k

)
=

(
m+ 1

k + 1

)
+

(
m+ 1

k

)
=

(
m+ 2

k + 1

)
.

Therefore, the proposition follows by the Principle of Mathematical Induction.

3.9 Strong Induction

There are occasions where the Principle of Induction, at least as we have studied it up
to this point, does not seem sufficient. Here is a concrete example. The professor asked
Bob to study a function f(n) defined recursively by f(n) = 2f(n − 1) − f(n − 2) with
f(1) = 3 and f(2) = 5. Specifically, the professor asked Bob to compute f(1010), which
seems like a daunting task. Over coffee, Bob scribbled on a napkin and determined that
f(3) = 7 and f(4) = 9, and on the basis of these calculations alone, he thought that it
might just be possible that f(n) = 2n+ 1 for all n ≥ 1. If this were true, he could simply
report that f(1010) = 2 · 1010 + 1 = 20000000001.
Bobwas beginning to understand proofs by induction, so he tried to prove that f(n) =

2n + 1 for all n ≥ 1 by induction. For the base step, he noted that f(1) = 3 = 2 · 1 + 1,
so all is ok to this point. For the inductive step, he assumed that f(k) = 2k + 1 for some
k ≥ 1 and then tried to prove that f(k+1) = 2(k+1)+1. If this step could be completed,
then the proof by induction would be done.
But at this point, Bob seemed to hit a barrier, because

f(k + 1) = 2f(k)− f(k − 1) = 2(2k + 1)− f(k − 1),

using the inductive hypothesis to replace f(k) by 2k + 1. However, he’s was totally
perplexed about what to do with the f(k − 1). If he knew that f(k − 1) = 2(k − 1) + 1,
then the right hand side would result in 2(2k + 1) − (2k − 1) = 2k + 3 = 2(k + 1) + 1,
which is exactly what he wants. Bob always plays by the rules, and he has to admit that
he doesn’t know that f(k − 1) = 2(k − 1) + 1. He only knows that f(k) = 2k + 1.

Bob was about to throw in the towel and ask his computer to start making the cal-
culations recursively, when Carlos comes along and asks what he’s doing. Carlos sees
right away that the approach Bob was taking to prove that f(n) = 2n + 1 by induction
won’t work—but after a moment’s reflection, Carlos says that there’s a stronger form of
an inductive proof that will do the trick. Carlos patiently explained to Bob a proposition
which is called the Strong Principle of Mathematical Induction. To prove that an open

50 cbna

3.10 Discussion

statement Sn is valid for all n ≥ 1, it is enough to (a) Show that S1 is valid, and (b) Show
that Sk+1 is valid whenever Sm is valid for all integersmwith 1 ≤ m ≤ k.

The validity of this proposition is trivial since it is stronger than the principle of induc-
tion. What is novel here is that in order to prove a statement, it is sometimes to your
advantage to prove something even stronger. Combinatorial mathematicians call this
the “bootstrap” phenomenon.
Equippedwith this observation, Bob saw clearly that the strong principle of induction

was enough to prove that f(n) = 2n + 1 for all n ≥ 1. So he could power down his
computer and enjoy his coffee.

3.10 Discussion

The group was debating the value of combinatorial proofs versus formal proofs by in-
duction. Xing said that he actually preferred to do a proof by induction, as a combina-
torial proof, it could be argued, wasn’t really a proof. Dave mumbled “Combinatorial
proofs can always be made rigorous.” They went back and forth for a while and then
Alice said “But the professor never explained that weird sequence

1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, . . .

Davewas on a roll “Whohas change for a dollar?” but nobodyunderstoodwhyhewould
derail an argument over proofs when everybody had already paid for the coffee. Alice
was more to the point “You know Dave, sometimes I just don’t understand why you
say the things you do.” Dave smiled (maybe it was more of a smirk) “It’s about making
change. The terms in this sequence are the fewest number of coins required to make
change.” Bob said “I don’t get it.” Dave continued “The term an is the fewest number of
U.S. coins required to total to n cents.” Now everyone groaned, everyone except Carlos,
who thought that at least this time, Dave was really clever.
“Well”, said Bob “that takes care of the strange sequence, but I still don’t see any dif-

ference between induction and recursion. Dave couldn’t keep quiet “No one does.” Xing
thought differently and said “In many programming languages, you try to avoid recur-
sion, preferring to use loops instead. Otherwise, you wind up overloading the stack. As
just one example, you can compute the greatest common divisor d of m and n, as well
as find a and b so that d = am+ bn using a loop—with very little storage. The recursive
approach discussed previously, with the inherent back tracking at the end, isn’t really
necessary.” Yolanda was impressed with Xing’s extensive programming experience and
knowledge, but Alice was less so.
Zori was losing her patience and was especially grumpy today “I don’t see any value

to any of this stuff. Who’s going to pay me to find greatest common divisors?” Dave
said “Nobody.” Alice said “But maybe there are some principles here that have practi-
cal application.” Carlos joined in “I think the basic principles behind establishing that

cbna 51

Chapter 3 Induction

a computer program does what you intend have a lot to do with induction and recur-
sion.” Bob said “I don’t understand. When I write a program, I just pay attention to
details and after just a few corrections, they always work.” Alice was brutal “Maybe
that’s because you don’t do anything complicated.” Carlos was more gentle “Big soft-
ware projects might have hundreds of thousands of lines of code, and pieces of the final
product might be written by different groups of programmers at different moments in
time. Establishing correctness can be a very difficult task.” Zori’s ears perked up as she
thought she saw something in this last bit of conversation that might be a way to earn a
salary.

3.11 Exercises

For questions asking you find a recursive formula, be sure to give enough initial values
to get the recursion going.

1. A database uses record identifiers that are alphanumeric strings in which the 10
decimal digits and 26 upper-case letters are valid symbols. The criteria that define
a valid record identifier are recursive. A valid record identifier of length n ≥ 2 can
be constructed in the following ways:
• beginning with any upper-case letter other thanD and followed by any valid
record identifier of length n− 1;
• beginning with 1C, 2K, or 7J and followed by any valid record identifier of
length n− 2; or
• beginning with D and followed by any string of n− 1 decimal digits.

Let r(n) denote the number of valid record identifiers of length n. We take r(0) = 1
and note that r(1) = 26. Find a recursion for r(n)when n ≥ 2 and use it to compute
r(5).

2. Consider a 1× n checkerboard. The squares of the checkerboard are to be painted
white and gold, but no two consecutive squares may both be painted white. Let
p(n) denote the number of ways to to paint the checkerboard subject to this rule.
Find a recursive formula for p(n) valid for n ≥ 3.

3. Give a recursion for the number g(n) of ternary strings of length n that do not
contain 102 as a substring.

4. A 2× n checkerboard is to be tiled using two types of tiles. The first tile is a 1× 1
square tile. The second tile is called anL-tile and is formed by removing the upper-
right 1× 1 square from a 2× 2 tile. The L-tiles can be used in any of the four ways
they can be rotated. (That is, the “missing square” can be in any of four positions.)
Let t(n) denote the number of tilings of the 2 × n checkerboard using 1 × 1 tiles
and L-tiles. Find a recursive formula for t(n) and use it to determine t(7).

52 cbna

3.11 Exercises

5. Let S be the set of strings on the alphabet {0, 1, 2, 3} that do not contain 12 or 20 as
a substring. Give a recursion for the number h(n) of strings in S of length n. Hint:
Check your recursion by manually computing h(1), h(2), h(3), and h(4).

6. Find d = gcd(5544, 910) as well as integers a and b such that 5544a+ 910b = d.

7. Find gcd(827, 249) as well as integers a and b such that 827a+ 249b = 6.

8. Let a, b, m, and n be integers and suppose that am + bn = 36. What can you say
about gcd(m,n)?

9. (A challenging problem) For each formula, give both a proof using the Principle of
Mathematical Induction and a combinatorial proof. One of the two will be easier
while the other will be more challenging.

a) 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

b)
(
n

0

)
20 +

(
n

1

)
21 +

(
n

2

)
22 + · · ·+

(
n

n

)
2n = 3n

10. Show that for all integers n ≥ 4, 2n < n!.

11. Show that for all positive integers n,

n∑
i=0

2i = 2n+1 − 1.

12. Show that for all positive integers n, 7n − 4n is divisible by 3.

13. Show that for all positive integers n, 9n − 5n is divisible by 4.

14. It turns out that if a and b are positive integers with a > b + 1, then there is a
positive integerM > 1 such that an − bn is divisible byM for all positive integers
n. DetermineM in terms of a and b and prove that it is a divisor of an − bn for all
positive integers n.

15. Use mathematical induction to prove that for all integers n ≥ 1,

n3 + (n+ 1)3 + (n+ 2)3

is divisible by 9.

16. Give a proof by induction of the Binomial Theorem (Theorem 2.24). How do you
think it compares to the combinatorial argument given in chapter 2?

cbna 53

Chapter 3 Induction

17. Consider the recursion given by f(n) = 2f(n − 1) − f(n − 2) + 6 for n ≥ 2 with
f(0) = 2 and f(1) = 4. Usemathematical induction to prove that f(n) = 3n2−n+2
for all integers n ≥ 0.

18. Consider the recursion given by f(n) = f(n− 1) + f(n− 2) for n ≥ 3 with f(1) =
f(2) = 1. Show that f(n) is divisible by 3 if and only if n is divisible by 4.

19. Suppose that x ∈ R and x > −1. Prove that for all integers n ≥ 0, (1+x)n ≥ 1+nx.

20. Show that there is a positive constant c so that any algorithm that sorts a sequence
of n positive integers must, in worst case, take cn log n steps. Hint: There are n!
permutations of a set of n distinct integers. Each operation reduces the number
of possibilities by a multiplicative fraction which is at most 1/2. So if there are t
operations, then 2t ≥ n!. Now look up Stirling’s approximation for n! and continue
from there.

54 cbna

CHAPTER 4
Combinatorial Basics

Dave hates doing the same thing twice. He sees herself as a free spirit and never wants
to fall into a rut. Alice says that this approach to life requires one to have lots and lots
of options, for if you have to do a lot of something, like get up in the morning and get
dressed, then youmay not be able to avoidmindless repetition, dull and boring as it may
seem.

4.1 The Pigeon Hole Principle

A function f : X −→ Y is said to be 1–1 when f(x) 6= f(x′) for all x, x′ ∈ X with
x 6= x′. A 1–1 function is also called an injection. When f : X −→ Y is 1–1, we note that
|X| ≤ |Y |. Conversely, we have the following self-evident statement, which is popularly
called the “Pigeon Hole” principle.

Proposition 4.1. If f : X −→ Y is a function and |X| > |Y |, then there exists an element
y ∈ Y and distinct elements x, x′ ∈ X so that f(x) = f(x′) = y.

In more casual language, if you must put n + 1 pigeons into n holes, then you must
put two pigeons into the same hole.
Here is a classic result, whose proof follows immediately from the Pigeon Hole prin-

ciple.

Theorem 4.2 (Erdős/Szekeres). If m and n are non-negative integers, then any sequence of
mn + 1 distinct real numbers either has an increasing subsequence of m + 1 terms, or it has a
decreasing subsequence of n+ 1 terms.

Proof. Let σ = (x1, x2, x3, . . . , xmn+1) be a sequence of mn + 1 distinct real numbers.
For each i = 1, 2, . . . ,mn + 1, let ai be the maximum number of terms in a increasing
subsequence of σwith xi the first term. Also, let bi be themaximumnumber of terms in a
decreasing subsequence of σwith xi the last term. If there is some i for which ai ≥ m+1,
then σ has an increasing subsequence ofm+ 1 terms. Conversely, if for some i, we have
bi ≥ n+ 1, then we conclude that σ has a decreasing subsequence of n+ 1 terms.
It remains to consider the case where ai ≤ m and bi ≤ n for all i = 1, 2, . . . ,mn + 1.

Since there are mn ordered pairs of the form (a, b) where 1 ≤ a ≤ m and 1 ≤ b ≤ n,

55

Chapter 4 Combinatorial Basics

we conclude from the Pigeon Hole principle that there must be integers i1 and i2 with
1 ≤ i1 < i2 ≤ mn + 1 for which (ai1 , bi1) = (ai2 , bi2). Since xi1 and xi2 are distinct,
we either have xi1 < xi2 or xi1 > xi2 . In the first case, any increasing subsequence of
with xi2 as its first term can be extended by prepending xi1 at the start. This shows that
ai1 > ai2 . In the second case, any decreasing sequence of with xi1 as its last element can
be extended by adding xi2 at the very end. This shows bi2 > bi1 .

In chapter 11, we will explore some powerful generalizations of the Pigeon Hole prin-
ciple. All these results have the flavor of the general assertion that total disarray is im-
possible.

4.2 An Introduction to Complexity Theory

Discussion 4.3. Bob says that he’s really getting to like this combinatorial mathematics
stuff. The concrete nature of the subject is appealing. But he’s not sure that he under-
stands the algorithmic component. Sometimes he sees how one might actually compute
the answer to a problem—provided he had access to a powerful computer. At other
times, it seems that a computational approach might be out of reach, even with the
world’s best and fastest computers at ready access. Carlos says it can be much worse
than that. There are easily stateable problems that no one knows how to attack even
if all the world’s computational power is used in concert. And there’s nothing on the
horizon that will change that. In fact, build faster computers and you just change the
threshold for what is computable. There will still be easily understood problems that
will remain unresolved.

4.2.1 Three Questions

We consider three problems with a common starting point. You are given1 a set S of
10, 000 distinct positive integers, each at most 100, 000, and then asked the following
questions.

1. Is 83, 172 one of the integers in the set S?

2. Are there three integers in S whose sum is 143, 297?

3. Can the set S be partitioned as S = A∪BwithA∩B = ∅, so that
∑
a∈A a =

∑
b∈B b.

The first of the three problems sounds easy, and it is. You just consider the numbers
in the set one by one and test to see if any of them is 83, 172. You can stop if you ever find
this number and report that the answer is yes. If you return a no answer, then you will
1The particulars of how the set is given to you aren’t important to the discussion. For example, the data could
be given as a text file, with one number on each line.

56 cbna

4.2 An Introduction to Complexity Theory

have to have read every number in the list. Either way, you halt with a correct answer
to the question having done at most 10, 000 tests, and even the most modest netbook
can do this in a heartbeat. And if the list is expanded to 1, 000, 000 integers, all at most
a billion, you can still do it easily. More generally, if you’re given a set S of n numbers
and an integer xwith the question “Is x a member of S?”, you can answer this question
in n steps, with each step an operation of testing a number in S to see if it is exactly
equal to n. So the running time of this algorithm is proportional to n, with the constant
depending on the amount of time it takes a computer to perform the basic operation of
asking whether a particular integer is equal to the target value.
The second of the three problems is a bitmore challenging. Now it seems thatwemust

consider the 3-element subsets of a set of size 10, 000. There are C(10, 000, 3) such sets.
On the one hand, testing three numbers to see if their sum is 143, 297 is very easy, but
there are lots and lots of sets to test. Note that C(10, 000, 3) = 166, 616, 670, 000, and not
too many computers will handle this many operations. Moreover, if the list is expanded
to a million numbers, then we have more than 1017 triples to test, and that’s off the table
with today’s hardware.
Nevertheless, we can consider the general case. We are given a set S of n integers and

a number x. Then we are asked whether there are three integers in S whose sum is x.
The algorithm we have described would have running time proportional to n3, where
the constant of proportionality depends on the time it takes to test a triple of numbers
to see if there sum is x. Of course, this depends in turn on just how large the integer x
and the integers in S can be.
The third of the three problems is different. First, it seems to be much harder. There

are 2n−1 complementary pairs of subsets of a set of size n, and one of these involves
the emptyset and the entire set. But that leaves 2n−1 − 1 pairs to test. Each of these
tests is not all that tough. A netbook can easily report whether a two subsets have the
same sum, even when the two sets form a partition of a set of size 10, 000, but there
are approximately 103000 partitions to test and no piece of hardware on the planet will
touch that assignment. And if we go up to a set of size 1, 000, 000, then the combined
computing power of all the machines on earth won’t get the job done.
In this setting, we have an algorithm, namely testing all partitions, but it is totally

unworkable for n element sets when n is large since it has running time proportional to
2n.

4.2.2 Certificates

Each of the three problems we have posed is in the form of a “yes/no” question. A “yes”
answer to any of the three can be justified by providing a certificate. For example, if you
answer the first question with a yes, then you might provide the additional information
that you will find 83, 172 as the integer on line 584 in the input file. Of course, you could
also provide the source code for the computer program, and let a referee run the entire
procedure.

cbna 57

Chapter 4 Combinatorial Basics

Similarly, if you answer the second question with a yes, then you could specify the
three numbers and specify where in the input file they are located. An impartial referee
could then verify, if it mattered, that the sum of the three integers was really 143, 297
and that they were located at the specified places in the input file. Alternatively, you
could again provide the source code which would require the referee to test all triples
and verify that there is one that works.
Likewise, a yes for the third question admits a modest size certificate. You need only

specify the elements of the subset A. The referee, who is equipped with a computer,
can (a) check to see that all numbers in A belong to S; (b) form a list of the subset B
consisting of those integers in S that do not belong to A; and (c) compute the sums of
the integers in A and the integers in B and verify that the two sums are equal. But in
this case, you would not provide source code for the algorithm, as there does not appear
(at least nothing in our discussion thus far provides one) to be a reasonable strategy for
deciding this problem when the problem size is large.
Now let’s consider the situationwith a “no” answer. When the answer to the first ques-

tion is no, the certificate can again be a computer program that will enable the referee to
consider all the elements of S and be satisfied that the number in question is not present.
A similar remark holds for the second question, i.e., the program is the certificate.
But the situation with the third question is again very different. Now we can’t say to

the referee “We checked all the possibilities and none of them worked.” This could not
possibly be a true statement. And we have no computer program that can be run by us
or by the referee. The best we could say is that we tried to find a suitable partition and
were unable to do so. As a result, we don’t knowwhat the correct answer to the question
actually is.

4.2.3 Operations

Many of the algorithms we develop in this book, as well as many of the computer pro-
grams that result from these algorithms involve basic steps that are called operations. The
meaning of the word operation is intentionally left as an imprecise notion. An operation
might be just comparing two integers to see if they are equal; it might be updating the
value of a variable x and replacing it by x2 − 3x + 7; and it might be checking whether
two set sums are equal. In the third instance, we would typically limit the size of the
two subsets as well as the integers in them. As a comsequence, we want to be able to
say that there is some constant c so that an operation can be carried out in time at most c
on a computer. Different computers yield different values of c, but that is a discrepancy
which we can safely ignore.

4.2.4 Input Size

Problems come in various sizes. The three problems we have discussed in this chapter
have the same input size. Roughly speaking this size is 10, 000 blocks, with each block

58 cbna

4.3 The Big “Oh” and Little “Oh” Notations

able to hold an integer of size at most 100, 000. In this text, we will say that the input size
of this problem is n = 10, 000, and in some sense ignoring the question of the size of the
integers in the set. There are obvious limitations to this approach. We could be given
a set S of size 1 and a candidate element x and be asked whether x belongs to S. Now
suppose that x is a bit string the size of a typical compact disk, i.e., some 700 megabytes
in length. Just reading the single entry in S to see if it’s exactly xwill take some time.

In a similar vein, consider the problem of determing whether a file x is located any-
where in the directory structure under y in a unix file system. If you go on the basis of
name only, then this may be relatively easy. But what if you want to be sure that an exact
copy of x is present. Now it is much more challenging.

4.3 The Big “Oh” and Little “Oh” Notations

Let f : N −→ R and g : N −→ R be functions. We write f = O(g), and say f is “Big Oh”
of g, when there is a constant c and an integer n0 so that f(n) ≤ cg(n) whenever n > n0.
Although this notation has a long history, we can provide a quite modern justification. If
f and g both describe the number of operations required for two algorithms given input
size n, then the meaning of f = O(g) is that f is no harder than g when the problem size
is large.
We are particulary interested in comparing functions against certain natural bench-

marks, e.g., log log n, log n,
√
n, nα where α < 1, n, n2, n3, nc where c > 1 is a constant,

nlogn, 2n, n!, 2n
2 , etc.

For example, later in this text, we will learn that there are sorting algorithms with
running time O(n log n) where n is the number of integers to be sorted. As a second ex-
ample, wewill learn that we can find all shortest paths in an oriented graph on n vertices
with non-negative weights on edges with an algorithm having running time O(n2). At
the other extreme, no one knows whether there is a constant c and an algorithm for de-
termining whether the chromatic number of a graph is at most three which has running
time O(nc).
It is important to remember that when we write f = O(g), we are implying in some

sense that f is no bigger than g, but it may in fact be much smaller. By contrast, there
will be times when we really know that one function dominates another. And we have
a second kind of notation to capture this relationship.
Let f : N −→ R and g : N −→ R be functions with f(n) > 0 and g(n) > 0 for all n.

We write f = o(g), and say that f is “Little oh” of g, when limn→∞ f(n)/g(n) = 0. For
example lnn = o(n.2); nα = o(nβ) whenever 0 < α < β; and n100 = o(cn) for every
c > 1. In particular, we write f(n) = o(1) when limn→∞ f(n) = 0.

cbna 59

Chapter 4 Combinatorial Basics

4.4 Exact Versus Approximate

Many combinatorial problems admit “exact” solutions, and in these cases, we will usu-
ally try hard to find them. The Erdős/Szekeres theorem from earlier in this chapter is a
good example of an “exact” result2. By this statement, we mean that for each pairm and
n of positive integers, there is a sequence of mn distinct real numbers that has neither
an increasing subsequence of size m + 1 nor a decreasing subsequence of size n + 1.
To see this, consider the sequence σ defined as follows: For each i = 1, 2, . . . ,m, let
Bi = {j + (m − 1)i : 1 ≤ j ≤ n}. Note that each Bi is a block of n consecutive inte-
gers. Then define a permutation σ of the firstmn integers by setting α < β if there exist
distinct integers i1 and i2 so that α ∈ Bi1 and β ∈ Bi2 . Also, for each i = 1, 2, . . . ,m,
set α < β in σ when 1 + (m − 1)i ≤ β < α ≤ n + (m − 1)i. Clearly, any increasing
subsequence of σ contains at most one member from each block, so σ has no increasing
sequence of size m = 1. On the other hand, any decreasing sequence in σ is contained
in a single block, so σ has no decreasing sequence of size n+ 1.

As another example of an exact solution, the number of integer solutions to x1 + x2 +
. . . xr = n with xi > 0 for i − 1, 2, . . . , r is exactly C(n − 1, r − 1). On the other hand,
nothingwe have discussed thus far allows us to provide an exact solution for the number
of partitions of an integer n.

4.4.1 Approximate and Assymptotic Solutions

Here’s an example of a famous problem thatwe can only discuss in terms of approximate
solutions, at least when the input size is suitably large. For an integer n, let π(n) denote
the number of primes among the first n positive integers. For example, π(12) = 5 since
2, 3, 5, 7 and 11 are primes. The exact value of π(n) is known when n ≤ 1023, and in fact:

π(1023) = 1, 925, 320, 391, 606, 803, 968, 923

On the other hand, you might ask whether π(n) tends to infinity as n grows larger and
larger. The answer is yes, and here’s a simple and quite classic argument. Suppose to
the contrary that there were only k primes, where k is a positive integer. Suppose these
k primes are listed in increasing order as p1 < p2 < · · · < pk, and consider the number
n = 1 + p1p2 · · · pk. Then n is not divisible by any of these primes, and it is larger than
pk, which implies that n is a prime number larger than pk.
So we know that limn→∞ π(n) =∞. In a situation like this, mathematicians typically

want to know more about how fast π(n) goes to infinity. Some functions go to infinity
“slowly”, such as log n or log log n. Some go to infinity quickly, like 2n, n! or 22

n . Since
π(n) ≤ n, it can’t go to infinity as fast as these last three functions, but it might go infinity
like log n or maybe

√
n.

2Exact results are also called “best possible”, “sharp” or “tight.”

60 cbna

4.4 Exact Versus Approximate

On the basis of computational results (done by hand, long before there were com-
puters), Legendre conjectured in 1796 that π(n) goes to infinity like n/ lnn. To be more
precise, he conjectured that

lim
n→∞

π(n) lnn

n
= 1.

In 1896, exactly one hundred years after Legendre’s conjecture, Hadamard and de la
Vallée-Poussin independently publishedproofs of the conjecture, using techniqueswhose
roots are in the Riemann’s pioneeringwork in complex analysis. This result, now known
simply as the Prime Number Theorem, continues to this day to be much studied topic at
the boundary of analysis and number theory.

4.4.2 Polynomial Time Algorithms

Throughout this text, we will place considerable emphasis on problems which admit
polynomial time solutions. This refers to problems for which there is some constant
c > 0 so that there is an algorithm A for solving the problem which has running time
O(nc) where n is the input size. the symbol P is suggestive of polynomial.

4.4.3 P = NP?
Perhaps the most famous question at the boundary of combinatorial mathematics, the-
oretical computer science and mathematical logic is the notoriously challenging ques-
tion of deciding whether P is the same as NP . This problem has the shorthand form:
P = NP? Here, we present a brief informal discussion of this problem.
First, we have already introduced the class P consisting of all yes-no combinatorial

problems which admit polynomial time algorithms. The first two problems discussed
in this chapter belong to P since they can be solved with algorithms that have running
time O(n) and O(n3), respectively. Also, determing whether a graph is 2-colorable and
whether it is connected both admit polynomial time algorithms.
We should emphasize that it may be very difficult to determine whether a problem

belongs to class P or not. For example, we don’t see how to give a fast algorithm for
solving the third problem (subset sum), but that doesn’tmean that there isn’t one. Maybe
we all need to study harder!
Setting that issue aside for the moment, the classNP consists of yes–no problems for

which there is a certificate for a yes answer whose correctness can be verified in poly-
nomial time. More formally, this is called the class of nondeterministic polynomial time
problems. Our third problem definitely belongs to this class.
So the famous question is to deteminewhether the two classes are the same. Evidently,

any problem belonging to P also belongs to NP , i.e, P ⊆ NP , but are they equal? It
seems difficult to believe that there is a polynomial time algorithm for settling the third
problem (the subset sum problem), and no one has come close to settling this issue. But
if you get a good idea, be sure to discuss it with one or both authors of this text before you

cbna 61

Chapter 4 Combinatorial Basics

go public with your news. If it turns out that you are right, you are certain to treasure a
photo opportunity with yours truly.

4.5 Discussion

Carlos, Dave and Yolandawere fascinated by the discussion on complexity. Zori was less
enthusiastic but even she sensed that the question of which problems could be solved
quickly had practical implications. She could even predict that people could earn a nice
income solving problems faster and more accurately than their competition.
Bob remarked “I’m not sure I understand what’s being talked about here. I don’t see

why it can’t be the case that all problems can be solved. Maybe we just don’t know how
to do it.” Xing said “Any finite problem can be solved. There is always a way to list all
the possibilities, compare them one by one and take the best one as the answer.” Alice
joined in “Well, a problem might take a long time just because it is big. For example,
suppose you are given two dvd’s, each completely full with the data for a large integer.
How are you possibly going to multiply them together, even with a large computer and
fancy software.” Carlos then offered “But I think there are really hard problems that any
algorithm will take a long time to solve and not just because the input size is large. At
this point, I don’t know how to formulate such a problem but I suspect that they exist.”

4.6 Exercises

1. Suppose you are given a list of n integers, each of size at most 100n. How many
operations would it take you to do the following tasks (in answering these ques-
tions, we are interested primarily in whether it will take log n,

√
n, n, n2, n3, 2n,

. . . steps. In other words, ignore multiplicative constants.):

a) Determine if the number 2n+ 7 is in the list.
b) Determine if there are two numbers in the list whose sum is 2n+ 7.
c) Determine if there are two numbers in the list whose product is 2n+ 7 (This

one is more subtle than it might appear! It may be to your advantage to sort
the integers in the list).

d) Determine if there is a number i for which all the numbers in the list are be-
tween i and i+ 2n+ 7.

e) Determine the longest sequence of consecutive integers belonging to the list.
f) Determine the number of primes in the list.
g) Determine whether there are three integers x, y and z from the list so that

x+ y = z.

62 cbna

4.6 Exercises

h) Determine whether there are three integers x, y and z from the list so that
x2 + y2 = z2.

i) Determine whether there are three integers x, y and z from the list so that
xy = z.

j) Determine whether there are three integers x, y and z from the list so that
xy = z.

k) Determine whether there are two integers x and y from the list so that xy is a
prime.

l) Determine the longest arithmetic progression in the list (a sequence (a1, a2, . . . , at)
is an arithmetic progression when there is a constant d 6= 0 so that ai+1 =
ai + d, for each i = 1, 2, . . . , t− 1).

m) Determine the number of distinct sums that can be formed from members of
the list (arbitrarily many integers from the list are allowed to be terms in the
sum).

n) Determine the number of distinct products that can be formed frommembers
of the list (arbitrarily many integers from the list are allowed to be factors in
the product).

o) Determine for which integers m, the list contains at least 10% of the integers
from {1, 2, . . . ,m}.

2. If you have to put n+ 1 pigeons into n holes, you have to put two pigeons into the
same hole. What happens if you have to putmn+ 1 pigeons into n holes?

3. Consider the setX = {1, 2, 3, 4, 5} and suppose you have two holes. Also suppose
that you have 10pigeons: the 2-element subsets ofX . Can you put these 10pigeons
into the two holes in a way that there is no 3-element subset S = {a, b, c} ⊂ X for
which all pigeons from S go in the same hole? Then answer the same question if
X = {1, 2, 3, 4, 5, 6}with 15 = C(6, 2) pigeons.

4. Let n = 10, 000. Suppose a friend tells you that he has a secret family of subsets of
{1, 2, . . . , n}, and if you guess it correctly, he will give you one million dollars. You
think you know the subset he has in mind and it contains exactly half the subsets,
i.e., the family has 2n−1 subsets. Discuss how you can share your hunch with your
friend in an effort to win the prize.

5. Let N denote the set of positive integers. When f : N → N is a function, let E(f)
be the function defined by E(f)(n) = 2f(n). What is E5(n2)?

cbna 63

CHAPTER 5
Graph Theory

In Example 1.2, we discussed the problem of assigning frequencies to radio stations in
the situation where stations within 200 miles of each other must broadcast on distinct
frequencies. Clearly we would like to use the smallest number of frequencies possible
for a given layouts of transmitters, but how can we determine what that number is?
Suppose three new homes are being built and each of them must be provided with

utility connections. The utilites in question are water, electricity, and natural gas. Each
provider needs a direct line from their terminal to each house (the line can zig-zag all it
wants, but it must go from the terminal to the house without passing through another
provider’s terminal or another house en route), and the three providers all wish to bury
their lines exactly four feet below ground. Can they do this successfully without the
lines crossing?
These are just two of many, many examples where the discrete structure known as a

graph can serve as an enlightening mathematical model. Graphs are perhaps the most
basic and widely studied combinatorial structure, and they are prominently featured
in this text. Many of the concepts we will study, while presented in a more abstract
mathematical sense, have their origins in applications of graphs asmodels for real-world
problems.

5.1 Basic Notation and Terminology for Graphs

A graph G is a pair (V,E) where V is a set (almost always finite) and E is a set of 2-
element subsets of V . Elements of V are called vertices and elements of E are called
edges. We call V the vertex set ofG and E is the edge set. For convenience, it is customary
to abbreviate the edge {x, y} as just xy. Remember though that xy ∈ E means exactly
the same as yx ∈ E. If x and y are distinct vertices from V , x and y are adjacent when
xy ∈ E; otherwise, we say they are non-adjacent. We say the edge xy is incident to the
vertices x and y.
For example, we could define a graph G = (V,E) with vertex set V = {a, b, c, d, e}

and edge set E = {{a, b}, {c, d}, {a, d}}. Notice that no edge is incident to e, which is
perfectly permissible based on our definition. It is quite common to identify a graph

65

Chapter 5 Graph Theory

with a visualization in which we draw a point for each vertex and a line connecting two
vertices if they are adjacent. The graph G we’ve just defined is shown in Figure 5.1. It’s
important to remember that while a drawing of a graph is a helpful too, it is not the same
as the graph. We could drawG in any of several different ways without changing what
it is as a graph.

a

b

c

d

e

Figure 5.1: A graph on 5 vertices

As is often the case in science andmathematics, different authors use slightly different
notation and terminology for graphs. As an example, some use nodes and arcs rather than
vertices and edges. Others refer to vertices as points and in this case, they often refer to
lines rather than edges. We will try to stick to vertices and edges but confess that we
may occasionally lapse into referring to vertices as points. Also, following the patterns
of many others, we will also say that adjacent vertices are neighbors. And we will use
the more or less standard terminology that the neighborhood of a vertex x is the set of
vertices adjacent to x. Thus, using the graph G we have depicted in Figure 5.1, vertices
d and a are neighbors, and the neighborhood of d is {a, c} while the neighborhood of e
is the empty set. Also, the degree of a vertex v in a graphG, denoted degG(v), is then the
number of vertices in its neighborhood, or equivalently, the number of edges incident
to it. For example, we have degG(d) = degG(a) = 2, degG(c) = degG(b) = 1, and
degG(e) = 0. If the graph being discussed is clear from context, it is not uncommon to
omit the subscript and simply write deg(v) for the degree of v.
When G = (V,E) and H = (W,F) are graphs, we say H is a subgraph of G when

W ⊆ V and F ⊆ E. We say H is an induced subgraph whenW ⊆ V and F = {xy ∈ E :
x, y ∈ W}. In other words, an induced subgraph is defined completely by its vertex set
and the original graphG. We sayH is a spanning subgraph whenW = V . In Figure 5.2,
we show a graph, a subgraph and an induced subgraph. Neither of these subgraphs is
a spanning subgraph.
A graph G = (V,E) is called a complete graph when xy is an edge in G for every

distinct pair x, y ∈ V . Conversely,G is an independent graph if xy 6∈ E, for every distinct
pair x, y ∈ V . It is customary to denote a complete graph on n vertices by Kn and an
independent graph on n vertices by In. In Figure 5.3, we show the complete graphs with
at most 5 vertices.
A sequence (x1, x2, . . . , xn) of vertices in a graph G = (V,E) is called a walk when

xixi+1 is an edge for each i = 1, 2, . . . , n − 1. Note that the vertices in a walk need not

66 cbna

5.1 Basic Notation and Terminology for Graphs

a

b
c

d

e

f
g

h

i

j

l
m

k
a

b
c

d

e

h

i

a

b
c

d

e

h

i

Figure 5.2: A Graph, a Subgraph and an Induced Subgraph

K1 K2 K3 K4 K5

Figure 5.3: Small complete graphs

be distinct. On the other hand, if the vertices are distinct, then the sequence is called a
path, and often to emphasize where a path starts and ends, we will say that a sequence
(x1, x2, . . . , xn) of distinct vertices is a path from x1 to xn in G. Similarly, when n ≥ 3,
a path (x1, x2, . . . , xn) of n distinct vertices is called a cycle when x1xn is also an edge
in G. It is customary to denote a path on n vertices by Pn, while Cn denotes a cycle on
n vertices. The length of a path or a cycle is the number of edges it contains. Therefore,
the length of Pn is n − 1 and the length of Cn is n. In Figure 5.4, we show the paths of
length at most 4, and in Figure 5.5, we show the cycles of length at most 5.
If G = (V,E) and H = (W,F) are graphs, we say G is isomorphic to H and write

P1 P2 P3 P4 P5

Figure 5.4: Short paths

cbna 67

Chapter 5 Graph Theory

C3 C4 C5

Figure 5.5: Small cycles

a

b

c

d

e

h 1
2

3

4

5

6

Figure 5.6: A pair of isomorphic graphs

G ∼= H when there exists a bijection f : V
1–1−−→
onto

W so that x is adjacent to y in G if
and only if f(x) is adjacent to f(y) in H. Often writers will say that G “contains” H
when there is a subgraph of G which is isomorphic to H. In particular, it is customary
to say that G contains the cycle Cn (same for Pn and Kn) when G contains a subgraph
isomorphic to Cn. The graphs in Figure 5.6 are isomorphic. An isomorphism between
these graphs is given by

f(a) = 5, f(b) = 3, f(c) = 1, f(d) = 6, f(e) = 2, f(h) = 4.

On the other hand, the graphs shown in Figure 5.7 are not isomorphic, even though they
have the same number of vertices and the same number of edges. Can you tell why?
A graph G is connected when there is a path from x to y in G, for every x, y ∈ V ;

otherwise, we sayG is disconnected. The graph of Figure 5.1 is disconnected (a sufficient
justification for this is that there is no path from e to c), while those in Figure 5.6 are
connected.

a

b

c

d

e

h 1
2

3

4

5

6

Figure 5.7: A pair of nonisomorphic graphs

68 cbna

5.1 Basic Notation and Terminology for Graphs

1

2

3
4

5
6

7

8

910

1

2

3
4

5
6

7

8

910

G T

Figure 5.8: A Graph and a Spanning Tree

A graph is acyclicwhen it does not contain any cycle on three or more vertices. Acyclic
graphs are also called forests. A connected acyclic graph is called a tree. WhenG = (V,E)
is a connected graph, a subgraph H = (W,F) of G is called a spanning tree if H is both
a spanning subgraph of G and a tree. In Figure 5.8, we show a graph and one of its
spanning trees. We will return to the subject of spanning trees in chapter 12.
The following theorem is very elementary, and some authors refer to it as the “first

theorem of graph theory”. However, this basic result can be surprisingly useful.

Theorem 5.1. Let degG(v) denote the degree of vertex v in graph G = (V,E). Then∑
v∈V

degG(v) = 2|E|. (∗)

Proof. We consider how many times an edge e = vw ∈ E contributes to each side of (*).
The degG(x) and degG(y) terms on the left hand side each count e once, so e is counted
twice on that side. On the right hand side, e is clearly counted twice. Therefore, we have
the equality claimed.

Corollary 5.2. For any graph, the number of vertices of odd degree is even.

We will return to the topic of trees later, but before moving on, let us prove one ele-
mentary proposition about trees. First, a leaf in a tree T is a vertex v with degT(v) = 1.

Proposition 5.3. Every tree on n ≥ 2 vertices has at least two leaves.

cbna 69

Chapter 5 Graph Theory

Proof. Our proof is by induction on n. For n = 2, there is precisely one tree, which is
isomorphic to K2. Both vertices in this graph are leaves, so the proposition holds for
n = 2. Now suppose that for some integer m ≥ 2, every tree on at most m vertices
has at least two leaves and let T = (V,E) be a tree on m + 1 vertices. Pick an edge
e ∈ E and form a new graph T′ = (V ′, E′) by deleting e from T. That is, V ′ = V and
E′ = E − {e}. Now since T′ does not contain a path from one endpoint of e to its other
endpoint, T′ is not connected. However, deleting an edge cannot create a cycle, so T′ is
a forest. Furthermore, it has precisely two components, each of which is a tree with at
mostm vertices. If each component has at least two vertices, then by induction, each has
at least two leaves. In the worst case scenario, two of these leaves are the endpoints of e,
so at least two of the vertices are leaves in T, too. If each component of T′ has only one
vertex, then T ∼= K2, which has two leaves. If exactly one of the components has only
one vertex, then it must be a leaf in T. Thus, applying the inductive hypothesis to the
other component ensures that there is a second leaf in T.

5.2 Multigraphs: Loops and Multiple Edges

Consider a graph in which the vertices represent cities and the edges represent high-
ways. Certain pairs of cities are joined by an edge while other pairs are not. The graph
may or may not be connected (although a disconnected graph is likely to result in dis-
gruntled commuters). However, certain aspects of real highway networks are not cap-
tured by this model. First, between two nearby cities, there can actually be several inter-
connecting highways, and traveling on one of them is fundamentally different from trav-
eling on another. This leads to the concept of multiple edges, i.e., allowing for more than
one edge between two adjacent vertices. Also, we could have a highway which leaves
a city, goes through the nearby countryside and the returns to the same city where it
originated. This leads to the concept of a loop, i.e., an edge with both end points being
the same vertex. Also, we can allow for more than one loop with the same end point.
Accordingly, authors frequently lead off a discussion on a graph theory topic with a

sentence or two like:

1. In this paper, all graphs will be simple, i.e., we will not allow loops or multiple
edges.

2. In this paper, graphs can have loops and multiple edges.

The terminology is far from standard, but in this text, a graph will always be a simple
graph, i.e., no loops or multiple edges. When we want to allow for loops and multiple
edges, we will use the term multigraph. This begs the question of what we would call
a graph if it is allowed to have loops but not multiple edges, or if multiple edges are
allowed but not loops. If we really needed to talk about such graphs, then the English
language comes to our rescue, and we just state the restriction explicitly!

70 cbna

5.3 Eulerian and Hamiltonian Graphs

Figure 5.9: The bridges of Königsberg

5.3 Eulerian and Hamiltonian Graphs

Graph theory is an area of mathematics that has found many applications in a variety of
disciplines. Throughout this text, we will encounter a number of them. However, graph
theory traces its origins to a problem in Königsberg, Prussia (now Kaliningrad, Russia)
nearly three centuries ago. The river Pregel passes through the city, and there are two
large islands in themiddle of the channel. These islandswere connected to themainland
by seven bridges as indicated in Figure 5.9. It is said that the citizens of Königsberg often
wondered if it was possible for one to leave his home, walk through the city in such a
way that he crossed each bridge precisely one time, and end up at home again. Leonhard
Euler settled this problem in 1736 by using graph theory in the form of Theorem 5.4.
A graphG is eulerian if there is a sequence (x0, x1, x2, . . . , xt) of vertices fromG, with

repetition allowed, so that

1. x0 = xt;

2. for every i = 0, 1, . . . t− 1, xixi+1 is an edge of G;

3. for every edge e ∈ E, there is a unique integer iwith 0 ≤ i < t forwhich e = xixi+1.

When G is eulerian, a sequence satisfying these three conditions is called an eulerian
circuit. A sequence of vertices (x0, x1, . . . , xt) is called a circuit when it satisfies only the
first two of these conditions. Note that a sequence consisting of a single vertex is a circuit.
The following elementary theorem completely characterizes eulerian graphs. It comes
with an algorithmic proof, one that is easily implemented.

Theorem 5.4. A graph G is eulerian if and only if it is connected and every vertex has even
degree.

Proof. Clearly, an eulerian graph must be connected. Also, if (x0, x1, . . . , xt) is an eule-
rian circuit inG, then for each i = 0, 1, . . . , t− 1, we can view the edge xixi+1 as exiting
xi and entering xi+1. The degree of every vertex must be even, since for each vertex x,

cbna 71

Chapter 5 Graph Theory

the number of edges exiting x equals the number of edges entering x. Furthermore, each
edge incident with x either exits from x or enters x.

We now describe a deterministic process that will either (a) find an eulerian circuit, (b)
show that the graph is disconnected, or (c) find a vertex of odd degree. The description
is simplified by assuming that the vertices in G have been labelled with the positive
integers 1, 2, . . . , n, where n is the number of vertices inG. Furthermore, we take x0 = 1.
We launch our algorithm with a trivial circuit C consisting of just the vertex x0 = (1).

Thereafter suppose that we have a partial circuitC defined by a sequence (x0, x1, . . . , xt)
with x0 = xt = 1. The edges of the form xixi+1 have been traversed, while the remaining
edges inG (if any) have not. If the third condition for an euler circuit is satisfied, we are
done, so we assume it does not hold.
We then choose the least integer i for which there is an edge incident with xi that has

not already been traversed. If there is no such integer, since there are edges that have
not yet been traversed, then we have discovered that the graph is disconnected. So we
may assume that the integer i exists. Set u0 = xi. We define a sequence (u0, u1, . . . , us)
recursively. If j ≥ 0, set

Nj = {y : ujy is an edge in G and has not yet been traversed.}

If Nj 6= ∅, we take uj+1 as the least positive integer in Nj . If Nj = ∅, then j ≥ 1 and we
take s = j and halt this subroutine.

When the subroutine halts, we consider two cases. If u0 6= us, then u0 and us are
vertices of odd degree in G. So we are left to consider the case where u0 = us = xi.
In this case, we simply expand our original sequence (x0, x1, . . . , xt) by replacing the
integer xi by the sequence (u0, u1, . . . , us).

As an example, consider the graph G shown in Figure 5.10. Evidently, this graph is
connected and all vertices have even degree. Here is the sequence of circuits starting
with the trivial circuit C consisting only of the vertex 1.

C = (1)

= (1, 2, 4, 3, 1) start next from 2

= (1, 2, 5, 8, 2, 4, 3, 1) start next from 4

= (1, 2, 5, 8, 2, 4, 6, 7, 4, 9, 6, 10, 4, 3, 1) start next from 7

= (1, 2, 5, 8, 2, 4, 6, 7, 9, 11, 7, 4, 9, 6, 10, 4, 3, 1) Done!!

You should note that Theorem 5.4 holds for loopless graphs in which multiple edges
are allowed. Euler used his theorem to show that themultigraph of Königsberg shown in
Figure 5.11, inwhich each landmass is a vertex and each bridge is an edge, is not eulerian,
and thus the citizens could not find the route they desired. (Note that in Figure 5.11 there
are multiple edges between the same pair of vertices.)
A graph G = (V,E) is said to be hamiltonian if there exists a sequence (x1, x2, . . . , xn)

so that

72 cbna

5.3 Eulerian and Hamiltonian Graphs

1

5

3

6

4

2
7

8
9

10

11

Figure 5.10: An Eulerian Graph

Figure 5.11: The multigraph of Königsberg’s bridges

1. every vertex of G appears exactly once in the sequence;

2. x1xn is an edge of G; and

3. for each i = 1, 2, . . . , n− 1, xixi+1 is an edge inG.

The first graph shown in Figure 5.12 both eulerian and hamiltonian. The second is
hamiltonian but not eulerian.
In Figure 5.13, we show a famous graph known as the Petersen graph. It is not hamil-

tonian.
Unlike the situation with eulerian circuits, there is no known method for quickly de-

termining whether a graph is hamiltonian. However, there are a number of interesting
conditions which are sufficient. Here is one quite well known example, due to Dirac.

Theorem 5.5. If G is a graph on n vertices and each vertex in G has at least dn2 e neighbors,
thenG is hamiltonian.

Proof. Suppose the theorem fails and let n be the least positive integer for which there

cbna 73

Chapter 5 Graph Theory

1

2

3
4

5
6

7

8

910

G

1

2

3
4

5
6

7

8

910

H

Figure 5.12: Eulerian and Hamiltonian Graphs

Figure 5.13: The Petersen Graph

74 cbna

5.4 Graph Coloring

exists a graph G on n vertices so that each vertex in G has at least dn/2e neighbors, yet
there is no hamiltonian cycle in G. Clearly, n ≥ 4.
Now let t be the largest integer forwhichGhas a pathP = (x1, x2, . . . , xt) on t vertices.

Clearly all neighbors of both x1 and xt appear on this path. By the pigeon hole principle,
there is some integer i with 1 ≤ i < t so that x1xi+1 and xixt are edges in G. However,
this implies that

C = (x1, x2, x3, . . . , xi, xt, xt−1, xt−2, . . . , xi+1)

is a cycle of length t in G. In turn, this requires dn/2e < t < n. But if y is any vertex not
on the cycle, then ymust have a neighbor on C, which implies thatG has a path on t+ 1
vertices. The contradiction completes the proof.

5.4 Graph Coloring

Let’s return now to the subject of Example 1.2, assigning frequencies to radio stations
so that they don’t interfere. The first thing that we will need to do is to turn the map
of radio stations into a suitable graph, which should be pretty natural at this juncture.
We define a graph G = (V,E) in which V is the set of radio stations and xy ∈ E if
and only if radio station x and radio station y are within 200 miles of each other. With
this as our model, then we need to assign different frequencies to two stations if their
corresponding vertices are joined by an edge. This leads us to our next topic, coloring
graphs.
When G = (V,E) is a graph and C is a set of elements called colors, a proper coloring

of G is a function φ : V → C such that if φ(x) 6= φ(y) whenever xy is an edge in G. The
least t for which G has a proper coloring using a set C of t colors is called the chromatic
number ofG and is denoted χ(G). In Figure 5.14, we show a proper coloring of a graph
using 5 colors. Now we can see that our radio frequency assignment problem is the
much-studied question of finding the chromatic number of an appropriate graph.
Discussion 5.6. Everyone agrees that the graph G in Figure 5.14 has chromatic number
at most 5. However, there’s a bit of debate going on about if χ(G) = 5. Bob figures
the authors would not have used five colors if they didn’t need to. Carlos says he’s glad
they’re having the discussion, since all having a proper coloring does is provide them
with an upper bound on χ(G). Bob sees that the graph has a vertex of degree 5 and
claims that must mean χ(G) = 5. Alice groans and draws a graph with 101 vertices, one
of which has degree 100, but with chromatic number 2. Bob is shocked, but agrees with
her. Xing wonders if the fact that the graph does not contain a K3 has any bearing on
the chromatic number. Dave’s in a hurry to get to the gym, but on his way out the door
he says they can get a proper 4-coloring pretty easily, so χ(G) ≤ 4. The rest decide it’s
time to keep reading.

• What graph did Alice draw that shocked Bob?

cbna 75

Chapter 5 Graph Theory

1

2 3 4 2

54 1 3

5

1

Figure 5.14: A proper coloring using 5 colors

• What changes did Davemake to the coloring in Figure 5.14 to get a proper coloring
using four colors?

5.4.1 Bipartite Graphs

A graphG = (V,E) with χ(G) ≤ 2 is called a 2-colorable graph. Recognizing 2-colorable
graphs is easy.

Theorem 5.7. A graph is 2-colorable if and only if it does not contain an odd cycle.

Proof. Clearly a graph containing an odd cycle cannot be 2-colorable. For the converse,
let G be a graph which does not contain an odd cycle. For each component C of G, we
choose an arbitrary vertex rC from C and color all such vertices with color 1. Then for
each component C and each vertex y ∈ C with y 6= rC , let P = (rC = x1, x2, . . . , xt = y)
be a shortest path from rC to y. Assign y color 1 if t is odd and color 2 if t is even. It is
easy to see that this determines a 2-coloring of G.

A graph G is called a bipartite graph when there is a partition of the vertex V into
two sets A and B so that the subgraphs induced by A and B are independent graphs,
i.e., no edge of G has both of its endpoints in A or in B. Evidently, bipartite graphs are
2-colorable. On the other hand, when a 2-colorable graph is disconnected, there is more
than one way to define a suitable partition of the vertex set into two independent sets.

76 cbna

5.4 Graph Coloring

Bipartite graphs are commonly used as models when there are two distinct types of
objects being modeled and connections are only allowed between two objects of differ-
ent types. For example, on one side, list candidates who attend a career fair and on the
other side list the available positions. The edges might naturally correspond to candi-
date/position pairs which link a person to a responsibility they are capable of handling.
As a second example, a bipartite graph could be used to visualize the languages spo-

ken by a group of students. The vertices on one side would be the students with the
languages listed on the other side. We would then have an edge xy when student x
spoke language y. A concrete example of this graph for our favorite group of students is
shown in Figure 5.15, although Alice isn’t so certain there should be an edge connecting
Dave and English.
One special class of bipartite graphs that bears mention is the class of complete bipartite

graphs. The complete bipartite graphKm,n has vertex set V = V1 ∪V2 with |V1| = m and
|V2| = n. It has an edge xy if and only if x ∈ V1 and y ∈ V2. The complete bipartite graph
K3,3 is shown in Figure 5.16.

5.4.2 Cliques and Chromatic Number

A clique in a graph G = (V,E) is a set K ⊆ V such that the subgraph induced by K
is isomorphic to the complete graph K|K|. Equivalently, we can say that every pair of
vertices inK are adjacent. Themaximum clique size or clique number of a graphG, denoted
ω(G), is the largest t for which there exists a clique K with |K| = t. For example, the
graph in Figure 5.10 has clique number 4 while the graph in Figure 5.14 has maximum
clique size 2.
For every graphG, it is obvious that χ(G) ≥ ω(G). On the other hand, the inequality

may be far from tight. Before proving showing how bad it can be, we need to introduce a
more general version of the PigeonHole Principle (Proposition 4.1). Consider a function
f : X → Y with |X| = 2|Y | + 1. Since |X| > |Y |, the Pigeon Hole Principle as stated
in chapter 4 only tells us that there are distinct x, x′ ∈ X with f(x) = f(x′). However,
we can say more here. Suppose that each element of Y has at most two elements of

Alice Bob Carlos Dave Xing Yolanda Zori

Sw
ah

ili

Englis
h

Man
dari

n

Germ
an

Fren
ch

Sp
an

ish

Figure 5.15: A bipartite graph

cbna 77

Chapter 5 Graph Theory

Figure 5.16: The complete bipartite graph K3,3

X mapped to it. Then adding up the number of elements of X based on how many
are mapped to each element of Y would only allow X to have (at most) 2|Y | elements.
Thus, there must be y ∈ Y so that there are three distinct elements x, x′, x′′ ∈ X with
f(x) = f(x′) = f(x′′) = y. This argument generalizes to give the following version of
the Pigeon Hole Principle:

Proposition 5.8. If f : X → Y is a function and |X| ≥ (m − 1)|Y | + 1, then there exists an
element y ∈ Y and distinct elements x1, . . . , xm ∈ X so that f(xi) = y for i = 1, . . . ,m.

We are now prepared to present the following proposition showing that clique num-
ber and chromatic number need not be close at all.

Proposition 5.9. For every t ≥ 3, there exists a graph Gt so that χ(Gt) = t and ω(Gt) = 2

Proof (J. Kelly and L. Kelly). We proceed by induction on t. For t = 3, we take G3 to be
the cycle C5 on five vertices. Now assume that for some t ≥ 3, we have determined the
graph Gt. Suppose that Gt has nt vertices. Label the vertices of Gt as x1, x2, . . . , xnt .
ConstructGt+1 as follows. Begin with an independent set I of cardinality t(nt − 1) + 1.
For every subset S of I with |S| = nt, label the elements of S as y1, y2, . . . , ynt

. For this
particular nt-element subset attach a copy ofGt with yi adjacent to xi for i = 1, 2, . . . , nt.
Vertices in copies ofGt for distinct nt-element subsets of I are nonadjacent, and a vertex
in I has at most one neighbor in a particular copy of Gt.
To see that ω(Gt+1) = 2, it will suffice to argue that Gt+1 contains no triangle (K3).

Since Gt is triangle-free, any triangle in Gt+1 must contain a vertex of I . Since none of
the vertices of I are adjacent, any triangle in Gt+1 contains only one point of I . Since
each vertex of I is adjacent to at most one vertex of any fixed copy ofGt, if y ∈ I is part of
a triangle, the other two verticesmust come fromdistinct copies ofGt. However, vertices
in different copies ofGt are not adjacent, so ω(Gt+1) = 2. Notice that χ(Gt+1) ≥ t since
Gt+1 contains Gt. On the other hand, χ(Gt+1) ≤ t + 1 since we may use t colors on
the copies of Gt and a new color on the independent set I . To see that χ(Gt+1) = t+ 1,
observe that if we use only t colors, then by the generalized Pigeon Hole Principle, there
is an nt-element subset of I in which all vertices have the same color. Then this color
cannot be used in the copy ofGt which is attached to that nt-element subset.

Here is another argument for the same result.

78 cbna

5.4 Graph Coloring

Proof (J. Mycielski). We again start withG3 as the cycleC5. As before we assume that we
have constructed for some t ≥ 3 a graphGt with ω(Gt) = 2 and χ(Gt) = t. Again, label
the vertices ofGt as x1, x2, . . . , xnt

. To constructGt+1, we now startwith an independent
set I , but now I has only nt points, which we label as y1, y2, . . . , ynt

. We then add a copy
ofGt with yi adjacent to xj if and only if xi is adjacent to xj . Finally, attach a new vertex
z adjacent to all vertices in I .
Clearly, ω(Gt+1) = 2. Also, χ(Gt+1) ≥ t, since it contains Gt as a subgraph. Further-

more, χ(Gt+1) ≤ t + 1, since we can color Gt with colors from {1, 2, . . . , t}, use color
t + 1 on the independent set I , and then assign color 1 to the new vertex z. We claim
that in fact χ(Gt+1) = t + 1. Suppose not. Then we must have χ(Gt+1) = t. Let φ be a
proper coloring ofGt+1. Without loss of generality, φ uses the colors in {1, 2, . . . , t} and
φ assigns color t to z. Then consider the nonempty set S of vertices in the copy of Gt to
which φ assigns color t. For each xi in S, change the color on xi so that it matches the
color assigned to yi by φ, which cannot be t, as z is colored t. What results is a proper
coloring of the copy ofGt with only t− 1 colors since xi and yi are adjacent to the same
vertices of the copy ofGt. The contradiction shows that χ(Gt+1) = t+1, as claimed.

Since a 3-clique looks like a triangle, Proposition 5.9 is often stated as “There exist
triangle-free graphswith large chromatic number.” As an illustration of the construction
in the proof of Mycielski, we again refer to Figure 5.14. The graph shown isG4. We will
return to the topic of graphswith large chromatic number in section 11.5 wherewe show
that are there graphs with large chromatic number which lack not only cliques of more
than two vertices but also cycles of less than g vertices for any value of g. In other words,
there is a graph Gwith χ(G) = 106 but no cycle with fewer than 1010 vertices!

5.4.3 Can We Determine Chromatic Number?

Suppose you are given a graph G. It’s starting to look like it is not easy to find an al-
gorithm that answers the question “Is χ(G) ≤ t?” It’s easy to verify a certificate (a
proper coloring using at most t colors), but how could you even find a proper color-
ing, not to mention one with the fewest number of colors? Similarly for the question
“Is ω(G) ≥ k?”, it is easy to verify a certificate. However, finding a maximum clique
appears to be a very hard problem. Of course, since the gap between χ(G) and ω(G)
can be arbitrarily large, being able to find one value would not (generally) help in find-
ing the value of the other. No polynomial-time algorithm is known for either of these
problems, and many believe that no such algorithm exists. In this subsection, we look at
one approach to finding chromatic number and see a case where it does work efficiently.
A very naïve algorithmic way to approach graph coloring is the First Fit, or “greedy”,

algorithm. For this algorithm, fix an ordering of the vertex set V = {v1, v2, . . . vn}. We
define the coloring function φ one vertex at a time in increasing order of subscript. We
begin with φ(v1) = 1 and then we define φ(vi+1) (assuming vertices v1, v2, . . . , vi have

cbna 79

Chapter 5 Graph Theory

v1

v3

v5

v7

v2

v4

v6

v8

v1

v2

v3

v4

v5

v6

v7

v8

Figure 5.17: Two orderings of the vertices of a bipartite graph.

a

b

c

d

e f

b d e f

a c

Figure 5.18: A collection of intervals and its interval graph

been colored) to be the least positive integer color that has not already been used on any
of its neighbors in the set {v1, . . . vi}.
Figure 5.17 shows twodifferent orderings of the same graph. Exercise 24 demonstrates

that the ordering of V is vital to the ability of the First Fit algorithm to colorGusingχ(G)
colors. In general, finding an optimal ordering is just as difficult as coloring G. Thus,
this very simple algorithm does not work well in general. However, for some classes of
graphs, there is a “natural” ordering that leads to optimal performance of First Fit. Here
is one such example—one that we will study again in the next chapter in a different
context.
Given an indexed family of sets F = {Sα : α ∈ V }, we associate with F a graph G

defined as follows. The vertex set ofG is the set V and vertices x and y in V are adjacent
inG if and only if Sx ∩Sy 6= ∅. We callG an intersection graph. It is easy to see that every
graph is an intersection graph (why?), so it makes sense to restrict the sets which belong
to F . For example, we callG an interval graph if it is the intersection graph of a family of
closed intervals of the real line R. For example, in Figure 5.18, we show a collection of
six intervals of the real line on the left. On the right, we show the corresponding interval
graph having an edge between vertices x and y if and only if intervals x and y overlap.

Theorem 5.10. IfG = (V,E) is an interval graph, then χ(G) = ω(G).

Proof. For each v ∈ V , let I(v) = [av, bv] be a closed interval of the real line so that uv is
an edge inG if and only if I(u)∩ I(v) 6= ∅. Order the vertex set V as {v1, v2, . . . vn} such

80 cbna

5.5 Planar Graphs

Water

Electricity

Natural gas

Home 1

Home 2

Home 3

Figure 5.19: A graph of connecting homes to utilities

that a1 ≤ a2 ≤ · · · ≤ an. (Ties may be broken arbitrarily.) Apply the First Fit coloring
algorithm to G with this ordering on V . Now when the First Fit coloring algorithm
colors vi, all of its neighbors have left end point at most ai. Since they are neighbors
of vi, however, we know that their right endpoints are all at least ai. Thus, vi and its
previously-colored neighbors form a clique. Hence, vi is adjacent to at most ω(G) − 1
other vertices that have already been colored, so when the algorithm colors vi, there will
be a color from {1, 2, . . . , ω(G)} not already in use on its neighbors. The algorithm will
assign vi the smallest such color. Thus, we never need to use more than ω(G) colors, so
χ(G) = ω(G).

A graphG is said to be perfect if χ(H) = ω(H) for every induced subgraphH. Since an
induced subgraph of an interval graph is an interval graph, Theorem 5.10 shows interval
graphs are perfect. The study of perfect graphs originated in connection with the theory
of communications networks and has proved to be a major area of research in graph
theory for many years now.

5.5 Planar Graphs

Let’s return to the problem of providing lines for water, electricity, and natural gas to
three homes which we discussed in the introduction to this chapter. How can we model
this problem using a graph? The best way is to have a vertex for each utility and a vertex
for each of the three homes. Then what we’re asking is if we can draw the graph that
has an edge from each utility to each home so that none of the edges cross. This graph is
shown in Figure 5.19. You should recognize it as the complete bipartite graph K3,3 we
introduced earlier in the chapter.
While this example of utility lines might seem a bit contrived, since there’s really no

good reason that the providers can’t bury their lines at different depths, the question
of whether a graph can be drawn in the plane such that edges intersect only at vertices
is a long-studied question in mathematics that does have useful applications. One area
where it arises is in the design of microchips and circuit boards. In those contexts, the
material is so thin that the option of placing connections at different depths either does

cbna 81

Chapter 5 Graph Theory

not exist or is severely restricted. There is much deep mathematics that underlies this
area, and this section is intended to introduce a few of the key concepts.
By a drawing of a graph, we mean a way of associating its vertices with points in the

Cartesian plane R2 and its edges with simple polygonal arcs whose endpoints are the
points associated to the vertices that are the endpoints of the edge. You can think of a
polygonal arc as just a finite sequence of line segments such that the endpoint of one line
segment is the starting point of the next line segment, and a simple polygonal arc is one
that does not cross itself. (Our choice of polygonal arcs rather than arbitrary curves ac-
tually doesn’t cause an impediment, since by taking very, very, very short line segments
we can approximate any curve.) A planar drawing of a graph is one in which the polyg-
onal arcs corresponding to two edges intersect only at a point corresponding to a vertex
to which they are both incident. A graph is planar if it has a planar drawing. A face of a
planar drawing of a graph is a region bounded by edges and vertices and not containing
any other vertices or edges.
Figure 5.20 shows a planar drawing of a graphwith 6 vertices and 9 edges. Notice how

one of the edges is drawn as a true polygonal arc rather than a straight line segment. This
drawing determines 5 regions, sincewe also count the unbounded region that surrounds
the drawing. Figure 5.21 shows a planar drawing of the complete graphK4. There are 4
vertices, 6 edges, and 4 faces in the drawing. What happens if we compute the number
of vertices minus the number of edges plus the number of faces for these drawings? We
have

6− 9 + 5 = 2

4− 6 + 4 = 2

While it might seem like a coincidence that this computation results in 2 for these planar
drawings, there’s amore general principle atwork here, and in fact it holds for any planar
drawing of any planar graph.

Theorem 5.11 (Euler). LetG be a connected planar graph with n vertices andm edges. Every
planar drawing of G has f faces, where f satisfies

n−m+ f = 2.

Figure 5.20: A planar drawing of a graph

82 cbna

5.5 Planar Graphs

Figure 5.21: A planar drawing of K4

The number 2 here actually results from a fundamental property of the plane, and
there are a corresponding theorems for other surfaces. However, we only need the result
as stated above.

Proof. Our proof is by induction on the number m of edges. If m = 0, then since G is
connected, our graph has a single vertex, and so there is one face. Thus n − m + f =
1−0+1 = 2 as needed. Now suppose that we have proven Euler’s formula for all graphs
with less thanm edges and letG havem edges. Pick an edge e ofG. What happens if we
form a new graphG′ by deleting e fromG? IfG′ is connected, our inductive hypothesis
applies. Say that G′ has n′ vertices, m′ edges, and f ′ faces. Then by induction, these
numbers satisfy

n′ −m′ + f ′ = 2.

Since we only deleted one edge, n′ = n and m′ = m − 1. What did the removal of e do
to the number of faces? InG′ there’s a new face that was formerly two faces divided by
e inG. Thus, f ′ = f − 1. Substituting these into n′ −m′ + f ′ = 2, we have

n− (m− 1) + (f − 1) = 2 ⇐⇒ n−m+ f = 2.

Thus, if G′ is connected, we are done. If G′ is disconnected, however, we cannot apply
the inductive assumption to G′ directly. Fortunately, since we removed only one edge,
G′ has two components, which we can view as two connected graphsG′1 andG′2. Each
of these has fewer thanm edges, so we may apply the inductive hypothesis to them. For
i = 1, 2, let n′i be the number of vertices ofG′i,m′i the number of edges ofG′i, and f ′i the
number of faces of G′i. Then by induction we have

n′1 −m′1 + f ′1 = 2 and n′2 −m′2 + f ′2 = 2.

Adding these together, we have

(n′1 + n′2)− (m′1 +m′2) + (f ′1 + f ′2) = 4.

But now n = n′1 + n′2, andm′1 +m′2 = m− 1, so the equality becomes

n− (m− 1) + (f ′1 + f ′2) = 4 ⇐⇒ n−m+ (f ′1 + f ′2) = 3.

cbna 83

Chapter 5 Graph Theory

The only thing we have yet to figure out is how f ′1 + f ′2 relates to f , and we have to hope
that it will allow us to knock the 3 down to a 2. Every face of G′1 and G′2 is a face of G,
since the fact that removing e disconnectsGmeans that emust be part of the boundary
of the unbounded face. Further, the unbounded face is counted twice in the sum f ′1 +f ′2,
so f = f ′1 + f ′2 − 1. This gives exactly what we need to complete the proof.

Taken by itself, Euler’s formula doesn’t seem that useful, since it requires counting the
number of faces in a planar embedding. However, we can use this formula to get a quick
way to determine that a graph is not planar. Consider a drawing without edge crossings
of a graph on n vertices andm edges, with n ≥ 3. We consider pairs (e, F) where e is an
edge of G and F is a face that has e as part of its boundary. How many such pairs are
there? Let’s call the number of pairs p. Each edge can bound either one or two faces, so
we have that p ≤ 2m. We can also bound p by counting the number of pairs in which a
face F appears. Each face is bounded by at least 3 edges, so it appears in at least 3 pairs,
and so p ≥ 3f . Thus 3f ≤ 2m or f ≤ 2m/3. Now, utilizing Euler’s formula, we have

m = n+ f − 2 ≤ n+
2m

3
− 2 ⇐⇒ m

3
≤ n− 2.

Thus, we’ve proven the following theorem.

Theorem 5.12. A planar graph on n vertices has at most 3n− 6 edges when n ≥ 3.

The contrapositive of this theorem, namely that an n-vertex graph with more than
3n − 6 edges is not planar, is usually the most useful formulation of this result. For
instance, we’ve seen (Figure 5.21) that K4 is planar. What about K5? It has 5 vertices
and C(5, 2) = 10 > 9 = 3 · 5 − 6 edges, so it is not planar, and thus for n ≥ 5, Kn is
not planar, since it contains K5. It’s important to note that Theorem 5.12 is not the be-
all, end-all of determining if a graph is planar. To see this, let’s return to the subject of
drawing K3,3 in the plane. This graph has 6 vertices and 9 edges, so it passes the test
of Theorem 5.12. However, if you spend a couple minutes trying to find a way to draw
K3,3 in the plane without any crossing edges, you’ll pretty quickly begin to believe that
it can’t be done—and you’d be right!
To see why K3,3 is not planar, we’ll have to return to Euler’s formula, and we again

work with edge-face pairs. ForK3,3, we see that every edge would have to be part of the
boundary of two faces, and faces are bounded by cycles. Also, since the graph is bipar-
tite, there are no odd cycles. Thus, counting edge-face pairs from the edge perspective,
we see that there are 2m = 18 pairs. If we let fk be the number of faces bounded by a
cycle of length k, then f = f4 + f6. Thus, counting edge-face pairs from the face per-
spective, there are 4f4 + 6f6 pairs. From Euler’s formula, we see that the number of
faces f must be 5, so then 4f4 +6f6 ≥ 20. But from our count of edge-face pairs, we have
2m = 4f4 + 6f6, giving 18 ≥ 20, which is clearly absurd. Thus, K3,3 is not planar.

At this point, you’re probably asking yourself “Sowhat?” We’ve invested a fair amount
of effort to establish that K5 and K3,3 are nonplanar. Clearly any graph that contains

84 cbna

5.5 Planar Graphs

them is also nonplanar, but there are a lot of graphs, so you might think that we could
be at this forever. Fortunately, we won’t be, since at its core, planarity really comes down
to just these two graphs, as we shall soon see.
If G = (V,E) is a graph and uv ∈ E, then we may form a new graph G′ called an

elementary subdivision ofG by adding a new vertex v′ and replacing the edge uv by edges
uv′ and v′v. In other words, G′ has vertex set V ′ = V ∪ {v′} and edge set E′ = (E −
{uv})∪{uv′, v′v}. Two graphsG1 andG2 are homeomorphic if they can be obtained from
the same graph by a (potentially trivial) sequence of elementary subdivisions.
The purpose of discussing homeomorphic graphs is that two homeomorphic graphs

have the same properties when it comes to being drawn in the plane. To see this, think
about what happens to K5 if we form an elementary subdivision of it via any one of its
edges. Clearly it remains nonplanar. In fact, if you take any nonplanar graph and form
the elementary subdivision using any one of its edges, the resulting graph is nonplanar.
The following very deep theorem was proved by the Polish mathematician Kazimierz
Kuratowski in 1930. Its proof is beyond the scope of this text.

Theorem 5.13 (Kuratowski). A graph is planar if and only if it does not contain a subgraph
homeomorphic to either K5 orK3,3.

Kuratowski’s Theorem gives a useful way for checking if a graph is planar. Although
it’s not always easy to find a subgraph homeomorphic to K5 or K3,3 by hand, there are
efficient algorithms for planarity testing that make use of this characterization. To see
this theorem at work, let’s consider the Petersen graph shown in Figure 5.13. The Pe-
tersen graph has 10 vertices and 15 edges, so it passes the test of Theorem 5.12, and our
argument using Euler’s formula to prove that K3,3 is nonplanar was complex enough,
we probably don’t want to try it for the Petersen graph. To use Kuratowski’s Theorem
here, we need to decide if we would rather find a subgraph homeomorphic to K5 or to
K3,3. Although the Petersen graph looks very similar toK5, it’s actually simultaneously
too similar and too different for us to be able to find a subgraph homeomorphic to K5,
since each vertex has degree 3. Thus, we set out to find a subgraph of the Petersen graph
homeomorphic to K3,3. To do so, note that K3,3 contains a cycle of length 6 and three
edges that are in place between vertices opposite each other on the cycle. We identify a
six-cycle in the Petersen graph and draw it as a hexagon and place the remaining four
vertices inside the cycle. Such a drawing is shown in Figure 5.22. The subgraph home-
omorphic to K3,3 is found by deleting the black vertex, as then the white vertices have
degree two, and we can replace each of them and their two incident edges (shown in
bold) by a single edge.
We close this section with a problem that brings the current section together with the

topic of graph coloring. In 1852 Francis Guthrie, an Englishman who was at the time
studying to be lawyer but subsequently became a professor of mathematics in South
Africa, was trying to color amap of the counties of England so that any two counties that
shared a boundary segment (meaning they touched in more than a single point) were
colored with different colors. He noticed that he only needed four colors to do this, and

cbna 85

Chapter 5 Graph Theory

Figure 5.22: A more illustrative drawing of the Petersen graph

was unable to draw any sort of map that would require five colors. (He was able to find
a map that required four colors, an example of which is shown in Figure 5.23.) Could
it possibly be true that every map could be colored with only four colors? He asked
his brother Frederick Guthrie, who was a mathematics student at University College,
London, about the problem, and Frederick eventually communicated the problem to
Augustus de Morgan (of de Morgan’s laws fame), one of his teachers. It was in this way
that one of the most famous (or infamous) problems, known for a century as the Four
Color Problem and now the Four Color Theorem, in graph theory was born. De Mor-
gan was very interested in the Four Color Problem, and communicated it to Sir William
Rowan Hamilton, a prominent Irish mathematician and the one for whom hamiltonian

Figure 5.23: A map that requires four colors

86 cbna

5.5 Planar Graphs

cycles are named, but Hamilton did not find the problem interesting. Hamilton is one of
the few people who considered the Four Color Problem but did not become captivated
by it.
We’ll continue our discussion of the history of the Four Color Theorem in a moment,

but first, we must consider how we can turn the problem of coloring a map into a graph
theory question. Well, it seems natural that each region should be assigned a corre-
sponding vertex. We want to force regions that share a boundary to have different col-
ors, so this suggests that we should place an edge between two vertices if and only if
their corresponding regions have a common boundary. (As an example, the map in
Figure 5.23 corresponds to the graph K4.) It is not difficult to see that this produces a
planar graph, since we may draw the edges through the common boundary segment.
Furthermore, with a little bit of thought, you should see that given a planar drawing of
a graph, you can create a map in which each vertex leads to a region and edges lead to
common boundary segments. Thus, the Four Color Problem could be stated as “Does
every planar graph have chromatic number at most four?”
Interest in the Four Color Problem languished until 1877, when the Britishmathemati-

cian Arthur Cayley worte a letter to the Royal Society asking if the problem had been
resolved. This brought the problem to the attention of many more people, and the first
“proof” of the Four Color Theorem, due to Alfred Bray Kempe, was completed in 1878
and published a year later. It took 11 years before Percy John Heawood found a flaw in
the proof but was able to salvage enough of it to show that every planar graph has chro-
matic number at most five. In 1880, Peter Guthrie Tait, a British physicist best known for
his book Treatise on Natural Philosophy with Sir William Thomson (Lord Kelvin), made
an announcement that suggested he had a proof of the Four Color Theorem utilizing
hamiltonian cycles in certain planar graphs. However, consistent with the way Tait ap-
proached some conjectures in the mathematical theory of knots, it appears that he sub-
sequently realized around 1883 that he could not prove that the hamiltonian cycles he
was using actually existed and so Tait likely only believed he had a proof of the Four
Color Theorem for a short time, if at all. However, it would take until 1946 to find a
counterexample to the conjecture Tait had used in his attempt to prove the Four Color
Theorem.
In the first half of the twentieth century, some incremental progress toward resolving

the Four Color Problem was made, but few prominent mathematicians took a serious
interest in it. The final push to prove the Four Color Theorem came with about at the
same time that the first electronic computers were coming into widespread use in indus-
try and research. In 1976, two mathematicians at the University of Illinois announced
their computer-assisted proof of the Four Color Theorem. The proof by Kenneth Appel
and Wolfgang Haken led the University of Illinois to add the phrase “FOUR COLORS
SUFFICE” to its postage meter’s imprint.1

1A photograph of an envelope with such a meter mark on it can be found in the book The Four-Color Theorem:
History, Topological Foundations, and Idea of Proof by Rudolf and Gerda Fritsch. (Springer, 1998)

cbna 87

Chapter 5 Graph Theory

Theorem 5.14 (Four Color Theorem). Every planar graph has chromatic number at most four.

Appel andHaken’s proof of the Four Color Theoremwas at aminimumunsatisfactory
for many mathematicians, and to some it simply wasn’t a proof. These mathematicians
felt that the using a computer to check various caseswas simply too uncertain; how could
you be certain that the code that checked the 1,482 “unavoidable configurations” didn’t
contain any logic errors? In fact, therewere severalmistakes found in the cases analyzed,
but none were found to be fatal flaws. In 1989, Appel and Haken published a 741-page
tome entitled Every Planar Map is Four Colorablewhich provided corrections to all known
flaws in their original argument. This still didn’t satisfy many, and in the early 1990’s a
team consisting of Neil Robertson from The Ohio State University; Daniel P. Sanders, a
graduate student at the Georgia Institute of Technology; Paul Seymour of Bellcore; and
Robin Thomas from Georgia Tech announced a new proof of the Four Color Theorem.
However, it still required the use of computers. The proof did gain more widespread
acceptance than that of Appel and Haken, in part because the new proof used fewer
than half (633) of the number of configurations the Appel-Haken proof used and the
computer code was provided online for anyone to verify. While still unsatisfactory to
many, the proof by Robertson, et al. was generally accepted, and today the issue of the
Four Color Theorem has largely been put to rest. However, many still wonder if anyone
will ever find a proof of this simple statement that does not require the assistance of a
computer.

5.6 Counting Labeled Trees

Howmany trees are there with vertex set [n] = {1, 2, . . . , n}? Let Tn be this number. For
n = 1, there is clearly only one tree. Also, for n = 2, there is only one tree, which is
isomorphic toK2. In determining T3, we finally have some work to do; however, there’s
not much, since all trees on 3 vertices are isomorphic toP3. Thus, there are T3 = 3 labeled
trees on 3 vertices, corresponding to which vertex is the one of degree 2. When n = 4,
we can begin by counting the number of nonisomorphic trees and consider two cases
depending on whether the tree has a vertex of degree 3. If there is a vertex of degree 3,
the tree is isomorphic to K1,3 or it does not have a vertex of degree three, in which case
it is isomorphic to P4, since there must be precisely two vertices of degree 2 in such a
graph. There are four labelings by [4] for K1,3 (choose the vertex of degree three). How
many labelings by [4] are there for P4? There are C(4, 2) ways to choose the labels i, j
given to the vertices of degree 2 and two ways to select one of the remaining labels to be
made adjacent to i. Thus, there are 12 ways to label P4 by [4] and so T4 = 16.
To this point, it looks like maybe there’s a pattern forming. Perhaps it is the case that

for all n ≥ 1, Tn = nn−2. This is in fact the case, but let’s see how it works out for
n = 5 before proving the result in general. What are the nonisomorphic trees on five
vertices? Well, there’s K1,4 and P5 for sure, and there’s also the third tree shown in
Figure 5.24. After thinking for a minute or two, you should be able to convince yourself

88 cbna

5.6 Counting Labeled Trees

Figure 5.24: The nonisomorphic trees on n = 5 vertices

that this is all of the possibilities. How many labelings by [5] does each of these have?
There are 5 for K1,4 since there are 5 ways to choose the vertex of degree 4. For P5,
there are 5 ways to choose the middle vertex of the path, C(4, 2) = 6 ways to label the
two remaining vertices of degree 2 once the middle vertex is labeled, and then 2 ways to
label the vertices of degree 1. This gives 60 labelings. For the last tree, there are 5 ways
to label the vertex of degree 3, C(4, 2) = 6 ways to label the two leaves adjacent to the
vertex of degree 3, and 2 ways to label the remaining two vertices, giving 60 labelings.
Therefore, T5 = 125 = 53 = 55−2.
It turns out that we are in fact on the right track, and we will now set out to prove the

following:

Theorem 5.15 (Cayley’s Formula). The number Tn of labeled trees on n vertices is nn−2.

This result is usually referred to as Cayley’s Formula, although equivalent results were
proven earlier by James J. Sylvester (1857) and Carl W. Borchardt (1860). The reason that
Cayley’s name is most often affixed to this result is that he was the first to state and prove
it in graph theoretic terminology (in 1889). (Although one could argue that Cayley really
only proved it for n = 6 and then claimed that it could easily be extended for all other
values of n, andwhether such an extension can actually happen is open to some debate.)
Cayley’s Formula has many different proofs, most of which are quite elegant. If you’re
interested in presentations of several proofs, we encourage you to read the chapter on
Cayley’s Formula in Proofs from THE BOOK by Aigner, Ziegler, and Hofmann, which
contains four different proofs, all using different proof techniques. Here we give a fifth
proof, due to Prüfer and published in 1918. Interestingly, even though Prüfer’s proof
came aftermuch of the terminology of graph theorywas established, he seemedunaware
of it and worked in the context of permutations and his own terminology, even though
his approach clearly includes the ideas of graph theory. Wewill use a recursive technique
in order to find a bijection between the set of labeled trees on n vertices and a natural set
of size nn−2, the set of strings of length n− 2 where the symbols in the string come from
[n].
We define a recursive algorithm that takes a tree T on k ≥ 2 vertices labeled by ele-

ments of a set S of positive integers of size k and returns a string of length k − 2 whose
symbols are elements ofS. (The setSwill usually be [k], but in order to define a recursive

cbna 89

Chapter 5 Graph Theory

procedure, we need to allow that it be an arbitrary set of k positive integers.) This string
is called the Prüfer code of the treeT. Let prüfer(T) denote the Prüfer code of the treeT,
and if v is a leaf of T, let T− v denote the tree obtained from T by removing v (i.e., the
subgraph induced by all the other vertices). We can then define prüfer(T) recursively
by

1. If T ∼= K2, return the empty string.

2. Else, let v be the leaf of T with the smallest label and let u be its unique neighbor.
Let i be the label of u. Return (i,prüfer(T− v)).

Example 5.16. Before using Prüfer codes to prove Cayley’s Formula, let’s take a moment
to make sure we understand how they are computed given a tree. Consider the 9-vertex
tree T in Figure 5.25. How do we compute prüfer(T)? Since T has more than two

1

2

34

5

6 7

8

9

Figure 5.25: A labeled 9-vertex tree

vertices, we use the second step and find that v is the vertex with label 2 and u is the
vertex with label 6, so prüfer(T) = (6,prüfer(T − v)). The graph T − v is shown in
Figure 5.26. The recursive call prüfer(T− v) returns (6,prüfer(T− v − v′)), where v′ is

1

34

5

6 7

8

9

Figure 5.26: The tree T− v

the vertex labeled 5. Continuing recursively, the next vertex deleted is 6, which appends
a 4 to the string. Then 7 is deleted, appending 3. Next 8 is deleted, appending 1. This
is followed by the deletion of 1, appending 4. Finally 4 is deleted, appending 3, and the
final recursive call has the subtree isomorphic to K2 with vertices labeled 3 and 9, and
an empty string is returned. Thus, prüfer(T) = 6643143.
We’re now prepared to give a proof of Cayley’s Formula.

90 cbna

5.6 Counting Labeled Trees

Proof. It is clear that prüfer(T) takes an n-vertex labeled tree with labels from [n] and
returns a string of length n− 2 whose symbols are elements of [n]. What we have yet to
do is determine a way to take such a string and construct an n-vertex labeled tree from it.
If we can find such a construction, we will have a bijection between the set Tn of labeled
trees on n vertices and the set of strings of length n − 2 whose symbols come from [n],
which will imply that Tn = nn−2.

First, let’s look at howprüfer(T) behaves. What numbers actually appear in the Prüfer
code? The numbers that appear in the Prüfer code are the labels of the nonleaf vertices
of T. The label of a leaf simply cannot appear, since we always record the label of the
neighbor of the leaf we are deleting, and the only way we would delete the neighbor of a
leaf is if that neighbor were also a leaf, which can only happen T ∼= K2, in which case
prüfer(T) simply returns the empty string. Thus if I ⊂ [n] is the set of symbols that
appear in prüfer(T), the labels of the leaves of T are precisely the elements of [n]− I .
With the knowledge of which labels belong to the leaves of T in hand, we are ready

to use induction to complete the proof. Our goal is to show that if given a string s =
s1s2 · · · sn−2 whose symbols come from a set S of n elements, there is a unique tree T
with prüfer(T) = s. If n = 2, the only such string is the empty string, so 1 and 2 both
label leaves and we can construct only K2. Now suppose we have the result for some
m ≥ 2, and we try to prove it form+ 1. We have a string s = s1s2 · · · sm−1 with symbols
from [m+ 1]. Let I be the set of symbols appearing in s and let k be the least element of
[m + 1] − I . By the previous paragraph, we know that k is the label of a leaf of T and
that is unique neighbor is the vertex labeled s1. The string s′ = s2s3 · · · sm−1 has length
m− 2 and since k does not appear in s, its symbols come from S = [m+ 1]−{k}, which
has size m. Thus, by induction, there is a unique tree T′ whose Prüfer code is s′. We
formT fromT′ by attaching a leaf with label k to the vertex ofT′ with label s1 and have
a tree of the desired type.

Example 5.17. We close this section with an example of how to take a Prüfer code and
use it to construct a labeled tree. Consider the string s = 75531 as a Prüfer code. Then
the tree T corresponding to s has 7 vertices, and its leaves are labeled 2, 4, and 6. The
inductive step in our proof attaches the vertex labeled 2 to the vertex labeled 7 in the tree
T′ with Prüfer code 5531 and vertex labels {1, 3, 4, 5, 6, 7}, since 2 is used to label the last
vertex added. What are the leaves ofT′? The symbols in {4, 6, 7} do not appear in 5531,
so they must be the labels of leaves, and the construction says that we would attach the
vertex labeled 4 to the vertex labeled 5 in the tree we get by induction. In Table 5.1, we
show how this recursive process continues. We form each row from the row above it
by removing the first label used on the edge added from the label set and removing the
first symbol from the Prüfer code. Once the Prüfer code becomes the empty string, we
know that the two remaining labels must be the labels we place on the ends of K2 to
start building T. We then work back up the edge added column, adding a new vertex
and the edge indicated. The tree we construct in this manner is shown in Figure 5.27.

cbna 91

Chapter 5 Graph Theory

Prüfer code Label set Edge added
75531 {1, 2, 3, 4, 5, 6, 7} 2–7
5531 {1, 3, 4, 5, 6, 7} 4–5
531 {1, 3, 5, 6, 7} 6–5
31 {1, 3, 5, 7} 5–3
1 {1, 3, 7} 3–1

(empty string) {1, 7} 1–7

Table 5.1: Turning the Prüfer code 75531 into a labeled tree

4

13

6

5 7

2

Figure 5.27: The labeled tree with Prüfer code 75531

5.7 A Digression into Complexity Theory

We have already introduced in chapter 4 a few notions about efficient algorithms. We
also discussed the difficulty of determining a graph’s chromatic number and clique num-
ber earlier in this chapter. We conclude with a brief discussion of some issues involving
computational complexity for other problems discussed in this chapter.
Let’s beginwith some problems forwhich there are polynomial-time algorithms. Sup-

pose you are given a graph on n vertices and asked whether or not the graph is con-
nected. Here a positive answer can be justified by providing a spanning tree. On the
other hand, a negative answer can be justified by providing a partition of the vertex sets
V = V1 ∪V2 with V1 and V2 non-empty subsets and having no edges with one end-point
in V1 and the other in V2. In chapter 12 we will discuss two efficient algorithms that find
spanning trees in connected graphs. They can easily be modified to produce a partition
showing the graph is disconnected.
If you are asked whether a connected graph is eulerian, then a positive answer can

be justified by producing the appropriate sequence. We gave an algorithm to do this
earlier in the chapter. A negative answer can be justified by producing a vertex of odd
degree, and our algorithmwill identify such a vertex if it exists. (Depending on the data
structures used to represent the graph, it may bemost efficient to simply look for vertices
of odd degree without using the algorithm to find an eulerian circuit.)
On the surface, the problem of determining if a graph is hamiltonian looks similar

to that of determining if the graph is eulerian. Both call for a sequence of vertices in
which each pair of consecutive vertices is joined by an edge. Of course, each problem

92 cbna

5.8 Discussion

has an additional requirement on yes certificates. However, justifying a negative answer
to the question of whether a graph is hamiltonian is not straightforward. Theorem 5.5
only gives a way to confirm that a graph is hamiltonian; there are many nonhamiltonian
graphs that do not satisfy its hypothesis. At this time, no one knows how to justify a
negative answer—at least not in the general case.

5.8 Discussion

Over coffee, today’s conversation was enthusiastic and heated at times. Zori got things
off with a blast “I don’t think graphs are of any use at all. . . ” but she wasn’t even able to
finish the sentence before Yolanda uncharacteristically interrupted her with “You’re off
base on this one. I see lots of ways graphs can be used to model real world problems.
The professor actually showed us examples back in our first class. But now that we’re
talking in more depth about graphs, things are even clearer.” Bob added “These eule-
rian and hamiltonian cycle problems are certain to have applications in network routing
problems.” Xing reinforced Bob with “Absolutely. There are important questions in net-
work integrity and information exchange that are very much the same as these basic
problems.” Alice piled on “Even the notion of chromatic number clearly has practical
applications.” By this time, Zori realized her position was indefensible but she was re-
luctant to admit it. She offered only a “Whatever.”
Things quieted down a bit and Dave said “Finding a hamiltonian cycle can’t be all

that hard, if someone guarantees that there is one. This extra information must be of
value in the search.” Xing added “Maybe so. It seems natural that it should be easier
to find something if you know it’s there.” Alice asked “Does the same thing hold for
chromatic number?” Bob didn’t understand her question “Huh?” Alice continued, this
time being careful not to even look Bob’s way “I mean if someone tells you that a graph
is 3-colorable, does that help you to find a coloring using only three colors?” Dave said
“Seems reasonable to me.”
After a brief pause, Carlos offered “I don’t think this extra knowledge is of any help.

I think these problems are pretty hard, regardless.” They went back and forth for a
while, but in the end, the only thing that was completely clear is that graphs and their
properties had captured their attention, at least for now.

5.9 Exercises

1. The questions in this exercise pertain to the graph G shown in Figure 5.28.
a) What is the degree of vertex 8?
b) What is the degree of vertex 10?
c) How many vertices of degree 2 are there in G? List them.

cbna 93

Chapter 5 Graph Theory

d) Find a cycle of length 8 inG.
e) What is the length of a shortest path from 3 to 4?
f) What is the length of a shortest path from 8 to 7?
g) Find a path of length 5 from vertex 4 to vertex 6.

1

2

3
4

5
6

7

8

910

1

2

3
4

5
6

7

8

910

G T

Figure 5.28: A graph

2. Draw a graph with 8 vertices, all of odd degree, that does not contain a path of
length 3 or explain why such a graph does not exist.

3. Draw a graphwith 6 vertices having degrees 5, 4, 4, 2, 1, and 1 or explain why such
a graph does not exist.

4. For the next Olympic Winter Games, the organizers wish to expand the number
of teams competing in curling. They wish to have 14 teams enter, divided into
two pools of seven teams each. Right now, they’re thinking of requiring that in
preliminary play each teamwill play seven games against distinct opponents. Five
of the opponents will come from their own pool and two of the opponents will
come from the other pool. They’re having trouble setting up such a schedule, so
they’ve come to you. By using an appropriate graph-theoretic model, either argue
that they cannot use their current plan or devise a way for them to do so.

5. For this exercise, consider the graph G in Figure 5.29.
a) Let V1 = {g, j, c, h, e, f} and E1 = {ge, jg, ch, ef}. Is (V1, E1) a subgraph of

G?
b) Let V2 = {g, j, c, h, e, f} and E2 = {ge, jg, ch, ef, cj}. Is (V2, E2) a subgraph

of G?
c) Let V3 = {a, d, c, h, b} and E3 = {ch, ac, ad, bc}. Is (V3, E3) an induced sub-

graph of G?

94 cbna

5.9 Exercises

d) Draw the subgraph of G induced by {g, j, d, a, c, i}.
e) Draw the subgraph of G induced by {c, h, f, i, j}.
f) Draw a subgraph ofG having vertex set {e, f, b, c, h, j} that is not an induced

subgraph.
g) Draw a spanning subgraph of G with exactly 10 edges.

a

b

c
d

e

f

g

h

ij

Figure 5.29: A graph G

6. Prove that every tree on n vertices has exactly n− 1 edges.

7. Figure 5.30 contains four graphs on six vertices. Determine which (if any) pairs
of graphs are isomorphic. For pairs that are isomorphic, give an isomorphism
between the two graphs. For pairs that are not isomorphic, explain why.

G1 G2

G3 G4

v1 v2 v3

v4 v5 v6

u1 u2

u3

u4u5

u6

w1 w2

w3

w4w5

w6

x1 x2 x3

x4 x5 x6

Figure 5.30: Are these graphs isomorphic?

cbna 95

Chapter 5 Graph Theory

8. Find an eulerian circuit in the graphG in Figure 5.31 or explain why one does not
exist.

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5.31: A graph G

9. Consider the graph G in Figure 5.32. Determine if the graph is eulerian. If it is,
find an eulerian circuit. If it is not, explain why it is not. Determine if the graph is
hamiltonian. If it is, find a hamiltonian cycle. If it is not, explain why it is not.

10. Explain why the graphG in Figure 5.33 does not have an eulerian circuit, but show
that by adding a single edge, you can make it eulerian.

11. An eulerian trail is defined in the same manner as an euler circuit (see page 71)
except that we drop the condition that x0 = xt. Prove that a graph has an eulerian
trail if and only if it is connected and has at most two vertices of odd degree.

12. Alice and Bob are discussing a graph that has 17 vertices and 129 edges. Bob argues
that the graph is Hamiltonian, while Alice says that he’s wrong. Without knowing
anything more about the graph, must one of them be right? If so, who and why,
and if not, why not?

13. Find the chromatic number of the graph G in Figure 5.34 and a coloring using
χ(G) colors.

14. Find the chromatic number of the graph G in Figure 5.35 and a coloring using
χ(G) colors.

15. A pharmaceutical manufacturer is building a new warehouse to store its supply
of 10 chemicals it uses in production. However, some of the chemicals cannot be
stored in the same room due to undesirable reactions that will occur. The matrix
below has a 1 in position (i, j) if and only if chemical i and chemical j cannot be
stored in the same room. Develop an appropriate graph theoretic model and de-
termine the smallest number of rooms into which they can divide their warehouse

96 cbna

5.9 Exercises

d

m
b

k

l

c

i

j

f
e

a

gh

n

Figure 5.32: A graph G

1

2

3

4

5

6

7
8

9

10

11

12

Figure 5.33: A graph G

so that they can safely store all 10 chemicals in the warehouse.

0 1 0 1 1 0 1 0 0 0
1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 0 1 1 0
1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0

16. A school is preparing the schedule of classes for the next academic year. They

cbna 97

Chapter 5 Graph Theory

d
b

c

i

jf

e

ag

h

Figure 5.34: A graph G to color

a

bc

d

e

f

g

h

ij

k

lm
n

Figure 5.35: A graph G to color

are concerned about scheduling calculus, physics, English, statistics, economics,
chemistry, and German classes, planning to offer a single section of each one. Be-
low are the lists of courses that each of six students must take in order to success-
fully graduate. Determine the smallest number of class periods that can be used to
schedule these courses if each student can take at most one course per class period.
Explain why fewer class periods cannot be used.

Student Courses
1 Chemistry, Physics, Economics
2 English, German, Statistics
3 Statistics, Calculus, German
4 Chemistry, Physics
5 English, Chemistry
6 Chemistry, Economics

17. All trees with more than one vertex have the same chromatic number. What is it,
and why?

18. Find a proper (t + 1)-coloring of the graph Gt+1 in Mycielski’s proof of Proposi-

98 cbna

5.9 Exercises

tion 5.9. This establishes that χ(Gt+1) ≤ t+ 1.

19. How many vertices does the graph G4 from the Kelly and Kelly proof of Proposi-
tion 5.9 have?

20. Construct and draw the graph G5 from Mycielski’s proof of Proposition 5.9.

21. Find a recursive formula for the number of vertices nt in the graph Gt from the
Kelly and Kelly proof of Proposition 5.9.

22. Let bt be the number of vertices in the graph Gt from the Mycielski’s proof of
Proposition 5.9. Find a recursive formula for bt.

23. The girth of a graph G is the number of vertices in a shortest cycle of G. Find the
girth of the graphGt in the Kelly and Kelly proof of Proposition 5.9 and prove that
your answer is correct. As a challenge, see if you can modify the construction of
Gt to increase the girth. If so, how far are you able to increase it?

24. Use the First Fit algorithm to color the graph in Figure 5.17 using the two different
orderings of the vertex set shown there.

25. Draw the interval graph corresponding to the intervals in Figure 5.36.

c

f
g

d

e

h

k

j

i

p
o

n

ml

Figure 5.36: A collection of intervals

26. Use the First Fit coloring algorithm to find the chromatic number of the interval
graph whose interval representation is shown in Figure 5.36 as well as a proper
coloring using as few colors as possible.

27. a) From exercise 24 you know that choosing a bad ordering of the vertices of a
graph can lead to the First Fit coloring algorithm producing a coloring that is
far from optimal. However, you can use this algorithm to prove a bound on
the chromatic number. Show that if every vertex of G has degree at most D,
then χ(G) ≤ D + 1.

cbna 99

Chapter 5 Graph Theory

b) Give an example of a bipartite graph with D = 1000 to show that this bound
need not be tight.

28. Is the graph in Figure 5.35 planar? If it is, find a drawing without edges crossings.
If it is not give a reason why it is not.

29. Is the graph in Figure 5.37 planar? If it is, find a drawing without edge crossings.
If it is not give a reason why it is not.

a

b

c

d

e
f

g

h

i
j

k

l

Figure 5.37: Is this graph planar?

30. Find a planar drawing of the graph K5 − e, by which we mean the graph formed
from the complete graph on 5 vertices by deleting any edge.

31. Draw a planar drawing of an eulerian planar graph with 10 vertices and 21 edges.

32. Show that every planar graph has a vertex that is incident to at most five edges.

33. LetG = (V,E) be a graph with V = {v1, v2, . . . , vn}. Its degree sequence is the list of
the degrees of its vertices, arranged in nonincreasing order. That is, the degree se-
quence ofG is (degG(v1),degG(v2), . . . ,degG(vn)) with the vertices arranged such
that degG(v1) ≥ degG(v2) ≥ · · · ≥ degG(vn). Below are five sequences of integers
(along with n, the number of integers in the sequence). Identify
• the one sequence that cannot be the degree sequence of any graph;
• the two sequences that could be the degree sequence of a planar graph;
• the one sequence that could be the degree sequence of a tree;
• the one sequence that is the degree sequence of an eulerian graph; and
• the one sequence that is the degree sequence of a graph that must be hamil-
tonian.

Explain your answers. (Note that one sequence will get two labels from above.)

100 cbna

5.9 Exercises

a) n = 10: (4, 4, 2, 2, 1, 1, 1, 1, 1, 1)

b) n = 9: (8, 8, 8, 6, 4, 4, 4, 4, 4)

c) n = 7: (5, 4, 4, 3, 2, 1, 0)

d) n = 10: (7, 7, 6, 6, 6, 6, 5, 5, 5, 5)

e) n = 6: (5, 4, 3, 2, 2, 2)

34. Below are three sequences of length 10. One of the sequences cannot be the degree
sequence (see exercise 33) of any graph. Identify it and say why. For each of the
other two, say why (if you have enough information) a connected graph with that
degree sequence
• is definitely hamiltonian/cannot be hamiltonian;
• is definitely eulerian/cannot be eulerian;
• is definitely a tree/cannot be a tree; and
• is definitely planar/cannot be planar.

(If you do not have enough information to make a determination for a sequence
without having specific graph(s) with that degree sequence, write “not enough
information” for that property.)
a) (6, 6, 4, 4, 4, 4, 2, 2, 2, 2)

b) (7, 7, 7, 7, 6, 6, 6, 2, 1, 1)

c) (8, 6, 4, 4, 4, 3, 2, 2, 1, 1)

35. For the two degree sequences in exercise 34 that correspond to graphs, there were
some properties for which the degree sequence was not sufficient information to
determine if the graph had that property. For each of those situations, see if you
can draw both a graph that has the property and a graph that does not have the
property.

36. Draw the 16 labeled trees on 4 vertices.

37. Determine prüfer(T) for the tree T in Figure 5.38.

38. Determine prüfer(T) for the tree T in Figure 5.39.

39. Determine prüfer(T) for the tree T Figure 5.40.

40. Construct the labeled tree T with Prüfer code 96113473.

41. Construct the labeled tree T with Prüfer code 23134.

42. Construct the labeled treeTwith Prüfer code (using commas to separate symbols
in the string, since we have labels greater than 9) 10, 1, 7, 4, 3, 4, 10, 2, 2, 8.

cbna 101

Chapter 5 Graph Theory

1

2

3

4

5

6

7

8

9

10

Figure 5.38: A 10-vertex tree

1

2

3

4

5

6

7
8

Figure 5.39: A 10-vertex tree

43. (Challenge problem) When G = (V,E) is a graph, let ∆(G) denote the maximum
degree in G. Prove Brooks’ Theorem: If G is connected and ∆(G) = k, then
χ(G) ≤ k+ 1. Furthermore, equality holds if and only if (a) k = 2 andG is an odd
cycle, or (b) k 6= 2 and G = Kk+1. Hint: It’s clear that χ(G) ≤ k + 1 (in fact, this
was already assigned as an exercise). Assume that χ(G) = k + 1 but that neither
conclusion (a) or (b) holds. Take a spanning tree ofG and an appropriate ordering
of the vertices, with two leaves of the tree coming first. Then show that a First Fit
coloring of the graph will only use k colors.

102 cbna

5.9 Exercises

1

2

3

4

5

6

7

8

9
10

11

12
1314

Figure 5.40: A 14-vertex tree

cbna 103

CHAPTER 6
Partially Ordered Sets

Alice was surfing the web and found a site listing top movies, grouped by categories
(comedy, drama, family, etc) as well as by the decade in which they were released. Alice
was intrigued by the critic’s choices and his rankings, especially for the top seven dramas
from the 1990’s. Alice agreed with the critic’s choices as a group but not the specific
rankings. She wrote the critic’s rankings on the board and just to the right, she gave her
own rankings, all the time insisting that she was certainly correct in her opinions.

Movie Critic’s Ranking

1. Saving Private Ryan

2. Life is Beautiful

3. Forrest Gump

4. Braveheart

5. Good Will Hunting

6. Titanic

7. Jurassic Park

Alice’s Ranking

1. Life is Beautiful

2. Saving Private Ryan

3. Good Will Hunting

4. Titanic

5. Braveheart

6. Forrest Gump

7. Jurassic Park

Dave studied the two rankings and listened carefully to Alice’s rationale (which he felt
was a bit over the top), but eventually, he held up the following diagram and offered it
as a statement of those comparisons on which both Alice and the movie critic were in
agreement.
Remark 6.1. Do you see how Dave made up this diagram? Add your own rankings of
these seven films and then draw the diagram that Dave would produce as a statement
about the comparisons on which you, Alice and the movie critic were in agreement.
More generally, when humans are asked to express preferences among a set of op-

tions, they often report that establishing a totally ranked list is difficult if not impossible.
Instead, they prefer to report a partial order—where comparisons are made between

105

Chapter 6 Partially Ordered Sets

Saving Private Ryan Life is Beautiful

Forrest Gump
Braveheart

Good Will Hunting

Jurassic Park

Titanic

Figure 6.1: Top Movies from the 90’s

certain pairs of options but not between others. In this chapter, we make these obser-
vations more concrete by introducing the concept of a partially ordered set. Elemen-
tary examples include (1) a family of sets which is partially ordered by inclusion and
(2) a set of positive integers which is partially ordered by division. From an applications
standpoint, a complex construction job typically involves a large number of projects for
which there is a notion of precedence between some but not all pairs. Also, computer
file systems are modeled by trees which become partially ordered sets whenever links
are added.

6.1 Basic Notation and Terminology

A partially ordered set or poset P is a pair (X,P) where X is a set and P is a reflexive,
antisymmetric, and transitive binary relation onX . (Refer to section A.10 for a refresher
of what these properties are if you need to.) We callX the ground setwhile P is a partial
order on X . Elements of the ground set X are also called points, and the poset P is finite
if its ground set X is a finite set.
Example 6.2. Let X = {a, b, c, d, e, f} and consider the following binary relations on X .

1. R1 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c), (e, f)}.

2. R2 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (d, b), (d, e), (b, a), (e, a),
(d, a), (d, e), (c, f)}.

3. R3 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, c), (a, e), (a, f), (b, c),
(b, d), (b, e), (b, f), (d, e), (d, f), (e, f)}.

4. R4 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (d, b), (b, a), (e, a), (c, f)}.

5. R5 = {(a, a), (c, c), (d, d), (e, e), (a, e), (c, a), (c, e), (d, e)}.

6. R6 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (d, f), (b, e), (c, a), (e, b)}.

106 cbna

6.1 Basic Notation and Terminology

bc

d

e

fa

b

c d

e

f

a

Figure 6.2: Cover Graph

Then R1, R2 and R3 are partial orders on X , so P1 = (X,R1), P2 = (X,R2) and P3 =
(X,R3) are posets. Several of the other examples we will discuss in this chapter will use
the poset P3 = (X,R3).
On the other hand, R4, R5 and R6 are not partial orders on X . Note that R4 is not

transitive, as it contains (d, b) and (b, a) but not (d, a). The relation R5 is not reflexive,
since it doesn’t contain (b, b). (Also, it also doesn’t contain (f, f), but one shortcoming
is enough.) Note that R5 is a partial order on {a, b, d, e}. The relation R6 is not antisym-
metric, as it contains both (b, e) and (e, b).
When P = (X,P) is a poset, it is common to write x ≤ y in P and y ≥ x in P as

substitutes for (x, y) ∈ P . Of course, the notations x < y in P and y > x in P mean
x ≤ y in P and x 6= y. When the poset P remains fixed throughout a discussion, we
will sometimes abbreviate x ≤ y in P by just writing x ≤ y, etc. When x and y are
distinct points from X , we say x is covered by y in P 1 when x < y in P , and there is no
point z ∈ X for which x < z an z < y in P . For example, in the poset P3 = (X,R3)
from Example 6.2, d is covered by e and c covers b. However, a is not covered by f , since
a < e < f in R3. We can then associate with the poset P a cover graph G whose vertex
set is the ground setX ofPwith xy an edge inG if and only if one of x and y covers the
other in P. Again, for the poset P3 from Example 6.2, we show the cover graph on the
left side of Figure 6.2. Actually, on the right side of this figure is just another drawing of
this same graph.
It is convenient to illustrate a poset with a suitably drawn diagram of the cover graph

in the Euclidean plane. We choose a standard horizontal/vertical coordinate system in
the plane and require that the vertical coordinate of the point corresponding to y be
larger than the vertical coordinate of the point corresponding to x whenever y covers
x in P . Each edge in the cover graph is represented by a straight line segment which
contains no point corresponding to any element in the poset other than those associated
with its two end points. Such diagrams are called Hasse diagrams (poset diagrams, order
1Reflecting the vagaries of the English language, mathematicians use the phrases: (1) x is covered by y in P ;
(2) y covers x in P ; and (3) (x, y) is a cover in P interchangeably.

cbna 107

Chapter 6 Partially Ordered Sets

1

5

2

3

4

6

7

8

9

10

11

1213

14

15

16

17

18

Figure 6.3: A Poset on 17 Points

diagrams, or just diagrams). Now it should be clear that the drawing on the right side of
Figure 6.2 is a diagram of the poset P3 from Example 6.2, while the diagram on the left
is not.
For posets of moderate size, diagrams are frequently used to define a poset—rather

than the explicit binary relation notation illustrated in Example 6.2. In Figure 6.3, we
illustrate a poset P = (X,P) with ground set X = [17] = {1, 2, . . . , 17}. It would take
several lines of text to write out the binary relation P , and somehow the diagram serves
to give us a more tactile sense of the properties of the poset.
Remark 6.3. Alice and Bob are talking about how you communicate with a computer
in working with posets. Bob says that computers have incredible graphics capabilities
these days and that you just give the computer a pdf scan of a diagram. Alice says that
she doubts that anybody really does that. Carlos says that there are several effective
strategies. One way is to label the points with positive integers from [n] where n is the
number of points in the ground set and then define a 0–1 n × n matrix A with entry
a(i, j) = 1 when i ≤ j in P and a(i, j) = 0 otherwise. Alternatively, you can just provide
for each element i in the ground set a vector U(x) listing all elements which are greater
than x in P . This vector can be what computer scientists call a linked list.
Example 6.4. There are several quite natural ways to construct posets.

1. A family F of sets is partially ordered by inclusion, i.e., set A ≤ B if and only if A
is a subset of B.

2. A set X of positive integers is partially ordered by division—without remainder,
i.e., setm ≤ n if and only if n ≡ 0 (mod m).

3. A set X of t-tuples of real numbers is partially ordered by the rule:
(a1, a2, . . . , at) ≤ (b1, b2, . . . , bt) if and only if ai ≤ bi in the natural order on R for
i = 1, 2, . . . , t.

4. When L1, L2, . . . , Lk are linear orders on the same set X , we can define a partial
order P on X by setting x ≤ y in P if and only if x ≤ y in Li for all i = 1, 2, . . . , k.

108 cbna

6.1 Basic Notation and Terminology

{2}{3}

{3,7} {2,5}
{2,3,11}

{2,5,25}{2,3,5,7}

2 3

66 2110

50 210

(1,2,1)

(2,5,4)

(7,6,7)

(6,4,5)

(5,7,3)

(4,1,5)
(3,3,2)

Figure 6.4: Constructing Posets

b

c d

e

f

a

ab

b

c

c

d

d

e

e

f

f

a

Figure 6.5: Comparability and Incommparability Graphs

We illustrate the first three constructions with the posets shown in Figure 6.4. As is now
clear, in the discussion at the very beginning of this chapter, Dave drew a diagram for the
poset determined by the intersection of the linear orders given by Alice and the movie
critic.

Distinct points x and y in a poset P = (X,P) are comparable if either x < y in P or
x > y in P ; otherwise x and y are incomparable. With a poset P = (X,P), we associate
a comparability graph G1 = (X,E1) and an incomparability graph G2 = (X,E2). The
edges in the comparability graph G1 consist of the comparable pairs and the edges in
the incomparability graph are the incomparable pairs. We illustrate these definitions in
Figure 6.5 where we show the comparability graph and the incomparability graph of the
poset P3.

A partial order P is called a total order (also, a linear order) if for all x, y ∈ X , either
x ≤ y in P or y ≤ x in P . For small finite sets, we can specify a linear order by listing the
elements from least to greatest. For example, L = [b, c, d, a, f, g, e] is the linear order on
the ground set {a, b, c, d, e, f, g}with b < c < d < a < f < g < e in L.

The set of real numbers comes equipped with a natural total order. For example, 1 <
7/5 <

√
2 < π in this order. But in this chapter, we will be interested primarily with

partial orders that are not linear orders. Also, we note that special care must be taken
when discussing partial orders on ground sets whose elements are real numbers. For
the poset shown in Figure 6.3, note that 14 is less than 8, while 3 and 6 are incomparable.

cbna 109

Chapter 6 Partially Ordered Sets

1

6

8

13

14

15

16

11 17

3

Figure 6.6: A Subposet

Best not to tell your parents that you’ve learned that under certain circumstances, 14 can
be less than 8 and that you may be able to say which of 3 and 6 is larger than the other.
The subtlety may be lost in the heated discussion certain to follow.
When P = (X,P) is a poset and Y ⊆ X , the binary relation Q = P ∩ (Y × Y) is a

partial order on Y , and we call the poset (Y,Q) a subposet of P. In Figure 6.6, we show a
subposet of the poset first presented in Figure 6.3.
When P = (X,P) is a poset and C is a subset of X , we say that C is a chain if every

distinct pair of points from C is comparable in P . When P is a linear order, the entire
ground setX is a chain. Dually, ifA is a subset ofX , we say thatA is an antichain if every
distinct pair of points from A is incomparable in P . Note that a one-element subset is
both a chain and an antichain. Also, we consider the emptyset as both a chain and an
antichain.
The height of a poset (X,P), denoted height(P), is the largest h for which there exists

a chain of h points in P . Dually, the width of a poset P = (X,P), denoted width(P), is
the largest w for which there exists an antichain of w points in P .
Remark 6.5. Given a poset P = (X,P), how hard is to determine its height and width?
Bob says that it is very easy. For example, to find the width of a poset, just list all the
subsets ofX . Delete those which are not antichains. The answer is the size of the largest
subset that remains. He is quick to assert that the same approach will work to find the
height. Alice groans at Bob’s naivety and suggests that he should read further in this
chapter.

6.2 Additional Concepts for Posets

We say (X,P) and (Y,Q) are isomorphic, and write (X,P) ∼= (Y,Q) if there exists a bijec-
tion (1–1 and onto map) f : X → Y so that x1 ≤ x2 in P if and only if f(x1) ≤ f(x2) in
Q. In this definition, the map f is called an isomorphism from P to Q. In Figure 6.4, the
first two posets are isomorphic.
Remark 6.6. Bob sees a pattern linking the first two posets shown in Figure 6.4 and as-
serts that any poset of one of these two types is isomorphic to a poset of the other type.
Alice admits that Bob is right—but even more is true. The four constructions given in
Example 6.4 are universal in the sense that every poset is isomorphic to a poset of each

110 cbna

6.2 Additional Concepts for Posets

of the four types. Do you see why? If you get stuck answering this, we will revisit the
question at the end of the chapter, and we will give you a hint.
An isomorphism fromP toP is called an automorphism ofP. An isomorphism fromP

to a subposet of Q is called an embedding of P in Q. In most settings, we will not distin-
guish between isomorphic posets, and we will say that a poset P = (X,P) is contained
in Q = (Y,Q) (also Q contains P) when there is an embedding of P in Q. Also, we will
say thatP excludesQwhen no subposet ofP is isomorphic toQ, and we will frequently
say P = Qwhen P andQ are isomorphic.
With the notion of isomorphism, we are lead naturally to the notion of an “unlabelled”

posets, and in Figure 6.7, we show a diagram for such a poset.

Figure 6.7: An Unlabelled Partially Ordered Set

Remark 6.7. How hard is it to tell whether two posets are isomorphic? Bob thinks it’s not
too difficult. Bob says that if you give him a bijection between the ground sets, then he
can quickly determine whether you have established that the two posets are isomorphic.
Alice senses that Bob is confusing the issue of testingwhether two posets are isomorphic
with simply verifying that a particular bijection can be certified to be an isomorphism.
The first problem seems much harder to her. Carlos says that he thinks it’s actually very
hard and that in fact, no one knows whether there is a good algorithm.
Note that the poset shown in Figure 6.7 has the property that there is only onemaximal

point. Such a point is sometimes called a one, denoted not surprisingly as 1. Also, there
is only one minimal point, and it is called a zero, denoted 0.

The dual of a partial order P on a set X is denoted by P d and is defined by P d =
{(y, x) : (x, y) ∈ P}. The dual of the poset P = (X,P) is denoted by Pd and is defined
by Pd = (X,P d). A poset P is self-dual if P = Pd.
A poset P = (X,P) is connected if its comparability graph is connected, i.e., for every

x, y ∈ X with x 6= y, there is a finite sequence x = x0, x1, . . . , xn = y of points from X
so that xi is comparable to xi+1 in P for i = 0, 1, 2, . . . , n − 1. A subposet (Y, P (Y)) of
(X,P) is called a component of P if (Y, P (Y)) is connected and there is no subset Z ⊆ X
containing Y as a proper subset for which (Z,P (Z)) is connected. A one-point compo-
nent is trivial (also, a loose point or isolated point); components of two or more points are
nontrivial. Note that a loose point is both a minimal element and a maximal element.
Returning to the poset shown in Figure 6.3, we see that it has two components.
It is natural to say that a graph G is a comparability graph when there is a poset P =

(X,P) whose comparability graph is isomorphic to G. For example, we show in Fig-

cbna 111

Chapter 6 Partially Ordered Sets

Figure 6.8: A Graph Which is Not a Comparability Graph

ure 6.8 a graph on 6 vertices which is not a comparability graph. (We leave the task of
establishing this claim as an exercise.)
Similarly, we say that a graph G is a cover graph when there exists a poset P = (X,P)

whose cover graph is isomorphic to G. Not every graph is a cover graph. In particular,
any graph which contains a triangle is not a cover graph. In the exercises at the end
of the chapter, you will be asked to construct triangle-free graphs which are not cover
graphs—with some hints given as to how to proceed.

Remark 6.8. Bob is quite taken with graphs associated with posets. Hemakes the follow-
ing claims.

1. Only linear orders have paths as cover graphs.

2. A poset and its dual have the same cover graph and the same comparability graph.

3. Any two posets with the same cover graph have the same height and the same
width.

4. Any two posets with the same comparability graph have the same height and the
same width.

Alice shrugs and says that Bob is right half the time. Which two assertions are correct?
Undeterred, Bob notes that the comparability graph shown in Figure 6.5 is also an

incomparability graph (for another poset). He goes on to posit that this is always true,
i.e., whenever G is the comparability graph of a poset P, there is another poset Q for
whichG is the incomparability graph ofQ. Alice says that Bob is right on the first count
but she is not so sure about the second. Davemumbles that they should take a look at the
comparability graph of the third poset in Figure 6.4. This graph is not an incomparability
graph. But in his typical befuddled manner, Dave doesn’t offer any justification for this
statement. Can you help Alice and Bob to see why Dave is correct?
Bob is on a roll and he goes on to suggest that it is relatively easy to determinewhether

a graph is a comparability graph (he read it on the web), but he has a sense that deter-
mining whether a graph is a cover graphmight be difficult. Do you think he is right—on
either count?

112 cbna

6.3 Dilworth’s Chain Covering Theorem and its Dual

6.3 Dilworth’s Chain Covering Theorem and its Dual

In this section, we prove the following theorem of R. P. Dilworth, which is truly one of
the classic results of combinatorial mathematics.

Theorem 6.9 (Dilworth’s Theorem). If P = (X,P) is a poset and width(P) = w, then there
exists a partitionX = C1∪C2∪ · · ·∪Cw, where Ci is a chain for i = 1, 2, . . . , w. Furthermore,
there is no chain partition into fewer chains.

Before proceeding with the proof of Dilworth’s theorem, we pause to discuss the dual
version for partitions into antichains, as it is even easier to prove.

Theorem 6.10. If P = (X,P) is a poset and height(P) = h, then there exists a partition
X = A1 ∪A2 ∪ · · · ∪Ah, where Ai is an antichain for i = 1, 2, . . . , h. Furthermore, there is no
partition using fewer antichains.

Proof. For each x ∈ X , let height(x) be the largest integer t for which there exists a chain

x1 < x2 < · · · < xt

with x = xt. Evidently, height(x) ≤ h for all x ∈ X . Then for each i = 1, 2, . . . , h, let
Ai = {x ∈ X : height(x) = i}. It is easy to see that each Ai is an antichain, as if x, y ∈ Ai
are such that x < y, then there is a chain x1 < x2 < · · · < xi = x < xi+i = y, so
height(y) ≥ i + 1. Since height(P) = h, there is a maximum chain C = {x1, x2, . . . , xh}.
If it were possible to partition P into t < h antichains, then by the pigeonhole principle,
one of the antichains would contain two points from C, but this is not possible.

WhenP = (X,P) is a poset, a point x ∈ X with height(x) = 1 is called aminimal point
of P. We denote the set of all minimal points of a poset P = (X,P) by min(X,P) 2.
The argument given for the proof of Theorem 6.10 yields an efficient algorithm, one

that is defined recursively. Set P0 = P. If Pi has been defined and Pi 6= ∅, let Ai =
min(Pi) and then let Pi+1 denote the subposet remaining when Ai is removed from Pi.

In Figure 6.9, we illustrate the antichain partition provided by this algorithm for the
17 point poset from Figure 6.3. The darkened points form a chain of size 5.
Remark 6.11. Alice claims that it is very easy to find the set of minimal elements of a
poset. Do you agree?
Dually, we can speak of the set max(P) of maximal points of P. We can also partition

P into height(P) antichains by recursively removing the set of maximal points.
We pause to remark that when P = (X,P) is a poset, the set of all chains of P is itself

partially ordered by inclusion. So it is natural to say that a chainC ismaximalwhen there
is no chain C ′ containing C as a proper subset. Also, a chain C is maximum when there
2Since we use the notationP = (X,P) for a poset, the set of minimal elements can be denoted bymin(P) or
min(X,P). This convention will be used for all set valued and integer valued functions of posets.

cbna 113

Chapter 6 Partially Ordered Sets

1
1

1

2

2

2

3

3

3

4
4

4

5

3

3

45

Figure 6.9: A Poset of Height 5

is no chain C ′ with |C| < |C ′|. Of course, a maximum chain is maximal, but maximal
chains need not be maximum.
Maximal antichains and maximum antichains are defined analogously.
With this terminology, the thrust of Theorem 6.10 is that it is easy to find the height h

of a poset as well as a maximum chain C consisting of h points from P. Of course, we
also get a handy partition of the poset into h antichains.

6.3.1 Proof of Dilworth’s Theorem

The argument for Dilworth’s theorem is simplified by the following notation. When
P = (X,P) is a poset and x ∈ X , we let D(x) = {y ∈ X : y < x in P}; D[x] = {y ∈
X : y ≤ x in P}; U(x) = {y ∈ X : y > x in P}; U [x] = {y ∈ X : y ≥ x}; and
I(x) = {y ∈ X − {x} : x‖y in P}. When S ⊆ X , we let D(S) = {y ∈ X : y < x in P ,
for some x ∈ S} and D[S] = S ∪D(S). The subsets U(S) and U [S] are defined dually.
Note that when A is a maximal antichain in P, the ground setX can be partitioned into
pairwise disjoint sets as X = A ∪D(A) ∪ U(A).
We are now ready for the proof. LetP = (X,P) be a poset and let w denote the width

of P. As in Theorem 6.10, the pigeonhole principle implies that we require at least w
chains in any chain partition of P. To prove that w suffice, we proceed by induction on
|X|, the result being trivial if |X| = 1. Assume validity for all posets with |X| ≤ k and
suppose that P = (X,P) is a poset with |X| = k + 1. Without loss of generality, w > 1;
else the trivial partitionX = C1 satisfies the conclusion of the theorem. Furthermore, we
observe that if C is a (nonempty) chain in (X,P), then wemay assume that the subposet
(X −C,P (X −C)) also has width w. To see this, observe that the theorem holds for the
subposet, so that if width(X − C,P (X − C)) = w′ < w, then we can partition X − C as
X − C = C1 ∪ C2 ∪ · · · ∪ Cw′ , so that X = C ∪ C1 ∪ · · · ∪ Cw′ is a partition into w′ + 1
chains. Since w′ < w, we know w′ + 1 ≤ w, so we have a partition of X into at most w
chains. Since any partition ofX into chains must use at least w chains, this is exactly the
partition we seek.
Choose a maximal point x and a minimal point y with y ≤ x in P . Then let C be

the chain containing only the points x and y. Note that C contains either one or two

114 cbna

6.3 Dilworth’s Chain Covering Theorem and its Dual

1

1

4

4

2

2

1

3

5

5

6
3

6

6

6

7

7

5

Figure 6.10: A Poset of Width 7

elements depending on whether x and y are distinct.
Let Y = X − C and Q = P (Y) and let A be a w-element antichain in the subposet

(Y,Q). In the partition X = A ∪ D(A) ∪ U(A), the fact that y is a minimal point while
A is a maximal antichain imply that y ∈ D(A). Similarly, x ∈ U(A). In particular, this
shows that x and y are distinct.
Label the elements of A as {a1, a2, . . . , aw}. Note that U [A] 6= X since y /∈ U [A], and

D[A] 6= X since x /∈ D[A]. Therefore, we may apply the inductive hypothesis to the
suposets of P determined by D[A] and U [A], respectively, and partition each of these
two subposets into w chains:

U [A] = C1 ∪ C2 ∪ · · · ∪ Cw and D[A] = D1 ∪D2 ∪ · · · ∪Dw

Without loss of generality, we may assume these chains have been labeled so that ai ∈
Ci ∩Di for each i = 1, 2, . . . , w. However, this implies that

X = (C1 ∪D1) ∪ (C2 ∪D2) ∪ · · · ∪ (Cw ∪Dw)

is the desired partition which in turn completes the proof.
In Figure 6.10, we illustrate Dilworth’s chain covering theorem for the poset first intro-

duced in Figure 6.3. The darkened points form a 7-element antichain, while the labels
provide a partition into 7 chains.

Remark 6.12. The ever alert Alice notes that the proof given above for Dilworth’s theorem
does not seem to provide an efficient algorithm for finding the width w of a poset, much
less a partition of the poset into w chains. Bob has yet to figure out why listing all the
subsets ofX is a bad idea. Carlos is sitting quietly listening to their bickering, but finally,
he says that a skilled programmer can devise an algorithm from the proof. Students are
encouraged to discuss this dilemma—but rest assured that we will return to this issue
later in the text.

cbna 115

Chapter 6 Partially Ordered Sets

z

w

a

b

c

d
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

d d d b d d d b d d b
c c b d c c b d c b d
w b c c w b c c b c c
b w w w b w w w z z z
a a a a z z z z w w w
z z z z a a a a a a a

Figure 6.11: A poset and its linear extensions

6.4 Linear Extensions of Partially Ordered Sets

LetP = (X,P) be a partially ordered set. A linear orderL onX is called a linear extension
(also, a topological sort) of P , if x < y in L whenever x < y in P . For example, the table
displayed in Figure 6.11 shows that our familiar example P3 has 11 linear extensions.

Remark 6.13. Bob says that he is not convinced that every finite poset has a linear exten-
sion. Alice says that it is easy to show that they do. Is she right?
Carlos says that there are subtleties to this question when the ground setX is infinite.

Youmightwant to do aweb search on the name Szpilrajn and read about his contribution
to this issue.

The classical sorting problem studied in all elementary computer science courses is to
determine an unknown linear order L of a set X by asking a series of questions of the
form: Is x < y in L? All the well known sorting algorithms (bubble sort, merge sort,
quick sort, etc.) proceed in this manner.
Here is an important special case: determine an unknown linear extensionL of a poset

P by asking a series of questions of the form: Is x < y in L?

Remark 6.14. Given the poset P = (X,P) shown in Figure 6.3 and the problem of deter-
mining an unknown linear extension of P , how should Alice decide which question (of
the form: Is x < y in L?) to ask?

How would you like to be assigned to count the number of linear extensions of this
poset? In general, how hard is it to determine the number of linear extensions of a poset?
Could you (and your computer) do this count for a poset on 100, 000 points?

116 cbna

6.5 The Subset Lattice

0000

0001
1000 0100 0010

1100 1010 0110 1001 0101 0011

1110 1101 1011
0111

1111

Figure 6.12: A Subset Lattice

6.5 The Subset Lattice

WhenX is a finite set, the family of all subsets ofX , partially ordered by inclusion, forms
a subset lattice3. We illustrate this in Figure 6.12 where we show the lattice of all subsets
of {1, 2, 3, 4}. In this figure, note that we are representing sets by bit strings, andwe have
further abbreviated the notation by writing strings without commas and parentheses.
For a positive integer t, we let 2t denote the subset lattice consisting of all subsets of

{1, 2, . . . , t} ordered by inclusion. Some elementary properties of this poset are:

1. The height is t+ 1 and all maximal chains have exactly t+ 1 points.

2. The size of the poset 2t is 2t and the elements are partitioned into ranks (antichains)
A0, A1, . . . , At with |Ai| =

(
t
i

)
for each i = 0, 1, . . . , t.

3. The maximum size of a rank in the subset lattice occurs in the middle, i.e. if s =
bt/2c, then the largest binomial coefficient in the sequence

(
t
0

)
,
(
t
1

)
,
(
t
2

)
, . . . ,

(
t
t

)
is(

t
s

)
. Note that when t is odd, there are two ranks of maximum size, but when t is

even, there is only one.

6.5.1 Sperner’s Theorem

For the width of the subset lattice, we have the following classic result due to Sperner.

3A lattice is a special type of poset. You do not have to concern yourself with the definition and can safely
replace “lattice” with “poset” as you read this chapter.

cbna 117

Chapter 6 Partially Ordered Sets

Theorem 6.15 (Sperner). For each t ≥ 1, the width of the subset lattice 2t is the maximum size
of a rank, i.e.,

width(2t) =

(
t

b t2c

)
Proof. Thewidth of the poset2t is at leastC(t, b t2c) since the set of all b

t
2c-element subsets

of {1, 2, . . . , t} is an antichain. We now show that the width of 2t is at most C(t, b t2c).
Letw be the width of 2t and let {S1, S2, . . . , Sw} be an antichain of sizew in this poset,

i.e., each Si is a subset of {1, 2, . . . , t} and if 1 ≤ i < j ≤ w, then Si * Sj and Sj * Si.
For each i, consider the set Si of all maximal chains which pass through Si. It is easy

to see that if |Si| = ki, then |Si| = ki!(t − ki)!. This follows from the observation that to
form such a maximum chain beginning with Si as an intermediate point, you delete the
elements of Si one at a time to form the sets of the lower part of the chain. Also, to form
the upper part of the chain, you add the elements not in Si one at a time.

Note further that if 1 ≤ i < j ≤ w, then Si ∩Sj = ∅, for if there was a maximum chain
belonging to both Si and Sj , then it would imply that one of Si and Sj is a subset of the
other.
Altogether, there are exactly t! maximum chains in 2t. This implies that

w∑
i=1

ki!(t− ki)! ≤ t!.

This implies that
w∑
i=1

ki!(t− ki)!
t!

=

w∑
i=1

1(
t
ki

) ≤ 1.

It follows that
i=w∑
i=1

1(
t
d t
2 e
) ≤ 1

Thus
w ≤

(
t

d t2e

)
.

6.6 Interval Orders

When we discussed Dilworth’s theorem, we commented that the algorithmic aspects
would be deferred until later in the text. But there is one important class of orders for
which the full solution is easy to obtain.
A poset P = (X,P) is called an interval order if there exists a function I assigning to

each element x ∈ X a closed interval I(x) = [ax, bx] of the real line R so that for all x,

118 cbna

6.7 Finding a Representation of an Interval Order

b d e f

a c

b

c d

e

f

a

Figure 6.13: An interval order and its representation

y ∈ X , x < y in P if and only if bx < ay in R. We call I an interval representation of P,
or just a representation for short. For brevity, whenever we say that I is a representation
of an interval order P = (X,P), we will use the alternate notation [ax, bx] for the closed
interval I(x). Also, we let |I(x)| denote the length of the interval, i.e., |I(x)| = bx − ax.
Returning to the poset P3, the representation shown in Figure 6.13 shows that it is an
interval order.
Note that end points of intervals used in a representation need not be distinct. In

fact, distinct points x and y from X may satisfy I(x) = I(y). We even allow degenerate
intervals, i.e., those of the form [a, a]. On the other hand, a representation is said to
be distinguishing if all intervals are non-degenerate and all end points are distinct. It is
relatively easy to see that every interval order has a distinguishing representation.

Theorem 6.16 (Fishburn). Let P = (X,P) be a poset. Then P is an interval order if and only
if it excludes 2 + 2.

Proof. We showonly that an interval order cannot contain a subposet isomorphic to 2+2,
deferring the proof in the other direction to the next section. Now suppose that P =
(X,P) is a poset, {x, y, z, w} ⊆ X and the subposet determined by these four points is
isomorphic to 2 + 2. We show that P is not an interval order. Suppose to the contrary
that I is an interval representation ofP. Without loss of generality, we may assume that
x < y and z < w in P . Thus x‖w and z‖y in P . Then bx < ay and bz < aw in R so that
aw ≤ bx < ay ≤ bz , which is a contradiction.

6.7 Finding a Representation of an Interval Order

In this section, we develop an algorithm for finding an interval representation of an
interval order. In fact, this algorithm can be applied to any poset. Either it will find an
interval representation or it will find a subposet isomorphic to 2+2. As a consequence,
we establish the other half of Fishburn’s theorem.

cbna 119

Chapter 6 Partially Ordered Sets

When P = (X,P) is an interval order and n is a positive integer, there may be many
different ways to represent P using intervals with integer end points in [n]. But there
is certainly a least n for which a representation can be found, and here we see that the
representation is unique. The discussion will again make use of the notation for down
sets and up sets that we introduced prior to the proof of Dilworth’s Theorem. As a
reminder, we repeat it here. For a posetP = (X,P) and a subset S ⊂ X , letD(S) = {y ∈
X : there exists some x ∈ S with y < x in P}. Also, let D[S] = D(S) ∪ S. When |S| = 1,
say S = {x}, wewriteD(x) andD[x] rather thanD({x}) andD[{x}]. Dually, for a subset
S ⊆ X , we define U(S) = {y ∈ X : there exists some x ∈ X with y > x in P}. As before,
set U [S] = U(S) ∪ S. And when S = {x}, we just write U(x) for {y ∈ X : x < y in P}.
LetP = (X,P) be a poset. We start our procedure by finding the following subsets of

the ground set: D = {D(x) : x ∈ X}. We then distinguish two cases. In the first case,
there are distinct elements x and y for which D(x) * D(y) and D(y) * D(x). In this
case, we choose an element z ∈ D(x)−D(y) and an element w ∈ D(y)−D(x). It follows
that the four elements in {x, y, z, w} form a subposet of Pwhich is isomorphic to 2 + 2.
Our second case is that either D(x) ⊆ D(y) or D(y) ⊆ D(x) for all x, y ∈ X . In this

case, we will show thatP is an interval order. Now find the family: U = {U(x) : x ∈ X}.
In this case, it is easy to see that we will always have either U(x) ⊆ U(y) or U(y) ⊆ U(x)
for all x, y ∈ X .
Let d = |D|. In the exercises, we will provide (actually in doing your homework, you

will provide) the details for backing up the following statement: |U| = |D|, so for now
we assume that this statement is valid. Label the sets in D and U respectively as D1,
D2, . . . , Dd and U1, U2, . . . , Ud so that

∅ = D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ Dd and

U1 ⊃ U2 · · · ⊃ Ud−2 ⊃ Ud−1 ⊃ · · · ⊃ Ud = ∅.

We form an interval representation I of P by the following rule: For each x ∈ X , set
I(x) = [i, j], where D(x) = Di and U(x) = Uj . It is not immediately clear that this rule
is legal, i.e., it might happen that applying the rule results in values of i and j for which
j < i. But again, as a result of the exercises, we will see that this never happens. This
collection of exercises is summarized in the following theorem.

Theorem 6.17. Let P be a poset excluding 2 + 2. then

1. |D| = |U|.

2. For each x ∈ X , if I(x) = [i, j], then i ≤ j in R.

3. For each x, y ∈ X , if I(x) = [i, j] and I(y) = [k, l], then x < y in P if and only if j < k
in R.

4. The integer d is the least positive integer for which P has an interval representation using
integer end points from [d]. This representation is unique.

120 cbna

6.8 Dilworth’s Theorem for Interval Orders

b

c

d

e

f

a

g

h

i

j

Figure 6.14: An interval order on 10 Points

Consider the poset shown in Figure 6.14.
Then d = 5 with D1 = ∅, D2 = {c}, D3 = {c, f, g}, D4 = {c, f, g, h}, and D5 =

{a, c, f, g, h, j}. Also U1 = {a, b, d, e, h, i, j}, U2 = {a, b, e, h, i, j}, U3 = {b, e, i}, U4 = {e},
and U5 = ∅. So

I(a) = [3, 4]

I(b) = [4, 5]

I(c) = [1, 1]

I(d) = [2, 5]

I(e) = [5, 5]

I(f) = [1, 2]

I(g) = [1, 2]

I(h) = [3, 3]

I(i) = [4, 5]

I(j) = [3, 4]

To illustrate the situation where this process can be used to determine when a poset
is not an interval order, consider again the poset shown in Figure. Erase the line joining
points c and d. For the resulting poset, you will then find thatD(j) = {f, g} andD(d) =
{c}. Therefore, the four points c, d, f and j form a copy of 2 + 2 in this modified poset.

6.8 Dilworth’s Theorem for Interval Orders

As remarked previously, we do not yet have an efficient process for determining the
width of a poset and aminimumpartition into chains. For interval orders, there is indeed
a simple way to find both. The explanation is just to establish a connection with coloring
of interval graphs as discussed in chapter 5.
Let P = (X,P) be an interval order and let {[ax, bx] : x ∈ X} be intervals of the real

line so that x < y in P if and only bx < ay . Then letG be the interval graph determined
by this family of intervals. Note that if x and y are distinct elements of X , then x and

cbna 121

Chapter 6 Partially Ordered Sets

y are incomparable in P if and only if xy is an edge in G. In other words, G is just the
incomparability graph of P.

Recall from Chapter 4 that interval graphs are perfect, i.e., χ(G) = ω(G) for every
interval graph G. Furthermore, you can find an optimal coloring of an interval graph
by applying first fit to the vertices in a linear order that respects left end points. Such a
coloring concurrently determines a partition of P into chains.
In fact, if you want to skip the part about interval representations, take any linear

ordering of the elements as x1, x2, . . . , xn so that i < j wheneverD(x) is a proper subset
of D(y). Then apply First Fit with respect to chains. For example, using the 10 point
interval order illustrated in Figure 6.14, here is such a labeling:

x1 = g x2 = f x3 = c x4 = d x5 = h
x6 = a x7 = j x8 = b x9 = i x10 = e

Now apply the First Fit algorithm to the points of P, in this order, to assign them to
chainsC1, C2, In other words, assign x1 to chainC1. Thereafter if you have assigned
points x1, x2, . . . , xi to chains, then assign xi+1 to chain Cj where j is the least positive
integer for which xi+1 is comparable to xk whenever 1 ≤ k ≤ i and xk has already been
assigned to Cj . For example, this rule results in the following chains for the interval
order P shown in Figure 6.14.

C1 = {g, h, b}
C2 = {f, a, e}
C3 = {c, d}
C4 = {j}
C5 = {i}

In this case, it is easy to see that the chain partition is optimal since the width of P is 5
and A = {a, b, d, i, j} is a 5-element antichain.

However, you should be very careful in applying First Fit to find optimal chain parti-
tions of posets—just as one must be leary of using First Fit to find optimal colorings of
graphs.
Example 6.18. The poset on the left side of Figure 6.15 is a height 2 poset on 10 points,
and if the poset is partitioned into antichains by applying First Fit and considering the
points in the order of their labels, then 5 antichains will be used. Do you see how to
extend this poset to force First Fit to use arbitrarily many antichains, while keeping the
height of the poset at 2?
On the right side, we show a poset of width 2. Now if this poset is partitioned into

chains by applying First Fit and considering the points in the order of their labels, then 4
chainswill be used. Do you see how to extend this poset to force First Fit to use arbitrarily
many chains while keeping the width of the poset at 2?

122 cbna

6.9 Discussion

1

5

2

34

6

7

8

9

10

11 12

1 5

2

3

4 6

7

8

9

10

Figure 6.15: How First Fit Can Go Wrong

Do you get a feeling for why the second problem is a bit harder than the first?

In general, there is always some linear order on the ground set of a poset for which
First Fit will find an optimal partition into antichains. Also, there is a linear order (in
general different from the first) on the ground set for which First Fit will find an optimal
partition into chains. However, there is no advantage in searching for such orders, as
the algorithmswe develop for finding optimal antichain and chain partitions work quite
well.

6.9 Discussion

Over coffee, Bob said that he really liked this chapter. “This material was full of cases of
very concrete procedures for doing useful things. I like that.” Yolanda offered a some-
what different perspective “On the other hand, this last procedure only seems to work
with interval orders and we still don’t have a clue as to how to find the width of a poset
in the general case. This might be very difficult—like the graph coloring problems dis-
cussed in the last chapter.” Dave weighed in with “Somehow I think there’s going to be
a fairly efficient process that works for all posets. We may not have all the tools yet, but
let’s wait a bit.”
Notmuchwas said for awhile and after a pause, Carlos ventured that therewere prob-

ably a lot of combinatorial problems for posets that had analogous versions for graphs
and in those cases, the poset version would be a bit more complicated, sometime a lit-
tle bit and sometimes a very big bit. Zori was quiet but she was thinking. These poset
structures might even be useful, as she could imagine many settings in which a linear
order was impossible or impractical. Maybe there were ways here to earn a few dollars.

6.10 Exercises

1. We say that a relation R on a set X is symmetric if (x, y) ∈ R implies (y, x) ∈ R for
all x, y ∈ X . IfX = {a, b, c, d, e, f}, howmany symmetric relations are there onX?
How many of these are reflexive?

cbna 123

Chapter 6 Partially Ordered Sets

2. A relation R on a set X is an equivalence relation if R is reflexive, symmetric, and
transitive. Fix an integer m ≥ 2. Show that the relation defined on the set Z of
integers by aRb (a, b ∈ Z) if and only if a ≡ b (mod m) is an equivalence relation.
(Recall that a ≡ b (mod m) means that when dividing a by m and b by m you get
the same remainder.)

3. Is the binary relation

P = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (2, 4), (2, 5), (4, 5), (3, 5), (1, 5)}

a partial order on the set X = {1, 2, 3, 4, 5}? If so, discuss what properties you
verified and how. If not, list the ordered pairs that must be added to P to make it a
partial order or say why it cannot be made a partial order by adding ordered pairs.

4. Draw the diagram of the poset P = (X,P) where X = {1, 2, 3, 5, 6, 10, 15, 30} and
x ≤ y in P if and only if x|y. (Recall that x|ymeans that x evenly divides y without
remainder. Equivalently x|y, if and only if y ≡ 0 (mod x).)

5. Draw the diagram of the poset P = (X,P) where

X = {{1, 3, 4, 5, 6}, {1, 2, 4, 5, 6}, {1, 2, 3, 6}, {1, 2, 3}, {1, 5, 6},
{1, 3, 6}, {1, 2}, {1, 6}, {3, 5}, {1}, {3}, {4}}

and P is the partial order on X given by the “is a subset of” relationship.

6. A linear extension of a posetP = (X,P) is a total order L onX such that if x ≤ y in
P , then x ≤ y in L. Give linear extension of the three posets shown in Figure 6.4. If
you feel very ambitious, try to count the number of linear extensions of the poset on
the left side of the figure. Don’t list them. Just provide an integer as your answer.

7. Alice and Bob are considering posets P and Q. They soon realize that Q is iso-
morphic to Pd. After 10 minutes of work, they figure out that P has height 5 and
width 3. Bob doesn’t want do find the height and width of Q, since he figures it
will take (at least) another 10 minutes to answer these questions for Q. Alice says
Bob is crazy and that she already knows the height and width of Q. Who’s right
and why?

8. For this exercise, consider the poset P in Figure 6.3.
a) List the maximal elements of P.
b) List the minimal elements of P.
c) Find a maximal chain with two points in P.
d) Find a chain in P with three points that is not maximal. Say why your chain

is not maximal.

124 cbna

6.10 Exercises

e) Find a maximal antichain with four points in P.

9. Find the height h of the poset P = (X,P) shown below as well as a maximum
chain and a partition ofX into h antichains using the algorithm from this chapter.

1

916

20
12

19
10

11

6 7

26

1514

18

3

21

23

22

17

13

8

5

4

2

25

24

10. For each of the twodistinct (up to isomorphism) posets in Figure 6.4, find thewidth
w, an antichain of size w, and a partition of the ground set into w chains.

11. A restaurant chef has designed a new set of dishes for his menu. His set of dishes
contains 10 main courses, and he will select a subset of them to place on the menu
each night. To ensure variety ofmain courses for his patrons, hewants to guarantee
that a night’s menu is neither completely contained in nor completely contains
another night’s menu. What is the largest number of menus he can plan using his
10 main courses subject to this requirement?

12. Draw the diagram of the interval order represented in Figure 6.16.

13. Draw the diagram of the interval order represented in Figure 6.17.

14. Find an interval representation for the poset in Figure 6.18 or give a reason why
one does not exist.

cbna 125

Chapter 6 Partially Ordered Sets

cf

gd
e

h
k j

i

Figure 6.16: An interval representation

c

f
g

d

e

h

k

j

i

p
o

n

ml

Figure 6.17: An interval representation

15. Find an interval representation for the poset in Figure 6.19 or give a reason why
one does not exist.

16. Find an interval representation for the poset in Figure 6.20 or give a reason why
one does not exist.

17. Find an interval representation for the poset in Figure 6.21 or give a reason why
one does not exist.

18. Use the First Fit algorithm (ordering by left endpoints) to find the width w of the
interval order shown in Figure 6.22 and a partition into w chains. Also give an
antichain with w points.

19. Complete the proof of Theorem6.17. Hint. The key idea is to show that if d is the
least positive integer for which an interval order P has a representation using end
points from {1, 2, . . . , n}, then every integer i from this set must be both a left end
point and a right end point of an interval.

20. Show that every poset is isomorphic to a poset of each of the four types illustrated
in Example 6.4. Hint: for each element x, choose some unique identifying key
which is an element/prime/coordinate/observer. Then associate with x a struc-
ture that identifies the keys of elements from D[x].

126 cbna

6.10 Exercises

1

6

7

3

8

5

4

2

Figure 6.18: Is this poset an interval order?

21. The dimension of a poset P = (X,P), denoted dim(P), is the least t for which P is
the intersection of t linear orders on X .
a) Show that the dimension of a posetP is the same as the dimension of its dual.
b) Show that P is a subposet ofQ, then dim(P) ≤ dim(Q).
c) Show that the removal of a point can reduce the dimension by at most 1.
d) Find the dimension of the posets in Figure 6.4.
e) Use Dilworth’s theorem to show that the dimension of a poset is at most its

width.
f) Use the example on the left side of Figure 6.15 to show that for every n ≥ 2,

there exists a poset Pn on 2n points having width and dimension equal to n.

cbna 127

Chapter 6 Partially Ordered Sets

1

96

7

3 8

5

4

2

Figure 6.19: Is this poset an interval order?

1

9

12
10

11

6

7

3
8

5

4

2

Figure 6.20: Is this poset an interval order?

128 cbna

6.10 Exercises

1

9

12
10

11

6 7

3

8

5

4
2

14

13

Figure 6.21: Is this poset an interval order?

c

f

g

d

eh

k
j

i

o

n

m
l

b

a

Figure 6.22: An interval representation

cbna 129

CHAPTER 7
Inclusion-Exclusion

In this chapter, we study a classic enumeration technique known as Inclusion-Exclusion.
In its simplest case, it is absolutely intuitive. Its power rests in the fact that inmany situa-
tions, we start with an exponentially large calculation and see it reduce to a manageable
size. We focus on three applications that every student of combinatorics should know:
(1) counting surjections, (2) derangements, and (3) the Euler φ-function.

7.1 Introduction

We start this chapter with an elementary example.
Example 7.1. LetX be the set of 63 students in an applied combinatorics course at a large
technological university. Suppose there are 47 computer science majors and 51 male
students. Also, we know there are 45 male students majoring in computer science. How
many students in the class are female students not majoring in computer science?
Although the Venn diagrams that you’ve probably seen drawn many times over the

years aren’t always the best illustrations (especially if you try to think with some sort of
scale), let’s use one to get started. In Figure 7.1, we see how the groups in the scenario
might overlap. Now we can see that we’re after the number of students in the white

Males CS Majors

Non-CS major females

Figure 7.1: A Venn diagram for an applied combinatorics class

rectangle but outside the two shaded ovals, which is the female students not majoring

131

Chapter 7 Inclusion-Exclusion

in computer science. To compute this, we can start by subtracting the number of male
students (the blue region) from the total number of students in the class and then sub-
tracting the number of computer science majors (the yellow region). However, we’ve
now subtracted the overlapping region (the male computer science majors) twice, so we
must add that number back. Thus, the number of female students in the class who are
not majoring in computer science is

63− 51− 47 + 45 = 10.

Example 7.2. Another type of problemwhere we can readily see how such a technique is
applicable is a generalization of the problem of enumerating integer solutions of equa-
tions. In chapter 2, we discussed how to count the number of solutions to an equation
such as

x1 + x2 + x3 + x4 = 100,

where x1 > 0, x2, x3 ≥ 0 and 2 ≤ x4 ≤ 10. However, we steered clear of the situation
where we add the further restriction that x3 ≤ 7. The previous example suggests a way
of approaching this modified problem.
First, let’s set up the problem so that the lower bound on each variable is of the form

xi ≥ 0. This leads us to the revised problem of enumerating the integer solutions to

x′1 + x2 + x3 + x′4 = 97

with x′1, x2, x3, x′4 ≥ 0, x3 ≤ 7, and x′4 ≤ 8. (We’ll then have x1 = x′1+1 and x4 = x′4+2 to
get our desired solution.) To count the number of integer solutions to this equation with
x3 ≤ 7 and x′4 ≤ 8, we must exclude any solution in which x3 > 7 or x′4 > 8. There are
C(92, 3) solutions with x3 > 7, and the number of solutions in which x′4 > 8 is C(91, 3).
At this point, it might be tempting to just subtract C(92, 3) and C(91, 3) from C(100, 3),
the total number of solutions with all variables nonnegative. However, care is required.
If we did that, we would eliminate the solutions with both x3 > 7 and x′4 > 8 twice. To
account for this, we notice that there are C(83, 3) solutions with both x3 > 7 and x′4 > 8.
If we add this number back in after subtracting, we’ve ensured that the solutions with
both x3 > 7 and x′4 > 8 are not included in the total count and are not excluded more
than once. Thus, the total number of solutions is(

100

3

)
−
(

92

3

)
−
(

91

3

)
+

(
83

3

)
= 6516.

From these examples, you should start to see a pattern emerging that leads to a more
general setting. In full generality, wewill consider a setX and a familyP = {P1, P2, . . . , Pm}
of properties. We intend that for every x ∈ X and each i = 1, 2, . . . ,m, either x satisfies Pi
or it does not. There is no ambiguity. Ultimately, we are interested in determining the
number of elements of X which satisfy none of the properties in P . In Example 7.1, we
could have made property P1 “is a computer science major” and property P2 “is male”.

132 cbna

7.1 Introduction

Then the number of students satisfying neither P1 nor P2 would be the number of female
students majoring in something other than computer science, exactly the number we
were asked to determine. What would the properties P1 and P2 be for Example 7.2?
Let’s consider three examples of larger sets of properties. These properties will come

back up during the remainder of the chapter as we apply inclusion-exclusion to some
more involved situations. Recall that throughout this book, we use the notation [n] for
the set {1, 2, . . . , n}when n is a positive integer.
Example 7.3. Letm and n be fixed positive integers and letX consist of all functions from
[n] to [m]. Then for each i = 1, 2, . . . ,m, and each function f ∈ X , we say that f satisfies
Pi if there is no j so that f(j) = i. In other words, i is not in the image or output of the
function f .
As a specific example, suppose that n = 5 andm = 3. Then the function given by the

table

i 1 2 3 4 5
f(i) 2 3 2 2 3

satisfies P1 but not P2 or P3.
Example 7.4. Letm be a fixed positive integer and letX consist of all bijections from [m]
to [m]. Elements of X are called permutations. Then for each i = 1, 2, . . . ,m, and each
permutation σ ∈ X , we say that σ satisfies Pi if σ(i) = i.
For example, the permutation σ of [5] given in by the table

i 1 2 3 4 5
σ(i) 2 4 3 1 5

satisfies P3 and P5 and no other Pi.
Note that in the previous example, we could have said that σ satisfies property Pi if

σ(i) 6= i. But remembering that our goal is to count the number of elements satisfying
none of the properties, we would then be counting the number of permutations satis-
fying σ(i) = i for each i = 1, 2, . . . , n, and perhaps we don’t need a lot of theory to
accomplish this task—the number is one, of course.
Example 7.5. Let m and n be fixed positive integers and let X = [n]. Then for each
i = 1, 2, . . . ,m, and each j ∈ X , we say that j satisfies Pi if i is a divisor of j. Put another
way, the positive integers that satisfy property Pi are precisely those that are multiples
of i.
At first this may appear to be the most complicated of the sets of properties we’ve dis-

cussed thus far. However, being concrete should help clear up any confusion. Suppose
that n = m = 15. Which properties does 12 satisfy? The divisors of 12 are 1, 2, 3, 4,
6, and 12, so 12 satisfies P1, P2, P3, P4, P6, and P12. On the other end of the spectrum,
notice that 7 satisfies only properties P1 and P7, since those are its only divisors.

cbna 133

Chapter 7 Inclusion-Exclusion

7.2 The Inclusion-Exclusion Formula

Now that we have an understanding of what we mean by a property, let’s see how we
can use this concept to generalize the process we used in the first two examples of the
previous section.
Let X be a set and let P = {P1, P2, . . . , Pm} be a family of properties. Then for each

subset S ⊆ [m], let N(S) denote the number of elements ofX which satisfy property Pi
for all i ∈ S. Note that if S = ∅, then N(S) = |X|, as every element of X satisfies every
property in S (which contains no actual properties).
Returning for a moment to Example 7.1 with P1 being “is a computer science major”

and P2 being “is male,” we note that N({1}) = 47, since there are 47 computer sci-
ence majors in the class. Also, N({2}) = 51 since 51 of the students are male. Finally,
N({1, 2}) = 45 since there are 45 male computer science majors in the class.

In the examples of the previous section, we subtracted off N(S) for the sets S of size
1 and then added backN(S) for the set of properties of size 2, since we’d subtracted the
number of things with both properties (male computer science majors or solutions with
both x3 > 7 and x′4 > 8) twice. Symbolically, we determined that the number of objects
satisfying none of the properties was

N(∅)−N({1})−N({2}) +N({1, 2}).

Suppose that we had three properties P1, P2, and P3. How would we count the number
of objects satisfying none of the properties? As before, we start by subtracting for each of
P1, P2, and P3. Nowwe have removed the objects satisfying both P1 and P2 twice, so we
must add backN({1, 2}). similarly, wemust do this for the objects satisfying bothP2 and
P3 and both P1 and P3. Now let’s think about the objects satisfying all three properties.
They’re counted in N(∅), eliminated three times by the N({i}) terms, and added back
three times by the N({i, j}) terms. Thus, they’re still being counted! Thus, we must yet
subtract N({1, 2, 3}) to get the desired number:

N(∅)−N({1})−N({2})−N({3}) +N({1, 2}) +N({2, 3}) +N({1, 3})−N({1, 2, 3}).

We can generalize this as the following theorem:

Theorem 7.6 (Principle of Inclusion-Exclusion). The number of elements ofX which satisfy
none of the properties in P is given by ∑

S⊆[m]

(−1)|S|N(S). (7.1)

Proof. We proceed by induction on the number m of properties. If m = 1, then the
formula reduces to N(∅) − N({1}). This is correct since it says just that the number of
elements which do not satisfy property P1 is the total number of elements minus the
number which do satisfy property P1.

134 cbna

7.3 Enumerating Surjections

Now assume validity when m ≤ k for some k ≥ 1 and consider the case where m =
k+1. LetX ′ = {x ∈ X : x satisfiesPk+1} andX ′′ = X−X ′ (i.e.,X ′′ is the set of elements
that do not satisfy Pk+1). Also, letQ = {P1, P2, . . . , Pk}. Then for each subset S ⊆ [k], let
N ′(S) count the number of elements of X ′ satisfying property Pi for all i ∈ S. Also, let
N ′′(S) count the number of elements of X ′′ satisfying property Pi for each i ∈ S. Note
that N(S) = N ′(S) +N ′′(S) for every S ⊆ [k].
Let X ′0 denote the set of elements in X ′ which satisfy none of the properties in Q (in

other words, those that satisfy only Pk+1 from P), and letX ′′0 denote the set of elements
ofX ′′ which satisfy none of the properties in Q, and therefore none of the properties in
P .
Now by the inductive hypothesis, we know

|X ′0| =
∑
S⊆[k]

(−1)|S|N ′(S) and |X ′′0 | =
∑
S⊆[k]

(−1)|S|N ′′(S).

It follows that

|X ′′0 | =
∑
S⊆[k]

(−1)|S|N ′′(S) =
∑
S⊆[k]

(−1)|S| (N(S)−N ′(S))

=
∑
S⊆[k]

(−1)|S|N(S) +
∑
S⊆[k]

(−1)|S|+1N(S ∪ {k + 1})

=
∑

S⊆[k+1]

(−1)|S|N(S).

7.3 Enumerating Surjections

As our first example of the power of inclusion-exclusion, consider the following situa-
tion: A grandfather has 15 distinct lottery tickets and wants to distribute them to his
four grandchildren so that each child gets at least one ticket. In how many ways can
he make such a distribution? At first, this looks a lot like the problem of enumerating
integers solutions of equations, except here the lottery tickets are not identical! A ticket
bearing the numbers 1, 3, 10, 23, 47, and 50 will almost surely not pay out the same
amount as one with the numbers 2, 7, 10, 30, 31, and 48, so who gets which ticket really
makes a difference. Hopefully, you have already recognized that the fact that we’re deal-
ing with lottery tickets and grandchildren isn’t so important here. Rather, the important
fact is that we want to distribute distinguishable objects to distinct entities, which calls
for counting functions from one set (lottery tickets) to another (grandchildren). In our
example, we don’t simply want the total number of functions, but instead we want the
number of surjections, so that we can ensure that every grandchild gets a ticket.

cbna 135

Chapter 7 Inclusion-Exclusion

For positive integers n and m, let S(n,m) denote the number of surjections from [n]
to [m]. Note that S(n,m) = 0 when n < m. In this section, we apply the Inclusion-
Exclusion formula to determine a formula for S(n,m). We start by setting X to be the
set of all functions from [n] to [m]. Then for each f ∈ X and each i = 1, 2, . . . ,m, we say
that f satisfies property Pi if i is not in the range of f .

Lemma 7.7. For each subset S ⊆ [m], N(S) depends only on |S|. In fact, if |S| = k, then

N(S) = (m− k)n.

Proof. Let |S| = k. Then a function f satisfying property Pi for each i ∈ S is a string of
length n from an alphabet consisting ofm− k letters. This shows that

N(S) = (m− k)n.

Now the following result follows immediately from this lemma by applying the Prin-
ciple of Inclusion-Exclusion, as there are C(m, k) k-element subsets of [m].

Theorem 7.8. The number S(n,m) of surjections from [n] to [m] is given by:

S(n,m) =

m∑
k=0

(−1)k
(
m

k

)
(m− k)n.

For example,

S(5, 3) =

(
3

0

)
(3− 0)5 −

(
3

1

)
(3− 1)5 +

(
3

2

)
(3− 2)5 −

(
3

3

)
(3− 3)5

= 243− 96 + 3− 0

= 150.

Returning to our lottery ticket distribution problem at the start of the section, we see
that there are S(15, 4) = 1016542800 ways for the grandfather to distribute his 15 lottery
tickets so that each of the 4 grandchildren receives at least one ticket.

7.4 Derangements

Now let’s consider a situation where we can make use of the properties defined in Ex-
ample 7.4. Fix a positive integer n and letX denote the set of all permutations on [n]. A
permutation σ ∈ X is called a derangement if σ(i) 6= i for all i = 1, 2, . . . , n. For example,
the first permutation given below is a derangement, while the second is not.

136 cbna

7.4 Derangements

i 1 2 3 4
σ(i) 2 4 1 3

i 1 2 3 4
σ(i) 2 4 3 1

If we again let Pi be the property that σ(i) = i, then the derangements are precisely those
permutations which do not satisfy Pi for any i = 1, 2, . . . , n.

Lemma 7.9. For each subset S ⊆ [n], N(S) depends only on |S|. In fact, if |S| = k, then

N(S) = (n− k)!

Proof. For each i ∈ S, the value σ(i) = i is fixed. The other values of σ are a permutation
among the remaining n− k positions, and there are (n− k)! of these.

As before, the principal result of this section follows immediately from the lemma and
the Principle of Inclusion-Exclusion.

Theorem 7.10. For each positive integer n, the number dn of derangements of [n] satisfies

dn =

n∑
k=0

(−1)k
(
n

k

)
(n− k)!.

For example,

d5 =

(
5

0

)
5!−

(
5

1

)
4! +

(
5

2

)
3!−

(
5

3

)
2! +

(
5

4

)
1!−

(
5

5

)
0!

= 120− 120 + 60− 20 + 5− 1

= 44.

It has been traditional to cast the subject of derangements as a story, called the Hat
Check problem. The story belongs to the period of time when men wore top hats. For a
fancy ball, 100 men check their top hats with the Hat Check person before entering the
ballroom floor. Later in the evening, the mischeivous hat check person decides to return
hats at random. What is the probability that all 100 men receive a hat other than their
own? It turns out that the answer is very close to 1/e, as the following result shows.

Theorem 7.11. For a positive integer n, let dn denote the number of derangements of [n]. Then

lim
n→∞

dn
n!

=
1

e
.

Equivalently, the fraction of all permutations of [n] that are derangments approaches 1/e as n
increases.

cbna 137

Chapter 7 Inclusion-Exclusion

Proof. It is easy to see that

dn
n!

=

∑n
k=0(−1)k

(
n
k

)
(n− k)!

n!

=

n∑
k=0

(−1)k
n!

k!(n− k)!

(n− k)!

n!

=

n∑
k=0

(−1)k
1

k!
.

Recall from Calculus that the Taylor series expansion of ex is given by

ex =

∞∑
k=0

xk

k!
,

and thus the result then follows by substituting x = −1.

Usuallywe’re not as interested in dn itself aswe are in enumerating permutationswith
certain restrictions, as the following example illustrates.
Example 7.12. Consider the Hat Check problem, but suppose instead of wanting no man
to leave with his own hat, we are interested in the number of ways to distribute the 100
hats so that precisely 40 of the men leave with their own hats.

If 40 men leave with their own hats, then there are 60 men who do not receive their
own hats. There areC(100, 60) ways to choose the 60 menwhowill not receive their own
hats and d60 ways to distribute those hats so that no man receives his own. There’s only
one way to distribute the 40 hats to the men who must receive their own hats, meaning
that there are(

100

60

)
d60 =420788734922281721283274628333913452107738151595140722182899444

67852500232068048628965153767728913178940196920

such ways to return the hats.

7.5 The Euler φ Function

After reading the two previous sections, you’re probably wondering why we stated the
Principle of Inclusion-Exclusion in such an abstract way, as in those examples N(S) de-
pended only on the size of S and not its contents. In this section, we produce an impor-
tant example where the value of N(S) does depend on S. Nevertheless, we are able to
make a reduction to obtain a useful end result. In what follows, let N denote the set of
positive integers.

138 cbna

7.5 The Euler φ Function

For a positive integer n ≥ 2, let

φ(n) = |{m ∈ N : m ≤ n, gcd(m,n) = 1}|.

This function is usually called the Euler φ function or the Euler totient function and has
many connections to number theory. We won’t focus on the number-theoretic aspects
here, only being able to compute φ(n) efficiently for any n.

For example, φ(12) = 4 since the only numbers from {1, 2, . . . , 12} that are relatively
prime to 12 are 1, 5, 7 and 11. As a second example, φ(9) = 6 since 1, 2, 4, 5, 7 and 8 are
relatively prime to 9. On the other hand, φ(p) = p − 1 when p is a prime. Suppose you
were asked to compute φ(321974). How would you proceed?

In chapter 3 we discussed a recursive procedure for determining the greatest common
divisor of two integers, and we wrote a code for accomplishing this task. Let’s assume
that we have a function declared as follows:
int gcd(int m, int n);

that returns the greatest common divisor ofm and n.
Then we can calculate φ(n) with this code snippet:

answer = 1;
for (m = 2; m < n; m++) {

if (gcd(m,n) == 1) {
answer++;

}
}
return(answer);

A program called phi.c using the code snippet above answers almost immediately
that φ(321974) = 147744.
On the other hand, in just under two minutes the program reported that

φ(319572943) = 319524480.

So how could we find φ(1369122257328767073)?
Clearly, the program is useless to tackle this beast! It not only iterates n− 2 times but

also invokes a recursion during each iteration. Fortunately, Inclusion-Exclusion comes
to the rescue.

Theorem 7.13. Let n ≥ 2 be a positive integer and suppose that n hasm distinct prime factors:
p1, p2, . . . , pm. Then

φ(n) = n

m∏
i=1

pi − 1

pi
. (7.2)

Proof. We present the argument whenm = 3. The full result is an easy extension.
Our argument requires the following elementary proposition whose proof we leave

as an exercise.

cbna 139

Chapter 7 Inclusion-Exclusion

Proposition 7.14. Let n ≥ 2, k ≥ 1, and let p1, p2, . . . , pk be distinct primes each of which
divide n evenly (without remainder). Then the number of integers from {1, 2, . . . , n} which are
divisble by each of these k primes is

n

p1p2 . . . pk
.

Then Inclusion-Exclusion yields:

φ(n) = n−
(
n

p1
+
n

p2
+
n

p3

)
+

(
n

p1p2
+

n

p1p3
+

n

p2p3

)
− n

p1p2p3

= n
p1p2p3 − (p2p3 + p1p3 + p1p2) + (p3 + p2 + p1)− 1

p1p2p3

= n
p1 − 1

p1

p2 − 1

p2

p3 − 1

p3
.

Example 7.15. Maple reports that

1369122257328767073 = (3)3(11)(19)4(31)2(6067)2

is the factorization of 1369122257328767073 into primes. It follows that

φ(1369122257328767073) = 1369122257328767073
2

3

10

11

18

19

30

31

6066

6067
.

Thus Maple quickly reports that

φ(1369122257328767073) = 760615484618973600.

Example 7.16. Amanda andBruce receive the same challenge from their professor, namely
to find φ(n) when

n =31484972786199768889479107860964368171543984609017931

39001922159851668531040708539722329324902813359241016

93211209710523.

However the Professor also tells Amanda that n = p1p2 is the product of two large
primes where

p1 = 470287785858076441566723507866751092927015824834881906763507

and

p2 = 669483106578092405936560831017556154622901950048903016651289.

Is this information of any special value to Amanda? Does it really make her job any
easier than Bruce’s? Would it level the playing field if the professor told Bruce that n
was the product of two primes?

140 cbna

7.6 Discussion

7.6 Discussion

Yolanda said “This seemed like a very short chapter, at least it did to me.” Bob agreed
“Yes, but the professor indicated that the goal was just provide some key examples. I
think he was hinting at more general notions of inversion—although I haven’t a clue as
to what they might be.”
Clearly aggravated, Zori said “I’ve had all I can stand of this big integer stuff. This

won’t help me to earn a living.” Xing now was uncharacteristically firm in his reply
“Zori. You’re off base on this issue. Large integers, and specifically integers which are
the product of large primes, are central to public key cryptography. If you, or any other
citizen, were highly skilled in large integer arithmetic and could quickly factor integers
with, say 150 digits, then you would be able to unravel many important secrets. No
doubt your life would be in danger.”
At first, the group thought that Xingwasway out of bounds—but they quickly realized

that Xing felt absolutely certain of what he was saying. Zori was quiet for the moment,
just reflecting that maybe, just maybe, her skepticism over the relevance of the material
in applied combinatorics was unjustified.

7.7 Exercises

1. A school has 147 third graders. The third grade teachers have planned a special
treat for the last day of school and brought ice cream for their students. There are
three flavors: mint chip, chocolate, and strawberry. Suppose that 60 students like
(at least) mint chip, 103 like chocolate, 50 like strawberry, 30 like mint chip and
strawberry, 40 like mint chip and chocolate, 25 like chocolate and strawberry, and
18 like all three flavors. Howmany students don’t like any of the flavors available?

2. There are 1189 students majoring in computer science at a particular university.
They are surveyed about their knowledge of three programming languages: C++,
Java, and Python. The survey results reflect that 856 students knowC++, 748 know
Java, and 692 know Python. Additionally, 639 students know both C++ and Java,
519 knowbothC++ andPython, and 632 knowboth Java andPython. There are 488
students who report knowing all three languages. How many students reported
that they did not know any of the three programming languages?

3. Howmany positive integers less than or equal to 100 are divisible by 2? Howmany
positive integers less than or equal to 100 are divisible by 5? Use this information
to determine how many positive integers less than or equal to 100 are divisible by
neither 2 nor 5.

4. How many positive integers less than or equal to 100 are divisible by none of 2, 3,
and 5?

cbna 141

Chapter 7 Inclusion-Exclusion

5. How many positive integers less than or equal to 1000 are divisible by none of 3,
8, and 25?

6. The State of Georgia is distributing $173 million in funding to Fulton, Gwinnett,
DeKalb, Cobb, andClayton counties (inmillions of dollars). In howmanyways can
this distribution be made, assuming that each county receives at least $1 million,
Clayton county receives at most $10 million, and Cobb county receives at most $30
million? What if we add the restriction that Fulton county is to receive at least $5
million (instead of at least $1 million)?

7. Howmany integer solutions are there to the equation x1 + x2 + x3 + x4 = 32 with
0 ≤ xi ≤ 10 for i = 1, 2, 3, 4?

8. How many integer solutions are there to the inequality

y1 + y2 + y3 + y4 < 184

with y1 > 0, 0 < y2 ≤ 10, 0 ≤ y3 ≤ 17, and 0 ≤ y4 < 19?

9. A graduate student eats lunch in the campus food court every Tuesday over the
course of a 15-week semester. He is joined each week by some subset of a group of
six friends from across campus. Over the course of a semester, he ate lunch with
each friend 11 times, each pair 9 times, and each triple 6 times. He ate lunch with
each group of four friends 4 times and each group of five friends 4 times. All seven
of them ate lunch together only once that semester. Did the graduate student ever
eat lunch alone? If so, how many times?

10. Agroupof 268 students are surveyed about their ability to speakMandarin, Japanese,
and Korean. There are 37 students who do not speak any of the three languages
surveyed. Mandarin is spoken by 174 of the students, Japenese is spoken by 139 of
the students, and Korean is spoken by 112 of the students. The survey results also
reflect that 102 students speak both Mandarin and Japanese, 81 students speak
both Mandarin and Korean, and 71 students speak both Japanese and Korean.
How many students speak all three languages?

11. As in Example 7.3, let X be the set of functions from [n] to [m] and let a function
f ∈ X satisfy property Pi if there is no j such that f(j) = i.
a) Let the function f : [8]→ [7] be defined by the table below.

i 1 2 3 4 5 6 7 8
f(i) 4 2 6 1 6 2 4 2

Does f satisfy property P2? Why or why not? What about property P3? List
all the properties Pi (with i ≤ 7) satisfied by f .

142 cbna

7.7 Exercises

b) Is it possible to define a function g : [8] → [7] that satisfies no property Pi,
i ≤ 7? If so, give an example. If not, explain why not.

c) Is it possible to define a function h : [8] → [9] that satisfies no property Pi,
i ≤ 9? If so, give an example. If not, explain why not.

12. As in Example 7.4, let X be the set of permutations of [n] and say that σ ∈ X
satisfies property Pi if σ(i) = i.
a) Let the permutation σ : [8]→ [8] be defined by the table below.

i 1 2 3 4 5 6 7 8
σ(i) 3 1 8 4 7 6 5 2

Does σ satisfy property P2? Why or why not? What about property P6? List
all the properties Pi (with i ≤ 8) satisfied by σ.

b) Give an example of a permutation τ : [8]→ [8] that satisfies properties P1, P4,
and P8 and no other properties Pi with 1 ≤ i ≤ 8.

c) Give an example of a permutation π : [8]→ [8] that does not satisfy any prop-
erty Pi with 1 ≤ i ≤ 8.

13. As in Example 7.5, let m and n be positive integers and X = [n]. Say that j ∈ X
satisfies property Pi for an iwith 1 ≤ i ≤ m if i is a divisor of j.
a) Letm = n = 15. Does 12 satisfy property P3? Why or why not? What about

property P5? List the properties Pi with 1 ≤ i ≤ 15 that 12 satisfies.
b) Give an example of an integer j with 1 ≤ j ≤ 15 that satisfies exactly two

properties Pi with 1 ≤ i ≤ 15.
c) Give an example of an integer j with 1 ≤ j ≤ 15 that satisfies exactly four

properties Pi with 1 ≤ i ≤ 15 or explain why such an integer does not exist.
d) Give an example of an integer j with 1 ≤ j ≤ 15 that satisfies exactly three

properties Pi with 1 ≤ i ≤ 15 or explain why such an integer does not exist.

14. How many surjections are there from an eight-element set to a six-element set?

15. A teacher has 10 books (all different) that she wants to distribute to John, Paul,
Ringo, and George, ensuring that each of them gets at least one book. In how
many ways can she do this?

16. A supervisor has nine tasks that must be completed and five employees to whom
shemay assign them. If shewishes to ensure that each employee is assigned at least
one task to perform, howmanyways are there to assign the tasks to the employees?

17. A professor is workingwith six undergraduate research students. He has 12 topics
that hewould like these students to begin investigating. Since he has beenworking

cbna 143

Chapter 7 Inclusion-Exclusion

with Katie for several terms, hewants to ensure that she is given themost challeng-
ing topic (and possibly others). Subject to this, in how many ways can he assign
the topics to his students if each student must be assigned at least one topic?

18. List all the derangements of [4]. (For brevity, you may write a permutation σ as a
string σ(1)σ(2)σ(3)σ(4).)

19. How many derangements of a nine-element set are there?

20. A soccer team’s equipment manager is in a hurry to distribute uniforms to the
last six players to show up before a match. Instead of ensuring that each player
receives his own uniform, he simply hands a uniform to each of the six players. In
howmanyways could he hand out the uniforms so that no player receives his own
uniform? (Assume that the six remaining uniforms belong to the last six players
to arrive.)

21. A careless payroll clerk is placing employees’ paychecks into pre-labeled envelopes.
The envelopes are sealed before the clerk realizes he didn’t match the names on the
paychecks with the names on the envelopes. If there are seven employees, in how
many ways could he have placed the paychecks into the envelopes so that exactly
three employees receive the correct paycheck?

22. The principle of inclusion-exclusion is not the only approach available for counting
derangements. We know that d1 = 0 and d2 = 1. Using this initial information, it is
possible to give a recursive form for dn. In this exercise, we consider two recursions
for dn.
a) Give a combinatorial argument to prove that the number of derangements

satisfies the recursive formula dn = (n−1)(dn−1 +dn−2) for n ≥ 2. (Hint: For
a derangement σ, consider the integer k with σ(k) = 1. Argue based on the
number of choices for k and then whether σ(1) = k or not.)

b) Prove that the number of derangements also satisfies the recursive formula
dn = ndn−1 + (−1)n for n ≥ 2. (Hint: You may find it easiest to prove this
using the other recursive formula and mathematical induction.)

23. Determine φ(18) by listing the integers it counts as well as by using the formula of
Theorem 7.13.

24. Compute φ(756).

25. Given that 1625190883965792 = (2)5(3)4(11)2(13)(23)3(181)2, compute

φ(1625190883965792).

26. Prove Proposition 7.14.

144 cbna

7.7 Exercises

27. At a very small school, there is a class with nine students in it. The students, whom
we will denote as A, B, C, D, E, F , G, H , and I , walk from their classroom to the
lunchroom in the orderABCDEFGHI . (Let’s say thatA is at the front of the line.)
On the way back to to their classroom after lunch, they would like to walk in an or-
der so that no student walks immediately behind the same classmate he or she was
behind on the way to lunch. (For instance, ACBDIHGFE and IHGFEDCBA
wouldmeet their criteria. However, theywould not be happywithCEFGBADHI
since it contains FG andHI , soG is following F again and I is followingH again.)
a) One student ponders how many possible ways there would be for them to

line up meeting this criterion. Help him out by determining the exact value
of this number.

b) Is this number bigger than, smaller than, or equal to the number of ways they
could return so that no student walks in the same position as before (i.e., A is
not first, B is not second, . . . , and I is not last)?

c) What fraction (give it as a decimal) of the total number of ways they could
line up meet their criterion of no student following immediately behind the
same student on the return trip?

cbna 145

CHAPTER 8
Generating Functions

A standard topic of study in first-year calculus is the representation of functions as in-
finite sums called power series; such a representation has the form F (x) =

∑∞
n=0 anx

n.
Perhaps surprisingly these power series can also serve as very powerful enumerative
tools. In a combinatorial setting, we consider such power series of this type as another
way of encoding the values of a sequence {an : n ≥ 0} indexed by the non-negative
integers. The strength of power series as an enumerative technique is that they can be
manipulated just like ordinary functions, i.e., they can be added, subtracted and mul-
tiplied, and for our purposes, we generally will not care if the power series converges,
which anyone who might have found all of the convergence tests studied in calculus
daunting will likely find reassuring. However, when we find it convenient to do so, we
will use the familiar techniques from calculus and differentiate or integrate them term
by term, and for those familiar series that do converge, we will use their representations
as functions to facilitate manipulation of the series.

8.1 Basic Notation and Terminology

With a sequence σ = {an : n ≥ 0} of real numbers, we associate a “function” F (x)
defined by

F (x) =

∞∑
n=0

anx
n.

The word “function” is put in quotes as we do not necessarily care about substituting a
value of x and obtaining a specific value for F (x). In other words, we consider F (x) as
a formal power series and frequently ignore issues of convergence.
It is customary to refer to F (x) as the generating function of the sequence σ. As we

have already remarked, we are not necessarily interested in calculating F (x) for specific
values of x. However, by convention, we take F (0) = a0.
Example 8.1. Consider the constant sequence σ = {an : n ≥ 0} with an = 1 for every
n ≥ 0. Then the generating function F (x) of σ is given by

F (x) = 1 + x+ x2 + x3 + x4 + x5 + x6 + · · · .

147

Chapter 8 Generating Functions

You probably remember that this last expression is the Maclaurin series for the function
F (x) = 1/(1− x) and that the series converges when |x| < 1. Since we want to think in
terms of formal power series, let’s see that we can justify the expression

1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + x6 + · · · =

∞∑
n=0

xn

without any calculus techniques. Consider the product

(1− x)(1 + x+ x2 + x3 + x4 + x5 + x6 + · · ·)

and notice that, since wemultiply formal power series just like wemultiply polynomials
(power series are prettymuch polynomials that go on forever), we have that this product
is

(1 + x+ x2 + x3 + x4 + x5 + x6 + · · ·)− x(1 + x+ x2 + x3 + x4 + x5 + x6 + · · ·) = 1.

Now we have that

(1− x)(1 + x+ x2 + x3 + x4 + x5 + x6 + · · ·) = 1,

or, more usefully, after dividing through by 1− x,

1

1− x
=

∞∑
n=0

xn.

Example 8.2. Just like you learned in calculus for Maclaurin series, formal power series
can be differentiated and integrated term by term. The rigorous mathematical frame-
work that underlies such operations is not our focus here, so take us at our word that
this can be done for formal power series without concern about issues of convergence.
To see this in action, consider differentiating the power series of the previous example.

This gives

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 + 7x6 + · · · =

∞∑
n=1

nxn−1.

Integration of the series represented by 1/(1 + x) = 1/(1 − (−x)) yields (after a bit of
algebraic manipulation)

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+ · · · =

∞∑
n=1

xn

n

148 cbna

8.2 Another look at distributing apples or folders

Before you become convinced that we’re only going to concern ourselves with gener-
ating functions that actually converge, let’s see that we can talk about the formal power
series

F (x) =

∞∑
n=0

n!xn,

even though it has radius of convergence 0, i.e., the series F (x) converges only for x = 0,
so that F (0) = 1. Nevertheless, it makes sense to speak of the formal power series F (x)
as the generating function for the sequence {an : n ≥ 0}, a0 = 1 and an is the number of
permutations of {1, 2, . . . , n}when n ≥ 1.
For reference, we state the following elementary result, which emphasizes the form of

a product of two power series.

Proposition 8.3. Let A(x) =
∑∞
n=0 anx

n and B(x) =
∑∞
n=0 bnx

n be generating functions.
Then A(x)B(x) is the generating function of the sequence whose nth term is given by

a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0 =

n∑
k=0

akbn−k.

8.2 Another look at distributing apples or folders

A recurring problem so far in this book has been to consider problems that ask about
distributing indistinguishable objects (say apples) to distinct entities (say children). We
started in chapter 2 by asking how many ways there were to distribute 40 apples to 5
children so that each child is guaranteed to get at least one apple and saw that the answer
was C(39, 4). We even saw how to restrict the situation so that one of the children was
limited and could receive at most 10 apples. In chapter 7, we learned how to extend the
restrictions so that more than one child had restrictions on the number of apples allowed
by taking advantage of the Principle of Inclusion-Exclusion. Before moving on to see
how generating functions can allow us to get even more creative with our restrictions,
let’s take a moment to see how generating functions would allow us to solve the most
basic problem at hand.
Example 8.4. We already know that the number of ways to distribute n apples to 5 chil-
dren so that each child gets at least one apple is C(n − 1, 4), but it will be instructive to
see how we can derive this result using generating functions. Let’s start with an even
simpler problem: how many ways are there to distribute n apples to one child so that
each child receives at least one apple? Well, this isn’t too hard, there’s only one way to
do it—give all the apples to the lucky kid! Thus the sequence that enumerates the number
of ways to do this is {an : n ≥ 1}with an = 1 for all n ≥ 1. Then the generating function
for this sequence is

x+ x2 + x3 + · · · = x(1 + x+ x2 + x3 + · · ·) =
x

1− x
.

cbna 149

Chapter 8 Generating Functions

How can we get from this fact to the question of five children? Notice what happens
when we multiply

(x+ x2 + · · ·)(x+ x2 + · · ·)(x+ x2 + · · ·)(x+ x2 + · · ·)(x+ x2 + · · ·).

To see what this product represents, first consider how many ways can we get an x6?
We could use the x2 from the first factor and x from each of the other four, or x2 from
the second factor and x from each of the other four, etc., meaning that the coefficient
on x6 is 5 = C(5, 4). More generally, what’s the coefficient on xn in the product? In
the expansion, we get an xn for every product of the form xk1xk2xk3xk4xk5 where k1 +
k2 + k3 + k4 + k5 = n. Returning to the general question here, we’re really dealing with
distributing n apples to 5 children, and since ki > 0 for i = 1, 2, . . . , 5, we also have the
guarantee that each child receives at least one apple, so the product of the generating
function for one child gives the generating function for five children.
Let’s pretend for a minute that we didn’t know that the coefficients must be C(n −

1, 4). How could we figure out the coefficients just from the generating function? The
generating function we’re interested in is x5/(1−x)5, which you should be able to pretty
quickly see satisfies

x5

(1− x)5
=
x5

4!

d4

dx4

(
1

1− x

)
=
x5

4!

∞∑
n=0

n(n− 1)(n− 2)(n− 3)xn−4

=

∞∑
n=0

n(n− 1)(n− 2)(n− 3)

4!
xn+1 =

∞∑
n=0

(
n

4

)
xn+1.

The coefficient on xn in this series C(n− 1, 4), just as we expected.
We could revisit an example from chapter 7 to see that if we wanted to limit a child

to receive at most 4 apples, we would use (x + x2 + x3 + x4) as its generating function
instead of x/(1 − x), but rather than belabor that here, let’s try something a bit more
exotic.
Example 8.5. A grocery store is preparing holiday fruit baskets for sale. Each fruit basket
will have 20 pieces of fruit in it, chosen from apples, pears, oranges, and grapefruit. How
many different ways can such a basket be prepared if there must be at least one apple
in a basket, a basket cannot contain more than three pears, and the number of oranges
must be a multiple of four?
In order to get at the number of baskets consisting of 20 pieces of fruit, let’s solve the

more general problem where each basket has n pieces of fruit. Our method is simple:
find the generating function for how to do this with each type of fruit individually and
thenmultiply them. As in the previous example, the productwill contain the term xn for
everyway of assembling a basket of n pieces of fruit subject to our restrictions. The apple
generating function is x/(1−x), since we only want positive powers of x (corresponding
to ensuring at least one apple). The generating function for pears is (1 + x + x2 + x3),

150 cbna

8.2 Another look at distributing apples or folders

since we can have only zero, one, two, or three pears in basket. For oranges we have
1/(1−x4) = 1+x4+x8+ · · · , and the unrestricted grapefruit give us a factor of 1/(1−x).
Multiplying, we have

x

1− x
(1 + x+ x2 + x3)

1

1− x4
1

1− x
=

x

(1− x)2(1− x4)
(1 + x+ x2 + x3).

Nowwe want to make use of the fact that (1 +x+x2 +x3) = (1−x4)/(1−x) to see that
our generating function is

x

(1− x)3
=
x

2

∞∑
n=0

n(n− 1)xn−2 =

∞∑
n=0

n(n− 1)

2
xn−1 =

∞∑
n=0

(
n

2

)
xn−1 =

∞∑
n=0

(
n+ 1

2

)
xn.

Thus, there are C(n + 1, 2) possible fruit baskets containing n pieces of fruit, meaning
that the answer to the question we originally asked is C(21, 2) = 210.
Example 8.6. Find the number of integer solutions to the equation

x1 + x2 + x3 = n

(n ≥ 0 an integer) with x1 ≥ 0 even, x2 ≥ 0, and 0 ≤ x3 ≤ 2.
Again, we want to look at the generating function we would have if each variable

existed individually and take their product. For x1, we get a factor of 1/(1− x2); for x2,
we have 1/(1−x); and for x3 our factor is (1+x+x2). Therefore, the generating function
for the number of solutions to the equation above is

1 + x+ x2

(1− x)(1− x2)
=

1 + x+ x2

(1 + x)(1− x)2
.

In calculus, when we wanted to integrate a rational function of this form, we would
use the method of partial fractions to write it as a sum of “simpler” rational functions
whose antiderivatives we recognized. Here, our technique is the same, as we can readily
recognize the formal power series for many rational functions. Our goal is to write

1 + x+ x2

(1 + x)(1− x)2
=

A

1 + x
+

B

1− x
+

C

(1− x)2

for appropriate constants,A,B, andC. To find the constants, we clear the denominators,
giving

1 + x+ x2 = A(1− x)2 +B(1− x2) + C(1 + x).

Equating coefficients on terms of equal degree, we have:

1 = A+B + C

1 = −2A+ C

1 = A−B

cbna 151

Chapter 8 Generating Functions

Solving the system, we findA = 1/4,B = −3/4, andC = 3/2. Therefore, our generating
function is

1

4

1

1 + x
− 3

4

1

1− x
+

3

2

1

(1− x)2
=

1

4

∞∑
n=0

(−1)nxn − 3

4

∞∑
n=0

xn +
3

2

∞∑
n=0

nxn−1.

The solution to our question is thus the coefficient on xn in the above generating function,
which is

(−1)n

4
− 3

4
+

3(n+ 1)

2
,

a surprising answer that would not be too easy to come up with via other methods!

8.3 Newton’s Binomial Theorem

In chapter 2, we discussed the binomial theorem and saw that the following formula
holds for all integers p ≥ 1:

(1 + x)p =

p∑
n=0

(
p

n

)
xn.

You should quickly realize that this formula implies that the generating function for
the number of n-element subsets of a p-element set is (1 + x)p. The topic of generating
functions is what leads us to consider what happens if we encounter (1 +x)p as a gener-
ating function with p not a positive integer. It turns out that, by suitably extending the
definition of the binomial coefficients to real numbers, we can also extend the binomial
theorem in a manner originally discovered by Sir Isaac Newton.
We’ve seen several expressions that can be used to calculate the binomial coefficients,

but in order to extend C(p, k) to real values of p, we will utilize the form(
p

k

)
=
P (p, k)

k!
,

recalling that we’ve defined P (p, k) recursively as P (p, 0) = 1 for all integers p ≥ 0 and
P (p, k) = pP (p− 1, k − 1) when p ≥ k > 0 (k an integer). Notice here, however, that the
expression for P (p, k) makes sense for any real number p, so long as k is a non-negative
integer. We make this definition formal.

Definition 8.7. For all real numbers p and nonnegative integers k, the number P (p, k) is
defined by

1. P (p, 0) = 1 for all real numbers p and

2. P (p, k) = pP (p− 1, k − 1) for all real numbers p and integers k > 0.

152 cbna

8.4 An Application of the Binomial Theorem

(Notice that this definition does not require p ≥ k as we did with integers.)
We are now prepared to extend the definition of binomial coefficient so that C(p, k) is

defined for all real p and nonnegative integer values of k. We do this as follows.

Definition 8.8. For all real numbers p and nonnegative integers k,(
p

k

)
=
P (p, k)

k!
.

Note thatP (p, k) = C(p, k) = 0when p and k are integerswith 0 ≤ p < k. On the other
hand, we have some interesting new concepts such asP (−5, 4) = (−5)(−6)(−7)(−8) and(

−7/2

5

)
=

(−7/2)(−9/2)(−11/2)(−13/2)(−15/2)

5!
.

With this more general definition of binomial coefficients in hand, we’re ready to state
Newton’s Binomial Theorem for all non-zero real numbers. The proof of this theorem
can be found in most advanced calculus books.

Theorem 8.9. For all real p with p 6= 0,

(1 + x)p =

∞∑
n=0

(
p

n

)
xn.

Note that the general form reduces to the original version of the binomial theorem
when p is a positive integer.

8.4 An Application of the Binomial Theorem

In this section, we see how Newton’s Binomial Theorem can be used to derive another
useful identity. We begin by establishing a different recursive formula for P (p, k) than
was used in our definition of it.

Lemma 8.10. For each k ≥ 0, P (p, k + 1) = P (p, k)(p− k).

Proof. When k = 0, both sides evaluate to p. Now assume validity when k = m for some
non-negative integerm. Then

P (p,m+ 2) = pP (p− 1,m+ 1)

= p[P (p− 1,m)(p− 1−m)]

= [pP (p− 1,m)](p− 1−m)

= P (p,m+ 1)[p− (m+ 1)].

cbna 153

Chapter 8 Generating Functions

Our goal in this section will be to invoke Newton’s Binomial Theorem with the expo-
nent p = −1/2. To do so in a meaningful manner, we need a simplified expression for
C(−1/2, k), which the next lemma provides.

Lemma 8.11. For each k ≥ 0,
(
−1/2

k

)
= (−1)k

(
2k
k

)
22k

.

Proof. We proceed by induction on k. Both sides reduce to 1 when k = 0. Now assume
validity when k = m for some non-negative integerm. Then

(
−1/2

m+ 1

)
=
P (−1/2,m+ 1)

(m+ 1)!
=
P (−1/2,m)(−1/2−m)

(m+ 1)m!

=
−1/2−m
m+ 1

(
−1/2

m

)
= (−1)

2m+ 1

2(m+ 1)
(−1)m

(
2m
m

)
22m

= (−1)m+1 1

22m
(2m+ 2)(2m+ 1)

(2m+ 2)2(m+ 1)

(
2m

m

)
= (−1)m+1

(
2m+2
m+2

)
22m+2

.

Theorem 8.12. The function f(x) = (1 − 4x)−1/2 is the generating function of the sequence
{
(
2n
n

)
: n ≥ 0}.

Proof. By Newton’s Binomial Theorem and Lemma 8.11, we know that

(1− 4x)−1/2 =

∞∑
n=0

(
−1/2

n

)
(−4x)n

=

∞∑
n=0

(−1)n22n
(
−1/2

n

)
xn

=

∞∑
n=0

(
2n

n

)
xn.

Now recalling Proposition 8.3 about the coefficients in the product of two generating
functions, we are able to deduce the following corollary of Theorem 8.12 by squaring the
function f(x) = (1− 4x)−1/2.

Corollary 8.13. For all n ≥ 0,

22n =

n∑
k=0

(
2k

k

)(
2n− 2k

k

)
.

154 cbna

8.5 Partitions of an Integer

8.5 Partitions of an Integer

A recurring theme in this course has been to count the number of integer solutions to an
equation of the form x1 + x2 + · · · + xk = n. What if we wanted to count the number
of such solutions but didn’t care what k was? How about if we took this new question
and required that the xi be distinct (i.e., xi 6= xj for i 6= j)? What about if we required
that each xi be odd? These certainly don’t seem like easy questions to answer at first, but
generating functions will allow us to say something very interesting about the answers
to the last two questions.
By a partition P of an integer, wemean a collection of (not necessarily distinct) positive

integers such that
∑
i∈P i = n. (By convention, we will write the elements of P from

largest to smallest.) For example, 2 + 2 + 1 is a partition of 5. For each n ≥ 0, let pn
denote the number of partitions of the integer n (with p0 = 1 by convention). Note that
p8 = 22 as evidenced by the list in Table 8.1. Note that there are 6 partitions of 8 into
distinct parts. Also there are 6 partitions of 8 into odd parts. While it might seem that
this is a coincidence, it in fact is always the case as the following theorem states.

Theorem 8.14. For each n ≥ 1, the number of partitions of n into distinct parts is equal to the
number of partitions of n into odd parts.

Proof. The generating functionD(x) for the number of partitions of n into distinct parts
is

D(x) =

∞∏
n=1

(1 + xn).

On the other hand, the generating function O(x) for the number of partitions of n into
odd parts is

O(x) =

∞∏
n=1

1

1− x2n−1
.

8 distinct parts 7+1 distinct parts, odd parts 6+2 distinct parts
6+1+1 5+3 distinct parts, odd parts 5+2+1 distinct parts
5+1+1+1 odd parts 4+4 4+3+1 distinct parts
4+2+2 4+2+1+1 4+1+1+1+1
3+3+2 3+3+1+1 odd parts 3+2+2+1
3+2+1+1+1 3+1+1+1+1+1 odd parts 2+2+2+2
2+2+2+1+1 2+2+1+1+1+1 2+1+1+1+1+1+1

1+1+1+1+1+1+1+1 odd parts

Table 8.1: The partitions of 8, noting those into distinct parts and those into odd parts.

cbna 155

Chapter 8 Generating Functions

To see thatD(x) = O(x), we note that 1−x2n = (1−xn)(1+xn) for all n ≥ 1. Therefore,

D(x) =

∞∏
n=1

(1 + xn) =

∞∏
n=1

1− x2n

1− xn
=

∏∞
n=1(1− x2n)∏∞
n=1(1− xn)

=

∏∞
n=1(1− x2n)∏∞

n=1(1− x2n−1)
∏∞
n=1(1− x2n)

=

∞∏
n=1

1

1− x2n−1

= O(x).

8.6 Exponential generating functions

If we had wanted to be absolutely precise earlier in the chapter, we would have referred
to the generating functions we studied as ordinary generating functions or even ordinary
power series generating functions. This is because there are other types of generating func-
tions, based on other types of power series. In this section, we briefly introduce another
type of generating function, the exponential generating function. While an ordinary gener-
ating function has the form

∑
n anx

n, an exponential generating function is based on the
power series for the exponential function ex. Thus, the exponential generating function
for the sequence {an : n ≥ 0} is

∑
n anx

n/n!. In this section, we will see some ways we
can use exponential generating functions to solve problems that we could not tacklewith
ordinary generating functions. However, we will only scratch the surface of the poten-
tial of this type of generating function. We beginwith themost fundamental exponential
generating function, in analogy with the ordinary generating function 1/(1 − x) of Ex-
ample 8.1.

Example 8.15. Consider the constant sequence 1, 1, 1, 1, Then the exponential gener-
ating function for this sequence is

E(x) =

∞∑
n=0

xn

n!
.

From calculus, you probably recall that this is the power series for the exponential func-
tion ex, which is why we call this type of generating function an exponential generating
function. From this example, we can quickly recognize that the exponential generating
function for the number of binary strings of length n is e2x since

e2x =

∞∑
n=0

(2x)n

n!
=

∞∑
n=0

2n
xn

n!
.

156 cbna

8.6 Exponential generating functions

In our study of ordinary generating functions earlier in this chapter, we considered
examples where quantity (number of apples, etc.) mattered but order did not. One of
the areas where exponential generating functions are preferable to ordinary generating
functions is in applications where order matters, such as counting strings. For instance,
although the bit strings 10001 and 011000 both contain three zeros and two ones, they
are not the same strings. On the other hand, two fruit baskets containing two apples and
three oranges would be considered equivalent, regardless of how you arranged the fruit.
We now consider a couple of examples to illustrate this technique.
Example 8.16. Suppose we wish to find the number of ternary strings in which the num-
ber of 0s is even. (There are no restrictions on the number of 1s and 2s.) Aswith ordinary
generating functions, we determine a generating function for each of the digits andmul-
tiply them. For 1s and 2s, since we may have any number of each of them, we introduce
a factor of ex for each. For an even number of 0s, we need

1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · · =

∞∑
n=0

x2n

(2n)!
.

Unlike with ordinary generating functions, we cannot represent this series in a more
compact form by simply substituting a function of x into the series for ey . However,
with a small amount of cleverness, we are able to achieve the desired result. To do this,
first notice that

e−x = 1− x+
x2

2!
− x3

3!
+ · · · =

∞∑
n=0

(−1)nxn

n!
.

Thus, whenwe add the series for e−x to the series for ex all of the termswith odd powers
of xwill cancel! We thus find

ex + e−x = 2 + 2
x2

2!
+ 2

x4

4!
+ · · · ,

which is exactly twice what we need. Therefore, the factor we introduce for 0s is (ex +
e−x)/2.

Now we have an exponential generating function of

ex + e−x

2
exex =

e3x + ex

2
=

1

2

(∞∑
n=0

3nxn

n!
+

∞∑
n=0

xn

n!

)
.

To find the number of ternary strings in which the number of 0s is even, we thus need
to look at the coefficient on xn/n! in the series expansion. In doing this, we find that the
number of ternary strings with an even number of 0s is (3n + 1)/2.
We can also use exponential generating functions when there are bounds on the num-

ber of times a symbol appears, such as in the following example.

cbna 157

Chapter 8 Generating Functions

Example 8.17. How many ternary strings of length n have at least one 0 and at least one
1? To ensure that a symbol appears at least once, we need the following exponential
generating function

x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=1

xn

n!
.

You should notice that this is almost the series for ex, except it’s missing the first term.
Thus,

∑∞
n=1 x

n/n! = ex − 1. Using this, we now have

(ex − 1)(ex − 1)ex = e3x − 2e2x + ex

as the exponential generating function for this problem. Finding the series expansion,
we have

∞∑
n=0

3nxn

n!
− 2

∞∑
n=0

2nxn

n!
+

∞∑
n=0

xn

n!
.

Now we can answer the question by reading off the coefficient on xn/n!, which is 3n −
2 · 2n + 1.
Before proceeding to an additional example, let’s take a minute to look at another

way to answer the question from the previous example. To count the number of ternary
strings of length nwith at least one 0 and at least one 1, we can count all ternary strings of
length n and use the principle of inclusion-exclusion to eliminate the undesirable strings
lacking a 0 and/or a 1. If a ternary string lacks a 0, we’re counting all strings made up
of 1s and 2s, so there are 2n strings. Similarly for lacking a 1. However, if we subtract
2 · 2n, then we’ve subtracted the strings that lack both a 0 and a 1 twice. A ternary string
that has no 0s and no 1s consists only of 2s. There is a single ternary string of length n
satisfying this criterion. Thus, we obtain 3n − 2 · 2n + 1 in another way.
Example 8.18. Alice needs to set an eight-digit passcode for her mobile phone. The re-
strictions on the passcode are a little peculiar. Specifically, it must contain an even num-
ber of 0s, at least one 1, and at most three 2s. Bob remarks that although the restrictions
are unusual, they don’t do much to reduce the number of possible passcodes from the
total number of 108 eight-digit strings. Carlos isn’t convinced that’s the case, so heworks
up an exponential generating function as follows. For the seven digits onwhich there are
no restrictions, a factor of e7x is introduced. To account for an even number of 0s, he uses
(ex+e−x)/2. For at least one 1, a factor of ex−1 is required. Finally, 1+x+x2/2!+x3/3!
accounts for the restriction of at most three 2s. The exponential generating function for
the number of n-digit passcodes is thus

e7x
ex + e−x

2
(ex − 1)

(
1 + x+

x2

2!
+
x3

3!

)
.

Dave sees this mess written on the whiteboard and groans. He figures they’ll be there
all daymultiplying andmaking algebramistakes in trying to find the desired coefficient.

158 cbna

8.7 Discussion

Alice points out that they don’t really need to find the coefficient on xn/n! for all n.
Instead, she suggests they use a computer algebra system to just find the coefficient on
x8/8!. After doing this, they find that there are 33847837 valid passcodes for the mobile
phone. A quick calculation shows that Bob was totally off base in claiming that there
was no significant reduction in the number of possible strings to use as a passcode. The
total number of valid passcodes is only 33.85% of the total number of eight-digit strings!

Exponential generating functions are useful in many other situations beyond enumer-
ating strings. For instance, they can be used to count the number of n-vertex, connected,
labeled graphs. However, doing so is beyond the scope of this book. If you are interested
in learning much more about generating functions, the book generatingfunctionology by
Herbert S. Wilf is available online at http://www.math.upenn.edu/~wilf/DownldGF.
html.

8.7 Discussion

Yolanda was beside herself “Do you guys realize what we just did? We showed that
two quantities were equal without saying anything about what those quantities actually
were. That’s really neat.” Nobody said anything for a long time, but after some time
Dave said “There might be other instances where you would want to be able to commu-
nicate fully, yet hold back on every last detail.” Bob said “I don’t get it.” Alice interjected
a comment that was more of question than a statement “Do you mean that parties may
want to communicate, while maintaining that the conversation did not occur?” Carlos
added “Or maybe they just want to be able to detect whether anyone else was listening.”
Now Zori was nearly happy. Privacy and security were big ticket items.

8.8 Exercises

Computer algebra systems can be powerful tools for working with generating functions.
In addition to stand-alone applications that run on your computer, the free website
Wolfram|Alpha (http://www.wolframalpha.com) is capable of finding general forms
of some power series representations and specific coefficients for many more. How-
ever, unless an exercise specifically suggests that you use a computer algebra system,
we strongly encourage you to solve the problem by hand. This will help you develop a
better understanding of how generating functions can be used.
For all exercises in this section, “generating function” should be taken to mean “ordi-

nary generating function.” Exponential generating functions are only required in exer-
cises specifically mentioning them.

1. For each finite sequence below, give its generating function.

cbna 159

http://www.math.upenn.edu/~wilf/DownldGF.html
http://www.math.upenn.edu/~wilf/DownldGF.html
http://www.wolframalpha.com

Chapter 8 Generating Functions

a) 1, 4, 6, 4, 1

b) 1, 1, 1, 1, 1, 0, 0, 1

c) 0, 0, 0, 1, 2, 3, 4, 5

d) 1, 1, 1, 1, 1, 1, 1

e) 3, 0, 0, 1,−4, 7

f) 0, 0, 0, 0, 1, 2,−3, 0, 1

2. For each infinite sequence suggested below, give its generating function in closed
form, i.e., not as an infinite sum. (Use the most obvious choice of form for the
general term of each sequence.)

a) 0, 1, 1, 1, 1, 1, . . .

b) 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .

c) 1, 2, 4, 8, 16, 32, . . .

d) 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

e) 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, . . .

f) 28, 27
(

8

1

)
, 26
(

8

2

)
, . . . ,

(
8

8

)
, 0, 0, 0, . . .

g) 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

h) 0, 0, 0, 1, 2, 3, 4, 5, 6, . . .

i) 3, 2, 4, 1, 1, 1, 1, 1, 1, . . .

j) 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2, . . .

k) 6, 0,−6, 0, 6, 0,−6, 0, 6, . . .

l) 1, 3, 6, 10, 15, . . . ,

(
n+ 2

2

)
, . . .

3. For each generating function below, give a closed form for the nth term of its asso-
ciated sequence.

a) (1 + x)10

b) 1

1− x4

c) x3

1− x4

d) 1− x4

1− x

e) 1 + x2 − x4

1− x

f) 1

1− 4x

g) 1

1 + 4x

h) x5

(1− x)4

i) x2 + x+ 1

1− x7

j) 3x4 + 7x3 − x2 + 10 +
1

1− x3

4. Find the coefficient on x10 in each of the generating functions below.
a) (x3 + x5 + x6)(x4 + x5 + x7)(1 + x5 + x10 + x15 + · · ·)
b) (1 + x3)(x3 + x4 + x5 + · · ·)(x4 + x5 + x6 + x7 + x8 + · · ·)

c) (1 + x)12

d) x5

1− 3x5

e) 1

(1− x)3

f) 1

1− 5x4

g) x

1− 2x3

h) 1− x14

1− x

5. Find the generating function for the number ofways to create a bunch of n balloons
selected fromwhite, gold, and blue balloons so that the bunch contains at least one

160 cbna

8.8 Exercises

white balloon, at least one gold balloon, and atmost two blue balloons. Howmany
ways are there to create a bunch of 10 balloons subject to these requirements?

6. A volunteer coordinator has 30 identical chocolate chip cookies to distribute to six
volunteers. Use a generating function (and computer algebra system) to determine
the number of ways she can distribute the cookies so that each volunteer receives
at least two cookies and no more than seven cookies.

7. Consider the inequality
x1 + x2 + x3 + x4 ≤ n

where x1, x2, x3, x4, n ≥ 0 are all integers. Suppose also that x2 ≥ 2, x3 is amultiple
of 4, and 1 ≤ x4 ≤ 3. Let cn be the number of solutions of the inequality subject to
these restrictions. Find the generating function for the sequence {cn : n ≥ 0} and
use it to find a closed formula for cn.

8. Find the generating function for the number of ways to distribute blank scratch pa-
per to Alice, Bob, Carlos, and Dave so that Alice gets at least two sheets, Bob gets at
most three sheets, the number of sheets Carlos receives is a multiple of three, and
Dave gets at least one sheet but no more than six sheets of scratch paper. Without
finding the power series expansion for this generating function (or using a com-
puter algebra system!), determine the coefficients on x2 and x3 in this generating
function.

9. What is the generating function for the number of ways to select a group of n stu-
dents from a class of p students?

10. Using generating functions, find a formula for the number of different types of fruit
baskets containing of n pieces of fruit chosen frompomegranates, bananas, apples,
oranges, pears, and figs that can be made subject to the following restrictions:
• there are either 0 or 2 pomegranates,
• there is at least 1 banana,
• the number of figs is a multiple of 5,
• there are at most 4 pears, and
• there are no restrictions on the number of apples or oranges.

How many ways are there to form such a fruit basket with n = 25 pieces of fruit?

11. Using generating functions, find the number of ways to make change for a $100
bill using only dollar coins and $1, $2, and $5 bills. (Hint: Find the partial frac-
tions expansion for your generating function. Once you have it, you may find the
following identity helpful

p(x)

1 + x+ x2 + · · ·+ xk
=
p(x)(1− x)

1− xk+1
,

cbna 161

Chapter 8 Generating Functions

where p(x) will be a polynomial in this instance.)

12. A businesswoman is traveling in Belgium and wants to buy chocolates for her-
self, her husband, and their two daughters. A store has dark chocolate truffles
(D 10/box), milk chocolate truffles (D 8/box), nougat-filled chocolates (D 5/box),
milk chocolate bars (D 7/bar), and 75% cacao chocolate bars (D 11/bar). Her pur-
chase is to be subject to the following:
• Only the daughters like dark chocolate truffles, and her purchasemust ensure
that each daughter gets an equal number of boxes of them (if they get any).
• At least two boxes of milk chocolate truffles must be purchased.
• If she buys any boxes of nougat-filled chocolates, then she buys exactly enough
that each family member gets precisely one box of them.
• At most three milk chocolate bars may be purchased.
• There are no restrictions on the number of 75% cacao chocolate bars.

Let sn be the number of ways the businesswoman can spend exactly Dn (not buy
n items!) at this chocolate shop. Find the generating function for the sequence
{sn : n ≥ 0}. In howmanyways can she spend exactly D 100 at the chocolate shop?
(A computer algebra system will be helpful for finding coefficients.)

13. Bags of candy are being prepared to distribute to the children at a school. The types
of candy available are chocolate bites, peanut butter cups, peppermint candies, and
fruit chews. Each bag must contain at least two chocolate bites, an even number
of peanut butter cups, and at most six peppermint candies. The fruit chews are
available in four different flavors—lemon, orange, strawberry, and cherry. A bag
of candy may contain at most two fruit chews, which may be of the same or dif-
ferent flavors. Beyond the number of pieces of each type of candy included, bags
of candy are distinguished by using the flavors of the fruit chews included, not
just the number. For example, a bag containing two orange fruit chews is different
from a bag containing a cherry fruit chew and a strawberry fruit chew, even if the
number of pieces of each other type of candy is the same.
a) Let bn be the number of different bags of candy with n pieces of candy that

can be formed subject to these restrictions. Find the generating function for
the sequence {bn : n ≥ 0}.

b) Suppose the school has 400 students and the teachers would like to ensure
that each student gets a different bag of candy. However, they know therewill
be fights if the bags do not all contain the same number of pieces of candy.
What is the smallest number of pieces of candy they can include in the bags
that ensures each student gets a different bag of candy containing the same
number of pieces of candy?

162 cbna

8.8 Exercises

14. Make up a combinatorial problem (similar to those found in this chapter) that leads
to the generating function

(1 + x2 + x4)x2

(1− x)3(1− x3)(1− x10)
.

15. Tollbooths in Illinois accept all U.S. coins, including pennies. Carlos has a very
large supply of pennies, nickels, dimes, and quarters in his car as he drives on a
tollway. He encounters a toll for $0.95 and wonders how many different ways he
could use his supply of coins to pay the toll without getting change back.
a) Use a generating function and computer algebra system to determine the

number of ways Carlos could pay his $0.95 toll by dropping the coins together
into the toll bin. (Assume coins of the same denomination cannot be distin-
guished from each other.)

b) Suppose that instead of having a bin into which motorists drop the coins to
pay their toll, the coins must be inserted one-by-one into a coin slot. In this
scenario, Carloswonders howmanyways he could pay the $0.95 tollwhen the
order the coins are insertedmatters. For instance, in the previous part, the use
of three quarters and two dimes would be counted only one time. However,
when the coinsmust be inserted individually into a slot, there are 10 = C(5, 2)
ways to insert this combination. Use an ordinary generating function and
computer algebra system to determine the number of ways that Carlos could
pay the $0.95 toll when considering the order the coins are inserted.

16. List the partitions of 9. Write a D next to each partition into distinct parts and an
O next to each partition into odd parts.

17. Use generating functions to find the number of ways to partition 10 into odd parts.

18. What is the smallest integer that can be partitioned in at least 1000 ways? How
many ways can it be partitioned? How many of them are into distinct parts? (A
computer algebra system will be helpful for this exercise.)

19. What is the generating function for the number of partitions of an integer into even
parts?

20. Find the exponential generating function (in closed form, not as an infinite sum)
for each infinite sequence {an : n ≥ 0}whose general term is given below.

a) an = 5n

b) an = (−1)n2n
c) an = 3n+2

d) an = n!

e) an = n

f) an = 1/(n+ 1)

cbna 163

Chapter 8 Generating Functions

21. For each exponential generating function below, give a formula in closed form for
the sequence {an : n ≥ 0} it represents.

a) e7x b) x2e3x c) 1

1 + x
d) ex4

22. Find the coefficient on x10/10! in each of the exponential generating functions be-
low.

a) e3x

b) ex − e−x

2

c) ex + e−x

2

d) xe3x − x2

e) 1

1− 2x

f) ex2

23. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, c, d} if there must be at least one a and the number of
c’s must be even. Find a closed formula for the coefficients of this exponential gen-
erating function.

24. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, c, d} if there must be at least one a and the number of
c’s must be odd. Find a closed formula for the coefficients of this exponential gen-
erating function.

25. Find the exponential generating function for the number of strings of length n
formed from the set {a, b, c, d} if there must be at least one a, the number of b’s
must be odd, and the number of d’s is either 1 or 2. Find a closed formula for the
coefficients of this exponential generating function.

26. Find the exponential generating function for the number of alphanumeric strings
of length n formed from the 26 uppercase letters of the English alphabet and 10
decimal digits if
• each vowel must appear at least one time;
• the letter T must appear at least three times;
• the letter Z may appear at most three times;
• each even digit must appear an even number of times; and
• each odd digit must appear an odd number of times.

164 cbna

CHAPTER 9
Recurrence Equations

We have already seen many examples of recurrence in the definitions of combinatorial
functions and expressions. The development of number systems in Appendix A lays the
groundwork for recurrence in mathematics. Other examples we have seen include the
Collatz sequence of Example 1.4 and the binomial coefficients. In chapter 3, we also saw
how recurrences could arise when enumerating strings with certain restrictions, but we
didn’t discuss how we might get from a recursive definition of a function to an explicit
definition depending only on n, rather than earlier values of the function. In this chapter,
we present amore systematic treatment of recurrencewith the end goal of finding closed
form expressions for functions defined recursively—whenever possible. We will focus
on the case of linear recurrence equations. At the end of the chapter, we will also revisit
some of what we learned in chapter 8 to see how generating functions can also be used
to solve recurrences.

9.1 Introduction

9.1.1 Fibonacci numbers

One of the most well-known recurrences arises from a simple story. Suppose that a
scientist introduces a pair of newborn rabbits to an isolated island. This species of rabbits
is unable to reproduce until their third month of life, but after that produces a new pair
of rabbits each month. Thus, in the first and second months, there is one pair of rabbits
on the island, but in the third month, there are two pairs of rabbits, as the first pair has
a pair of offspring. In the fourth month, the original pair of rabbits is still there, as is
their first pair of offspring, which are not yet mature enough to reproduce. However,
the original pair gives birth to another pair of rabbits, meaning that the island now has
three pairs of rabbits. Assuming that there are no rabbit-killing predators on the island
and the rabbits have an indefinite lifespan, how many pairs of rabbits are on the island
in the tenth month?
Let’s see how we can get a recurrence from this story. Let fn denote the number of

pairs rabbits on the island in month n. Thus, f1 = 1, f2 = 1, f3 = 2, and f4 = 3 from our
account above. How can we compute fn? Well, in the nth month we have all the pairs

165

Chapter 9 Recurrence Equations

of rabbits that were there during the previous month, which is fn−1; however, some of
those pairs of rabbits also reproduce during this month. Only the ones who were born
prior to the previous month are able to reproduce during month n, so there are fn−2
pairs of rabbits who are able to reproduce, and each produces a new pair of rabbits.
Thus, we have that the number of rabbits in month n is fn = fn−1 + fn−2 for n ≥ 3 with
f1 = f2 = 1. The sequence of numbers {fn : n ≥ 0} (we take f0 = 0, which satisfies
our recurrence) is known as the Fibonacci sequence after Leonardo of Pisa, better known
as Fibonacci, an Italian mathematician who lived from about 1170 until about 1250. The
terms f0, f1, . . . , f20 of the Fibonacci sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765.

Thus, the answer to our question about the number of pairs of rabbits on the island in
the tenth month is 55. That’s really easy to compute, but what if we asked for the value
of f1000 in the Fibonacci sequence? Could you even tell whether the following inequality
is true or false—without actually finding f1000?

f1000 < 232748383849990383201823093383773932

Consider the sequence {fn+1/fn : n ≥ 1} of ratios of consecutive terms of the Fi-
bonacci sequence. Table 9.1 shows these ratios for n ≥ 18. The ratios seem to be con-
verging to a number. Can we determine this number? Does this number have anything
to do with an explicit formula for fn (if one even exists)?
Example 9.1. The Fibonacci sequence would not be as well-studied as it is if it were only
good for counting pairs of rabbits on a hypothetical island. Here’s another instance
which again results in the Fibonacci sequence. Let cn count the number of ways a 2× n
checkerboard can be covered by 2 × 1 tiles. Then c1 = 1 and c2 = 2 while the recur-
rence is just cn+2 = cn+1 + cn, since either the rightmost column of the checkerboard
contains a vertical tile (and thus the rest of it can be tiled in cn+1 ways) or the rightmost
two columns contain two horizontal tiles (and thus the rest of it can be tiled in cn ways).

9.1.2 Recurrences for strings

In chapter 3, we saw several times how we could find recurrences that gave us the num-
ber of binary or ternary strings of lengthnwhenweplace a restriction on certain patterns
appearing in the string. Let’s recall a couple of those types of questions in order to help
generate more recurrences to work with.
Example 9.2. Let an count the number of binary strings of length n in which no two
consecutive characters are 1’s. Evidently, a1 = 2 since both binary strings of length 1
are “good.” Also, a2 = 3 since only one of the four binary strings of length 2 is “bad,”,
namely (1, 1). And a3 = 5, since of the 8 binary strings of length 3, the following three
strings are “bad”:

(1, 1, 0), (0, 1, 1), (1, 1, 1).

166 cbna

9.1 Introduction

1/1 = 1.0000000000

2/1 = 2.0000000000

3/2 = 1.5000000000

5/3 = 1.6666666667

8/5 = 1.6000000000

13/8 = 1.6250000000

21/13 = 1.6153846154

34/21 = 1.6190476190

55/34 = 1.6176470588

89/55 = 1.6181818182

144/89 = 1.6179775281

233/144 = 1.6180555556

377/233 = 1.6180257511

610/377 = 1.6180371353

987/610 = 1.6180327869

1597/987 = 1.6180344478

2584/1597 = 1.6180338134

4181/2584 = 1.6180340557

Table 9.1: The ratios fn+1/fn for n ≤ 18

cbna 167

Chapter 9 Recurrence Equations

1
2

3

4
6

7

8
9

10

5

11

Figure 9.1: Lines and Regions

More generally, it is easy to see that the sequence satisfies the recurrence an+2 = an+1 +
an, since we can partition the set of all “good” strings into two sets, those ending in 0
and those ending in 1. If the last bit is 0, then in the first n+1 positions, we can have any
“good” string of length n + 1. However, if the last bit is 1, then the preceding bit must
be 0, and then in the first n positions we can have any “good” string of length n.

As a result, this sequence is just the Fibonacci numbers, albeit offset by 1 position, i.e,
an = fn+1.
Example 9.3. Let tn count the number of ternary strings in which we never have (2, 0)
occuring as a substring in two consecutive positions. Now t1 = 3 and t2 = 8, as of the
9 ternary strings of length 2, exactly one of them is “bad.” Now consider the set of all
good strings grouped according to the last character. If this character is a 2 or a 1, then
the preceding n+ 1 characters can be any “good” string of length n+ 1. However, if the
last character is a 0, then the first n + 1 characters form a good string of length n + 1
which does not end in a 2. The number of such strings is tn+1 − tn. Accordingly, the
recurrence is tn+2 = 3tn+1 − tn. In particular, t3 = 21.

9.1.3 Lines and regions in the plane

Our next example takes us back to one of themotivating problems discussed in chapter 1.
In Figure 9.1, we show a family of 4 lines in the plane. Each pair of lines intersects
and no point in the plane belongs to more than two lines. These lines determine 11
regions. We ask how many regions a family of 1000 lines would determine, given these
same restrictions on how the lines intersect. More generally, let rn denote the number of
regions determined by n lines. Evidently, r1 = 2, r2 = 4, r3 = 7 and r4 = 11. Now it is

168 cbna

9.2 Linear Recurrence Equations

easy to see that we have the recurrence rn+1 = rn + n + 1. To see this, choose any one
of the n+ 1 lines and call it l. Line l intersects each of the other lines and since no point
in the plane belongs to three or more lines, the points where l intersects the other lines
are distinct. Label them consecutively as x1, x2, . . . , xn. Then these points divide line l
into n + 1 segments, two of which (first and last) are infinite. Each of these segments
partitions one of the regions determined by the other n lines into two parts, meaning we
have the rn regions determined by the other n lines and n+ 1 new regions that l creates.

9.2 Linear Recurrence Equations

What do all of the examples of the previous section have in common? The end result that
we were able to achieve is a linear recurrence, which tells us how we can compute the nth
term of a sequence given some number of previous values (and perhaps also depending
nonrecursively onn aswell, as in the last example). More precisely a recurrence equation
is said to be linear when it has the following form

c0an+k + c1an+k−1 + c2an+k−2 + · · ·+ ckan = g(n),

where k ≥ 1 is an integer, c0, c1, . . . , ck are constants with c0, ck 6= 0, and g : Z → R is
a function. (What we have just defined may more properly be called a linear recurrence
equation with constant coefficients, since we require the ci to be constants and prohibit
them from depending on n. We will avoid this additional descriptor, instead choosing
to speak of linear recurrence equations with nonconstant coefficients in case we allow the
ci to be functions of n.) A linear equation is homogeneous if the function g(n) on the
right hand side is the zero function. For example, the Fibonacci sequence satisfies the
homogeneous linear recurrence equation

an+2 − an+1 − an = 0.

Note that in this example, k = 2, c0 = 1 and ck = −1.
As a second example, the ternary sequence in Example 9.3 satifies the homogeneous

linear recurrence equation
tn+2 − 3tn+1 + tn = 0.

Again, k = 2 with c0 = ck = 1.
On the other hand, the sequence rn defined in subsection 9.1.3 satisfies the nonhomo-

geneous linear recurrence equation

rn+1 − rn = n+ 1.

In this case, k = 1, c0 = 1 and ck = −1.
Our immediate goal is to develop techniques for solving linear recurrence equations

of both homogeneous and nonhomogeneous types. We will be able to fully resolve

cbna 169

Chapter 9 Recurrence Equations

the question of solving homogeneous linear recurrence equations and discuss a sort of
“guess-and-test” method that can be used to tackle the more tricky nonhomogeneous
type.

9.3 Advancement Operators

Much of ourmotivation for solving recurrence equations comes froman analogous prob-
lem in continuous mathematics—differential equations. You don’t need to have studied
these beasts before in order to understandwhat wewill do in the remainder of this chap-
ter, but if you have, the motivation for how we tackle the problems will be clearer. As
their name suggests, differential equations involve derivatives, which wewill denote us-
ing “operator” notation byDf instead of the Leibniz notation df/dx. In our notation, the
second derivative is D2f , the third is D3f , and so on. Consider the following example.
Example 9.4. Solve the equation

Df = 3f

if f(0) = 2. Even if you’ve not studied differential equations, you should recognize
that this question is really just asking us to find a function f such that f(0) = 2 and its
derivative is three times itself. Let’s ignore the initial condition f(0) = 2 for the moment
and focus on the meat of the problem. What function, when you take its derivative,
changes only by being multiplied by 3? You should quickly think of the function e3x,
since D(e3x) = 3e3x, which has exactly the property we desire. Of course, for any con-
stant c, the function ce3x also satisfies this property, and this gives us the hook we need
in order to satisfy our initial condition. We have f(x) = ce3x andwant to find c such that
f(0) = 2. Now f(0) = c · 1, so c = 2 does the trick and the solution to this very simple
differential equation is f(x) = 2e3x.

With differential equations, we apply the differential operatorD to differentiable (usu-
ally infinitely differentiable) functions. For recurrence equations, we consider the vector
space V whose elements are functions from the set Z of integers to the set C of complex
numbers. We then consider a function A : V −→ V , called the advancement operator, and
defined by Af(n) = f(n + 1) (By various tricks and sleight of hand, we can extend a
sequence {an : n ≥ n0} to be a function whose domain is all of Z, so this technique will
apply to our problems). More generally, Apf(n) = f(n+ p) when p is a positive integer.
Example 9.5. Let f ∈ V be defined by f(n) = 7n − 9. Then we apply the advancement
operator polynomial 3A2 − 5A+ 4 to f with n = 0 as follows:

(3A2 − 5A+ 4)f(0) = 3f(2)− 5f(1) + 4f(0) = 3(5)− 5(−2) + 4(−9) = −11.

As an analogue of Example 9.4, consider the following simple example involving the
advancement operator.

170 cbna

9.3 Advancement Operators

Example 9.6. Suppose that the sequence {sn : n ≥ 0} satisfies s0 = 3 and sn+1 = 2sn for
n ≥ 1. Find an explicit formula for sn.
First, let’s write the question in terms of the advancement operator. We can define a

function f(n) = sn for n ≥ 0, and then the information given becomes that f(0) = 3 and

Af(n) = 2f(n), n ≥ 0.

What function has the property that when we advance it, i.e., evaluate it at n+1, it gives
twice the value that it takes at n? The first function that comes into your mind should
be 2n. Of course, just like with our differential equation, for any constant c, c2n also has
this property. This suggests that if we take f(n) = c2n, we’re well on our way to solving
our problem. Since we know that f(0) = 3, we have f(0) = c20 = c, so c = 3. Therefore,
sn = f(n) = 3 · 2n for n ≥ 0. This clearly satisfies our initial condition, and now we can
check that it also satisfies our advancement operator equation:

Af(n) = 3 · 2n+1 = 3 · 2 · 2n = 2 · (3 · 2n) = 2 · f(n).

Beforemoving on to develop generalmethods for solving advancement operator equa-
tions, let’s say a word about why we keep talking in terms of operators and mentioned
that we can view any sequence as a function with domain Z. If you’ve studied any linear
algebra, you probably remember learning that the set of all infinitely-differentiable func-
tions on the real line form a vector space and that differentiation is a linear operator on
those functions. Our analogy to differential equations holds up just fine here, and func-
tions from Z to C form a vector space and A is a linear operator on that space. We won’t
dwell on the technical aspects of this, and no knowledge of linear algebra is required to
understand our development of techniques to solve recurrence equations. However, if
you’re interested in more placing everything we do on rigorous footing, we discuss this
further in section 9.5.

9.3.1 Constant Coefficient Equations

It is easy to see that a linear recurrence equation can be conveniently rewritten using a
polynomial p(A) of the advancement operator:

p(A)f = (c0A
k + c1A

k−1 + c2A
k−2 + · · ·+ ck)f = g. (9.1)

In equation 9.1, we intend that k ≥ 1 is an integer, g is a fixed vector (function) from V ,
and c0, c1, . . . , ck are constants with c0, ck 6= 0. Note that since c0 6= 0, we can divide
both sides by c0, i.e., we may in fact assume that c0 = 1 whenever convenient to do so.

9.3.2 Roots and Factors

The polynomial p(A) can be analyzed like any other polynomial. It has roots and fac-
tors, and although these may be difficult to determine, we know they exist. In fact, if

cbna 171

Chapter 9 Recurrence Equations

the degree of p(A) is k, we know that over the field of complex numbers, p(A) has k
roots, counting multiplicities. Note that since we assume that ck 6= 0, all the roots of the
polynomial p are non-zero.

9.3.3 What’s Special About Zero?

Why have we limited our attention to recurrence equations of the form p(A)f = gwhere
the constant term in p is non-zero? Let’s consider the alternative for a moment. Suppose
that the constant term of p is zero and that 0 is a root of p of multiplicitym. Then p(A) =
Amq(A) where the constant term of q is non-zero. And the equation p(A)f = g can then
be written as Amq(A)f = g. To solve this equation, we consider instead the simpler
problem q(A)f = g. Then h is a solution of the original problem if and only if the
function h′ defined by h′(n) = h(n + m) is a solution to the simpler problem. In other
words, solutions to the original problem are just translations of solutions to the smaller
one, so we will for the most part continue to focus on advancement operator equations
where p(A) has nonzero constant term, since being able to solve such problems is all we
need in order to solve the larger class of problems.
As a special case, consider the equation Amf = g. This requires f(n+m) = g(n), i.e.,

f is just a translation of g.

9.4 Solving advancement operator equations

In this section, we will explore some ways of solving advancement operator equations.
Some we will make up just for the sake of solving, while others will be drawn from the
examples we developed in section 9.1. Again, readers familiar with differential equa-
tions will notice many similarities between the techniques used here and those used to
solve linear differential equations with constant coefficients, but we will not give any
further examples to make those parallels explicit.

9.4.1 Homogeneous equations

Homogeneous equations, it will turn out, can be solved using very explicit methodology
that will work any time we can find the roots of a polynomial. Let’s start with another
fairly straightforward example.
Example 9.7. Find all solutions to the advancement operator equation

(A2 +A− 6)f = 0. (9.2)

Before focusing on finding all solutions as we’ve been asked to do, let’s just try to find
some solution. We start by noticing that here p(A) = A2 + A − 6 = (A + 3)(A − 2).
With p(A) factored like this, we realize that we’ve already solved part of this problem
in Example 9.6! In that example, the polynomial of A we encountered was (while not

172 cbna

9.4 Solving advancement operator equations

explicitly stated as such there) A − 2. The solutions to (A − 2)f1 = 0 are of the form
f1(n) = c12n. What happens if we try such a function here? We have

(A+ 3)(A− 2)f1(n) = (A+ 3)0 = 0,

so that f1 is a solution to our given advancement operator equation. Of course, it can’t
be all of them. However, it’s not hard to see now that (A + 3)f2 = 0 has as a solution
f2(n) = c2(−3)n by the same reasoning that we used in Example 9.6. Since (A+ 3)(A−
2) = (A− 2)(A+ 3), we see right away that f2 is also a solution of Equation 9.2.
Nowwe’ve got two infinite families of solutions to Equation 9.2. Do they give us all the

solutions? It turns out that by combining them, they do in fact give all of the solutions.
Consider what happens if we take f(n) = c12n + c2(−3)n and apply p(A) to it. We have

(A+ 3)(A− 2)f(n) = (A+ 3)(c12n+1 + c2(−3)n+1 − 2(c12n + c2(−3)n))

= (A+ 3)(−5c2(−3)n)

= −5c2(−3)n+1 − 15c2(−3)n

= 15c2(−3)n − 15c2(−3)n

= 0.

It’s not all that hard to see that since f gives a two-parameter family of solutions to
Equation 9.2, it gives us all the solutions, as we will show in detail in section 9.5.
What happened in this example is far from a fluke. If you have an advancement oper-

ator equation of the form p(A)f = 0 (the constant term of p nonzero) and p has degree
k, then the general solution of p(A)f = 0 will be a k-parameter family (in the previous
example, our parameters are the constants c1 and c2) whose terms come from solutions
to simpler equations arising from the factors of p. We’ll return to this thought in a little
bit, but first let’s look at another example.
Example 9.8. Let’s revisit the problem of enumerating ternary strings of length n that do
have (2, 0) occurring as a substring in two consecutive positions that we encountered in
Example 9.3. There we saw that this number satisfies the recurrence equation

tn+2 = 3tn+1 − tn, n ≥ 1

and t1 = 3 and t2 = 8. Before endeavoring to solve this, let’s rewrite our recurrence
equation as an advancement operator equation. This gives us

p(A)t = (A2 − 3A+ 1)t = 0. (9.3)

The roots of p(A) are (3±
√

5)/2. Following the approach of the previous example, our
general solution is

t(n) = c1

(
3 +
√

5

2

)n
+ c2

(
3−
√

5

2

)n
.

cbna 173

Chapter 9 Recurrence Equations

This probably looks suspicious; we’re counting strings here, so t(n) needs to be a nonneg-
ative integer, but the form we’ve given includes not just fractions but also square roots!
However, if you look carefully, you’ll see that using the binomial theorem to expand
the terms in our expression for t(n) would get rid of all the square roots, so everything
is good. (A faster way to convince yourself that this really satisfies Equation 9.3 is to
mimic the verification we used in the previous example.) Because we have initial values
for t(n), we are able to solve for c1 and c2 here. Evaluating at n = 0 and n = 1 we get

3 = c1 + c2

8 = c1
3 +
√

5

2
+ c2

3−
√

5

2
.

A little bit of computation gives

c1 =
7
√

5

10
+

3

2
and c2 = −7

√
5

10
+

3

2

so that

t(n) =

(
7
√

5

10
+

3

2

)(
3 +
√

5

2

)n
+

(
−7
√

5

10
+

3

2

)(
3−
√

5

2

)n
.

Example 9.9. Find the general solution to the advancement operator equation

(A+ 1)(A− 6)(A+ 4)f = 0.

By now, you shouldn’t be surprised that we immediately make use of the roots of p(A)
and have that the solution is

f(n) = c1(−1)n + c26n + c3(−4)n.

By now, you should be able to see most of the pattern for solving homogeneous ad-
vancement operator equations. However, the examples we’ve considered thus far have
all had one thing in common: the roots of p(A) were all distinct. Solving advancement
operator equations inwhich this is not the case is notmuch harder thanwhatwe’ve done
so far, but we do need to treat it as a distinct case.
Example 9.10. Find the general solution of the advancement operator equation

(A− 2)2f = 0.

Here we have the repeated root problem that we mentioned a moment ago. We see
immediately that f1(n) = c12n is a solution to this equation, but that can’t be all, as
we mentioned earlier that we must have a 2-parameter family of solutions to such an
equation. You might be tempted to try f2(n) = c22n and f(n) = f1(n) + f2(n), but then
this is just (c1 + c2)2n, which is really just a single parameter, c = c1 + c2.

174 cbna

9.4 Solving advancement operator equations

What can we do to resolve this conundrum? What if we tried f2(n) = c2n2n? Again,
if you’re familiar with differential equations, this would be the analogous thing to try,
so let’s give it a shot. Let’s apply (A− 2)2 to this f2. We have

(A− 2)2f2(n) = (A− 2)(c2(n+ 1)2n+1 − 2c2n2n)

= (A− 2)(c22n+1)

= c22n+2 − 2c22n+1

= 0.

Since f2 satisfies our advancement operator equation, we have that the general solution
is

f(n) = c12n + c2n2n.

Example 9.11. Consider the recurrence equation

fn+4 = −2fn+3 + 12fn+2 +−14fn+1 + 5fn

with initial conditions f0 = 1, f1 = 2, f2 = 4, and f3 = 4. Find an explicit formula for
fn.
We again start by writing the given recurrence equation as an advancement operator

equation for a function f(n):

(A4 + 2A3 − 12A2 + 14A− 5)f = 0. (9.4)

Factoring p(A) = A4 + 2A3 − 12A2 + 14A − 5 gives p(A) = (A + 5)(A − 1)3. Right
away, we see that f1(n) = c1(−5)n is a solution. The previous example should have you
convinced that f2(n) = c2 · 1n = c2 and f3(n) = c3n · 1n = c3n are also solutions, and it’s
not likely to surprise you when we suggest trying f4(n) = c4n

2 as another solution. To
verify that it works, we see

(A+ 5)(A− 1)3f4(n) = (A+ 5)(A− 1)2(c4(n+ 1)2 − c4n2)

= (A+ 5)(A− 1)2(2c4n+ c4)

= (A+ 5)(A− 1)(2c4(n+ 1) + c4 − 2c4n− c4)

= (A+ 5)(A− 1)(2c4)

= (A+ 5)(2c4 − 2c4)

= 0.

Thus, the general solution is

f(n) = c1(−5)n + c2 + c3n+ c4n
2.

cbna 175

Chapter 9 Recurrence Equations

Since we have initial conditions, we see that

1 = f(0) = c1 + c2

2 = f(1) = −5c1 + c2 + c3 + c4

4 = f(2) = 25c1 + c2 + 2c3 + 4c4

4 = f(3) = −125c1 + c2 + 3c3 + 9c4

is a system of equations whose solution gives the values for the ci. Solving this system
gives that the desired solution is

f(n) =
1

72
(−5)n +

71

72
+

5

6
n+

1

4
n2.

9.4.2 Nonhomogeneous equations

As we mentioned earlier, nonhomogeneous equations are a bit trickier than solving ho-
mogeneous equations, and sometimes our first attempt at a solution will not be success-
ful but will suggest a better function to try. Before we’re done, we’ll revisit the problem
of lines in the plane that we’ve considered a couple of times, but let’s start with a more
illustrative example.
Example 9.12. Consider the advancement operator equation

(A+ 2)(A− 6)f = 3n.

Let’s try to find the general solution to this, since once we have that, we could find the
specific solution corresponding to any given set of initial conditions.
When dealing with nonhomogeneous equations, we proceed in two steps. The reason

for this will be made clear in Lemma 9.18, but let’s focus on the method for the moment.
Our first step is to find the general solution of the homogeneous equation corresponding
to the given nonhomogeneous equation. In this case, the homogeneous equation we
want to solve is

(A+ 2)(A− 6)f = 0,

for which by now you should be quite comfortable in rattling off a general solution of

f1(n) = c1(−2)n + c26n.

Now for the process of actually dealing with the nonhomogeneity of the advancement
operator equation. It actually suffices to find any solution of the nonhomogeneous equa-
tion, which wewill call a particular solution. Once we have a particular solution f0 to the
equation, the general solution is simply f = f0 + f1, where f1 is the general solution to
the homogeneous equation.
Finding a particular solution f0 is a bit trickier than finding the general solution of

the homogeneous equation. It’s something for which you can develop an intuition by

176 cbna

9.4 Solving advancement operator equations

solving lots of problems, but even with a good intuition for what to try, you’ll still likely
find yourself having to try more than one thing on occasion in order to get a particular
solution. What’s the best starting point for this intuition? It turns out that the best thing
to try is usually (and not terribly surprisingly) something that looks a lot like the right
hand side of the equation, but wewill want to include one ormore new constants to help
us actually get a solution. Thus, here we try f0(n) = d3n. We have

(A+ 2)(A− 6)f0(n) = (A+ 2)(d3n+1 − 6d3n)

= (A+ 2)(−d3n+1)

= −d3n+2 − 2d3n+1

= −5d3n+1

Wewant f0 to be a solution to the nonhomogeneous equation, meaning that (A+2)(A−
6)f0 = 3n. This implies that we need to take d = −1/15. Now, as we mentioned earlier,
the general solution is

f(n) = f0(n) + f1(n) = − 1

15
3n + c1(−2)n + c26n.

We leave it to you to verify that this does satisfy the given equation.
You hopefully noticed that in the previous example, we said that the first guess to try

for a particular solution looks a lot like right hand side of the equation, rather than ex-
actly like. Our next examplewill showwhywe can’t always take something thatmatches
exactly.
Example 9.13. Find the solution to the advancement operator equation

(A+ 2)(A− 6)f = 6n

if f(0) = 1 and f(1) = 5.
The corresponding homogeneous equation here is the same as in the previous exam-

ple, so its general solution is again f1(n) = c1(−2)n + c26n. Thus, the real work here is
finding a particular solution f0 to the given advancement operator equation. Let’s just
try what our work on the previous example would suggest here, namely f0(n) = d6n.
Applying the advancement operator polynomial (A + 2)(A − 6) to f0 then gives, uh,
well, zero, since (A − 6)(d6n) = d6n+1 − 6d6n = 0. Huh, that didn’t work out so well.
However, we can take a cue from how we tackled homogeneous advancement operator
equations with repeated roots and introduce a factor of n. Let’s try f0(n) = dn6n. Now
we have

(A+ 2)(A− 6)(dn6n) = (A+ 2)(d(n+ 1)6n+1 − 6dn6n)

= (A+ 2)d6n+1

= d6n+2 + 2d6n+1

= 6n(36d+ 12d) = 48d6n.

cbna 177

Chapter 9 Recurrence Equations

We want this to be equal to 6n, so we have d = 1/48. Therefore, the general solution is

f(n) =
1

48
n6n + c1(−2)n + c26n.

All that remains is to use our initial conditions to find the constants c1 and c2. We have
that they satisfy the following pair of equations:

1 = c1 + c2

5 =
1

8
− 2c1 + 6c2

Solving these, we arrive at the desired solution, which is

f(n) =
1

48
n6n +

9

64
(−2)n +

55

64
6n.

What’s the lesson we should take away from this example? When making a guess
at a particular solution of a nonhomogeneous advancement operator equation, it does
us no good to use any terms that are also solutions of the corresponding homogeneous
equation, as they will be annihilated by the advancement operator polynomial. Let’s see
how this comes into play when finally resolving one of our longstanding examples.
Example 9.14. We’re now ready to answer the question of how many regions are deter-
mined by n lines in the plane in general position as we discussed in subsection 9.1.3. We
have the recurrence equation

rn+1 = rn + n+ 1,

which yields the nonhomogeneous advancement operator equation (A − 1)r = n + 1.
As usual, we need to start with the general solution to the corresponding homogeneous
equation. This solution is f1(n) = c1. Now our temptation is to try f0(n) = d1n +
d2 as a particular solution. However since the constant term there is a solution to the
homogeneous equation, we need a bit more. Let’s try increasing the powers of n by 1,
giving f0(n) = d1n

2 + d2n. Now we have

(A− 1)(d1n
2 + d2n) = d1(n+ 1)2 + d2(n+ 1)− d1n2 − d2n

= 2d1n+ d1 + d2.

This tells us that we need d1 = 1/2 and d2 = 1/2, giving f0(n) = n2/2+n/2. The general
solution is then

f(n) = c1 +
n2 + n

2
.

What is our initial condition here? Well, one line divides the plane into two regions, so
f(1) = 2. On the other hand, f(1) = c1 + 1, so c1 = 1 and thus

f(n) = 1 +
n2 + n

2
=

(
n+ 1

2

)
+ 1

is the number of regions into which the plane is divided by n lines in general position.

178 cbna

9.5 Formalizing our approach to recurrence equations

We conclude this section with one more example showing how to deal with a nonho-
mogeneous advancement operator equation in which the right hand side is of “mixed
type”.
Example 9.15. Give the general solution of the advancement operator equation

(A− 2)2f = 3n + 2n.

Finding the solution to the corresponding homogeneous equation is getting pretty
easy at this point, so just note that

f1(n) = c12n + c2n2n.

What should we try as a particular solution? Fortunately, we have no interference from
p(A) = (A− 2)2 here. Our first instinct is probably to try f0(n) = d13n + d2n. However,
this won’t actually work. (Try it. You wind up with a leftover constant term that you
can’t just make zero.) The key here is that if we use a term with a nonzero power of n in
it, we need to include the lower order powers as well (so long as they’re not superfluous
because of p(A)). Thus, we try

f0(n) = d13n + d2n+ d3.

This gives

(A− 2)2(d13n + d2n+ d3) = (A− 2)(d13n+1 + d2(n+ 1) + d3 − 2d13n − 2d2n− 2d3)

= (A− 2)(d13n − d2n+ d2 − d3)

= d13n+1 − d2(n+ 1) + d2 − d3 − 2d13n + 2d2n− 2d2 + 2d3

= d13n + d2n− 2d2 + d3.

We want this to be 3n + 2n, so matching coefficients gives d1 = 1, d2 = 2, and d3 = 4.
Thus, the general solution is

f(n) = 3n + 2n+ 4 + c12n + c2n2n.

9.5 Formalizing our approach to recurrence equations

So far, our approach to solving recurrence equations has been based on intuition, and
we’ve not given a lot of explanation for why the solutions we’ve given have been the
general solution. In this section, we endeavor to remedy this. Some familiarity with the
language of linear algebra will be useful for the remainder of this section, but it is not
essential.
Our techniques for solving recurrence equations have their roots in a fundamentally

important concept in mathematics, the notion of a vector space. Recall that a vector

cbna 179

Chapter 9 Recurrence Equations

space1 consists of a set V of elements called vectors; in addition, there is a binary opera-
tion called additionwith the sum of vectors x and y denoted by x+ y; furthermore, there
is an operation called scalar multiplication or scalar product which combines a scalar (real
number) α and a vector x to form a product denoted αx. These operations satisfy the
following properties.

1. x+ y = y + x for every x, y,∈ V .

2. x+ (y + z) = (x+ y) + z, for every x, y, z ∈ V .

3. There is a vector called zero and denoted 0 so that x+ 0 = x for every x ∈ V . Note:
We are again overloading an operator and using the symbol 0 for something other
than a number.

4. For every element x ∈ V , there is an element y ∈ V , called the additive inverse of x
and denoted−x so that x+(−x) = 0. This property enables us to define subtraction,
i.e., x− y = x+ (−y).

5. 1x = x for every x ∈ X .

6. α(βx) = (αβ)x, for every α, β ∈ R and every x ∈ V .

7. α(x+ y) = αx+ αy for every α ∈ R and every x, y ∈ V .

8. (α+ β)x = αx+ βx, for every α, β ∈ R and every x ∈ V .

When V is a vector space, a function φ : V → V is called an linear operator, or just
operator for short, when φ(x+ y) = φ(x) + φ(y) and φ(αx) = αφ(x). When φ : V → V is
an operator, it is customary to write φx rather than φ(x), saving a set of parentheses. The
set of all operators over a vector space V is itself a vector space with addition defined by
(φ+ ρ)x = φx+ ρx and scalar multiplication by (αφ)x = α(φx).
In this chapter, we focus on the real vector space V consisting of all functions of the

form f : Z→ R. Addition is defined by (f+g)(n) = f(n)+g(n) and scalarmultiplication
is defined by (αf)(n) = α(f(n)).

9.5.1 The Principal Theorem

Here is the basic theorem about solving recurrence equations (stated in terms of ad-
vancement operator equations)—and while we won’t prove the full result, we will pro-
vide enough of an outline where it shouldn’t be too difficult to fill in the missing details.

1 To be more complete, we should say that we are talking about a vector space over the field of real numbers,
but in our course, these are the only kind of vector spaces we will consider. For this reason, we just use the
short phrase “vector space”.

180 cbna

9.5 Formalizing our approach to recurrence equations

Theorem 9.16. Let k be a positive integer k, and let c0, c1, . . . , ck be constants with c0, ck 6= 0.
Then the setW of all solutions to the homogeneous linear equation

(c0A
k + c1A

k−1 + c2A
k−2 + · · ·+ ck)f = 0 (9.5)

is a k-dimensional subspace of V .

The conclusion that the setW of all solutions is a subspace of V is immediate, since

p(A)(f + g) = p(A)f + p(A)g and p(a)(αf) = αp(A)(f).

What takes a bit of work is to show that W is a k-dimensional subspace. But once this
is done, then to solve the advancement operator equation given in the form of Theo-
rem 9.16, it suffices to find a basis for the vector spaceW . Every solution is just a linear
combination of basis vectors. In the next several sections, we outline how this goal can
be achieved.

9.5.2 The Starting Case

The development proceeds by induction (surprise!) with the case k = 1 being the base
case. In this case, we study a simple equation of the form (c0A+ c1)f = 0. Dividing by
c0 and rewriting using subtraction rather than addition, it is clear that we are just talking
about an equation of the form (A− r)f = 0 where r 6= 0.

Lemma 9.17. Let r 6= 0,and let f be a solution to the operator equation (A− r)f = 0, Then let
c = f(0). Then f(n) = crn for every n ∈ Z.

Proof. We first show that f(n) = crn for every n ≥ 0, by induction on n. The base case is
trivial since c = f(0) = cr0. Now suppose that f(k) = crk for some non-negative integer
k. Then (A− r)f = 0 implies that f(k + 1)− rf(k) = 0, i.e.,

f(k + 1) = rf(k) = rcrk = crk+1.

A very similar argument shows that f(−n) = cr−n for every n ≤ 0.

Lemma 9.18. Consider a nonhomogeneous operator equation of the form

p(A)f = (c0A
k + c1A

k−1 + c2A
k−2 + · · ·+ ck)f = g, (9.6)

with c0, ck 6= 0, and letW be the subspace of V consisting of all solutions to the corresponding
homogeneous equation

p(A)f = (c0A
k + c1A

k−1 + c2A
k−2 + · · ·+ ck)f = 0. (9.7)

If f0 is a solution to Equation 9.6, then every solution f to Equation 9.6 has the form f = f0+f1
where f1 ∈W .

cbna 181

Chapter 9 Recurrence Equations

Proof. Let f be a solution of Equation 9.6, and let f1 = f − f0. Then

p(A)f1 = p(A)(f − f0) = p(A)f − p(A)f0 = g − g = 0.

This implies that f1 ∈W and that f = f0 + f1 so that all solutions to Equation 9.6 do in
fact have the desired form.

Using the preceding two results, we can now provide an outline of the inductive step
in the proof of Theorem 9.16, at least in the casewhere the polyomial in the advancement
operator has distinct roots.

Theorem 9.19. Consider the following advancement operator equation

p(A)f = (A− r1)(A− r2) . . . (A− rk)f = 0. (9.8)

with r1, r2, . . . , rk distinct non-zero constants. Then every solution to Equation 9.8 has the form

f(n) = c1r
n
1 + c2r

n
2 + c3r

n
3 + · · ·+ ckr

n
k .

Proof. The case k = 1 is Lemma 9.17. Now suppose we have established the theorem for
some positive integerm and consider the case k = m+ 1. Rewrite Equation 9.8 as

(A− r1)(A− r2) . . . (A− rm)[(A− rm+1)f] = 0.

By the inductive hypothesis, it follows that if f is a solution to Equation 9.8, then f is
also a solution to the nonhomogeneous equation

(A− rm+1)f = d1r
n
1 + d2r

n
2 + · · ·+ dmr

n
m. (9.9)

To find a particular solution f0 to Equation 9.9, we look for a solution having the form

f0(n) = c1r
n
1 + c2r

n
2 + · · ·+ cmr

n
m. (9.10)

On the other hand, a simple calculation shows that for each i = 1, 2, . . . ,m, we have

(A− rm+1)cir
n
i = cir

n+1
i − rm+1cir

n
i = ci(ri − rm+1)rni ,

so it suffices to choose ci so that ci(ri − rm+1) = di, for each i = 1, 2, . . . ,m. This can be
done since rm+1 is distinct from ri for i = 1, 2, . . .m.

So now we have a particular solution f0(n) =
∑m
i=1 cir

n
i . Next we consider the corre-

sponding homogeneous equation (A−rm+1)f = 0. The general solution to this equation
has the form f1(n) = cm+1r

n
m+1. It follows that every solution to the original equation

has the form

f(n) = f0(n) + f1(n) = c1r
n
1 + c2r

n
2 + · · ·+ cmr

n
m + crnm+1,

which is exactly what we want!

182 cbna

9.6 Using generating functions to solve recurrences

9.5.3 Repeated Roots

It is straightforward to modify the proof given in the preceding section to obtain the
following result. We leave the details as an exercise.

Lemma 9.20. Let k ≥ 1 and consider the equation

(A− r)kf = 0. (9.11)

Then the general solution to Equation 9.11 has the following form

f(n) = c1r
n + c2nr

n + c3n
2rn + c4n

3rn + · · ·+ ckn
k−1rn. (9.12)

9.5.4 The General Case

Combining the results in the preceding sections, we can quickly write the general so-
lution of any homogeneous equation of the form p(A)f = 0 provided we can factor the
polynomial p(A). Note that in general, this solution takes us into the field of complex
numbers, since the roots of a polynomial with real coefficients are sometimes complex
numbers—with non-zero imaginary parts.
We close this section with one more example which illustrates how quickly we can

read off the general solution of a homogeneous advancement operator equation p(A)f =
0, provided that p(A) is factored.
Example 9.21. Consider the advancement operator equation

(A− 1)5(A+ 1)3(A− 3)2(A+ 8)(A− 9)4f = 0.

Then every solution has the following form

f(n) =c1 + c2n+ c3n
2 + c4n

3 + c5n
4

+ c6(−1)n + c7n(−1)n + c8n
2(−1)n

+ c93n + c10n3n

+ c11(−8)n

+ c129n + c13n9n + c14n
29n + c15n

39n.

9.6 Using generating functions to solve recurrences

The approach we have seen thus far in this chapter is not the only way to solve recur-
rence equations. Additionally, it really only applies to linear recurrence equations with
constant coefficients. In the remainder of the chapter, we will look at some examples of
how generating functions can be used as another tool for solving recurrence equations.

cbna 183

Chapter 9 Recurrence Equations

In this section, our focus will be on linear recurrence equations. In section 9.7, we will
see how generating functions can solve a nonlinear recurrence.
Our first example is the homogeneous recurrence that corresponds to the advance-

ment operator equation in Example 9.7.
Example 9.22. Consider the recurrence equation rn + rn−1 − 6rn−2 = 0 for the sequence
{rn : n ≥ 0}with r0 = 1 and r1 = 3. This sequence has generating function

f(x) =

∞∑
n=0

rnx
n = r0 + r1x+ r2x

2 + r3x
3 + · · · .

Now consider for a moment what the function xf(x) looks like. It has rn−1 as the coef-
ficient on xn. Similarly, in the function −6x2f(x), the coefficient on xn is −6rn−2.
What is our point in all of this? Well, if we add them all up, notice what happens.

The coefficient on xn becomes rn + rn−1 − 6rn−2, which is 0 because of the recurrence
equation! Now let’s see how this all lines up:

f(x) = r0 + r1x+ r2x
2 + r3x

3 + · · ·+ rnx
n + · · ·

xf(x) = 0 + r0x+ r1x
2 + r2x

3 + · · · rn−1xn + · · ·
−6x2f(x) = 0 + 0− 6r0x

2 − 6r1x
3 + · · · − 6rn−2x

n + · · ·

When we add the left-hand side, we get f(x)(1 + x − 6x2). On the right-hand side, the
coefficient on xn for n ≥ 2 is 0 because of the recurrence equation. However, we are left
with r0 + (r0 + r1)x = 1 + 4x, using the initial conditions. Thus, we have the equation

f(x)(1 + x− 6x2) = 1 + 4x,

or f(x) = (1 + 4x)/(1 + x− 6x2). This is a generating function that we can attack using
partial fractions, and we find that

f(x) =
6

5

1

1− 2x
− 1

5

1

1 + 3x
=

6

5

∞∑
n=0

2nxn − 1

5

∞∑
n=0

(−3)nxn.

From here, we read off rn as the coefficient on xn and have rn = (6/5)2n − (1/5)(−3)n.
Although there’s a bit more work involved, this method can be used to solve nonho-

mogeneous recurrence equations as well, as the next example illustrates.
Example 9.23. The recurrence equation rn− rn−1− 2rn−2 = 2n is nonhomogeneous. Let
r0 = 2 and r1 = 1. This time, to solve the recurrence, we start by multiplying both sides
by xn. This gives the equation

rnx
n − rn−1xn − 2rn−2x

n = 2nxn.

184 cbna

9.6 Using generating functions to solve recurrences

If we sum this over all values of n ≥ 2, we have

∞∑
n=2

rnx
n −

∞∑
n=2

rn−1x
n − 2

∞∑
n=2

rn−2x
n =

∞∑
n=2

2nxn.

The right-hand side you should readily recognize as being equal to 1/(1 − 2x). On the
left-hand side, however, we need to do a bit more work.
The first sum is just missing the first two terms of the series, so we can replace it by

R(x) − (2 + x), where R(x) =
∑∞
n=0 rnx

n. The second sum is almost xR(x), except it’s
missing the first term. Thus, it’s equal to xR(x)−2x. The sum in the final term is simply
x2R(x). Thus, the equation can be rewritten as

R(x)− (2 + x)− (xR(x)− 2x)− 2x2R(x) =
1

1− 2x
.

A little bit of algebra then gets us to the generating function

R(x) =
2x2 − 5x+ 3

(1− 2x)(1− x− 2x2)
.

This generating function can be expanded using partial fractions, so we have

R(x) =
11

9(1− 2x)
+

2

3(1− 2x)2
+

10

9(1 + x)

=
11

9

∞∑
n=0

2nxn +
1

3

∞∑
n=0

n2nxn−1 +
10

9

∞∑
n=0

(−1)n.

From this generating function, we can now read off that

rn =
11

9
2n +

(n+ 1)

3
2n+1 +

10

9
(−1)n =

17

9
2n +

2

3
n2n +

10

9
(−1)n.

The recurrence equations of the two examples in this section can both be solved using
the techniques we studied earlier in the chapter. One potential benefit to the generating
function approach for nonhomogeneous equations is that it does not require determin-
ing an appropriate form for the particular solution. However, the method of generating
functions often requires that the resulting generating function be expanded using par-
tial fractions. Both approaches have positives and negatives, so unless instructed to use
a specific method, you should choose whichever seems most appropriate for a given sit-
uation. In the next section, we will see a recurrence equation that is most easily solved
using generating functions because it is nonlinear.

cbna 185

Chapter 9 Recurrence Equations

9.7 Solving a nonlinear recurrence

In this section, we will use generating functions to enumerate the a certain type of trees.
In doing this, we will see how generating functions can be used in solving a nonlinear
recurrence equation. Wewill also make a connection to a counting sequence we encoun-
tered back in chapter 2. To do all of this, wemust introduce a bit of terminology. A tree is
rooted if we have designated a special vertex called its root. Wewill always draw our trees
with the root at the top and all other vertices below it. An unlabeled tree is one in which
we do not make distinctions based upon names given to the vertices. For our purposes,
a binary tree is one in which each vertex has 0 or 2 children, and an ordered tree is one in
which the children of a vertex have some ordering (first, second, third, etc.). Since we
will be focusing on rooted, unlabeled, binary, ordered trees (RUBOTs for short), we will
call the two children of vertices that have children the left and right children.
In Figure 9.2, we show the rooted, unlabeled, binary, ordered trees with n leaves for

n ≤ 4.

Figure 9.2: The RUBOTs with n leaves for n ≤ 4

186 cbna

9.7 Solving a nonlinear recurrence

Let C(x) =
∑∞
n=0 cnx

n be the generating function for the sequence {cn : n ≥ 0}where
cn is the number of RUBOTs with n leaves. (We take c0 = 0 for convenience.) Then
we can see from Figure 9.2 that C(x) = x + x2 + 2x3 + 5x4 + · · · . But what are the
remaining coefficients? Let’s see how we can break a RUBOT with n leaves down into a
combination of two smaller RUBOTs to see if we can express cn in terms of some ck for
k < n. When we look at a RUBOT with n ≥ 2 leaves, we notice that the root vertex must
have two children. Those children can be viewed as root nodes of smaller RUBOTs, say
the left child roots a RUBOT with k leaves, meaning that the right child roots a RUBOT
with n − k leaves. Since there are ck possible sub-RUBOTs for the left child and cn−k
sub-RUBOTs for the right child, there are a total of ckcn−k RUBOTs in which the root’s
left child has k leaves on its sub-RUBOT.We can do this for any k = 1, 2, . . . , n−1, giving
us that

cn =

n−1∑
k=1

ckcn−k.

(This is valid since n ≥ 2.) Since c0 = 0, we can actually write this as

cn =

n∑
k=0

ckcn−k.

Let’s look at the square of the generating function C(x). By Proposition 8.3, we have

C2(x) = c20 + (c0c1 + c1c0)x+ (c0c2 + c1c1 + c2c0)x2 + · · ·
= 0 + 0 + (c0c2 + c1c1 + c2c0)x2 + (c0c3 + c1c2 + c2c1 + c3c0)x3 + · · · .

But now we see from our recursion above that the coefficient on xn in C2(x) is nothing
but cn for n ≥ 2. All we’re missing is the x term, so adding it in gives us that

C(x) = x+ C2(x).

Now this is a quadratic equation in C(x), so we can solve for C(x) and have

C(x) =
1±
√

1− 4x

2
=

1± (1− 4x)1/2

2
.

Hence, we can use Newton’s Binomial Theorem (8.9) to expand C(x). To do so, we use
the following lemma. Its proof is nearly identical to that of Lemma 8.11, and is thus
omitted.

Lemma 9.24. For each k ≥ 1, (
1/2

k

)
=

(−1)k−1

k

(
2k−2
k−1

)
22k−1

.

cbna 187

Chapter 9 Recurrence Equations

Now we see that

C(x) =
1

2
± 1

2

∞∑
n=0

(
1/2

n

)
(−4)nxn =

1

2
± 1

2

(
1 +

∞∑
n=1

(−1)n−1

n

(
2n−2
n−1

)
22n−1

(−4)nxn

)

=
1

2
± 1

2
∓
∞∑
n=1

(
2n−2
n−1

)
n

xn.

Since we need cn ≥ 0, we take the “minus” option from the “plus-or-minus” in the
quadratic formula and thus have the following theorem.

Theorem 9.25. The generating function for the number cn of rooted, unlabeled, binary, ordered
trees with n leaves is

C(x) =
1−
√

1− 4x

2
=

∞∑
n=1

1

n

(
2n− 2

n− 1

)
xn.

Notice that cn is a Catalan number, which we first encountered in chapter 2, where we
were counting lattice paths that did not cross the diagonal line y = x. (The coefficient cn
is the Catalan number we called C(n− 1) in chapter 2.)

9.8 Discussion

Yolanda took a sip of coffee “I’m glad I paid attention when we were studying vector
spaces, bases and dimension. All this stuff about solutions for recurrence equations
made complete sense. And I can really understand why the professor was making a
big deal out of factoring. We saw it our first semester when we were learning about
partial fractions in calculus. And we saw it again with the differential equations stuff.
Isn’t it really neat to see how it all fits together.” All this enthusiasm was too much for
Alice who was not having a good day. Bob was more sympathetic “Except for the detail
about zero as a root of an advancement operator polynomial, I was okwith this chapter.”
Xing said “Here we learned a precise approach that depended only on factoring. I’ve
been reading on the web and I see that there have been some recent breakthroughs on
factoring.” Bob jumped back in “But even if you can factor like crazy, if you have a
large degree polynomial in the advancement operator equation, then you will have lots
of initial conditions. This might be a second major hurdle.” Dave mumbled “Just do
the factoring. The rest is easy.” Carlos again was quiet but he knew that Dave was right.
Solving big systems of linear equations is relatively easy. The challenge is in the factoring
stage.

188 cbna

9.9 Exercises

9.9 Exercises

1. Write each of the following recurrence equations as advancement operator equa-
tions.

a) rn+2 = rn+1 + 2rn

b) rn+4 = 3rn+3 − rn+2 + 2rn

c) gn+3 = 5gn+1 − gn + 3n

d) hn = hn−1 − 2hn−2 + hn−3

e) rn = 4rn−1 + rn−3− 3rn−5 + (−1)n

f) bn = bn−1 + 3bn−2 + 2n+1 − n2

2. Solve the recurrence equation rn+2 = rn+1 + 2rn if r0 = 1 and r2 = 3 (Yes, we
specify a value for r2 but not for r1).

3. Find the general solution of the recurrence equation gn+2 = 3gn+1 − 2gn.

4. Solve the recurrence equation hn+3 = 6hn+2− 11hn+1 + 6hn if h0 = 3, h1 = 2, and
h2 = 4.

5. Find an explicit formula for the nth Fibonacci number fn. (See subsection 9.1.1.)

6. For each advancement operator equation below, give its general solution.

a) (A− 2)(A+ 10)f = 0

b) (A2 − 36)f = 0

c) (A2 − 2A− 5)f = 0

d) (A3 − 4A2 − 20A+ 48)f = 0

e) (A3 +A2 − 5A+ 3)f = 0

f) (A3 + 3A2 + 3A+ 1)f = 0

7. Solve the advancement operator equation (A2 + 3A − 10)f = 0 if f(0) = 2 and
f(1) = 10.

8. Give the general solution to each advancement operator equation below.
a) (A− 4)3(A+ 1)(A− 7)4(A− 1)2f = 0

b) (A+ 2)4(A− 3)2(A− 4)(A+ 7)(A− 5)3g = 0

c) (A− 5)2(A+ 3)3(A− 1)3(A2 − 1)(A− 4)3h = 0

9. For each nonhomogeneous advancement operator equation, find its general solu-
tion.

a) (A− 5)(A+ 2)f = 3n

b) (A2 + 3A− 1)g = 2n + (−1)n

c) (A− 3)3f = 3n+ 1

d) (A2 + 3A− 1)g = 2n

e) (A− 2)(A− 4)f = 3n2 + 9n

f) (A+ 2)(A− 5)(A− 1)f = 5n

g) (A− 3)2(A+ 1)g = 2 · 3n

h) (A− 2)(A+ 3)f = 5n2n

cbna 189

Chapter 9 Recurrence Equations

i) (A− 2)2(A− 1)g = 3n22n + 2n j) (A+ 1)2(A− 3)f = 3n + 2n2

10. Find and solve a recurrence equation for the number gn of ternary strings of length
n that do not contain 102 as a substring.

11. There is a famous puzzle called the Towers of Hanoi that consists of three pegs
and n circular discs, all of different sizes. The discs start on the leftmost peg, with
the largest disc on the bottom, the second largest on top of it, and so on, up to the
smallest disc on top. The goal is to move the discs so that they are stacked in this
same order on the rightmost peg. However, you are allowed to move only one disc
at a time, and you are never able to place a larger disc on top of a smaller disc. Let
tn denote the fewest moves (amove being taking a disc from one peg and placing it
onto another) inwhich you can accomplish the goal. Determine an explicit formula
for tn.

12. A valid database identifier of length n can be constructed in three ways:
• Starting with A and followed by any valid identifier of length n− 1.
• Starting with one of the two-character strings 1A, 1B, 1C, 1D, 1E, or 1F and
followed by any valid identifier of length n− 2.
• Starting with 0 and followed by any ternary ({0, 1, 2}) string of length n− 1.

Find a recurrence for the number g(n) of database identifiers of length n and then
solve your recurrence to obtain an explicit formula for g(n). (You may consider
the empty string of length 0 a valid database identifier, making g(0) = 1. This will
simplify the arithmetic.)

13. Let tn be the number of ways to tile a 2× n rectangle using 1× 1 tiles and L-tiles.
An L-tile is a 2×2 tile with the upper-right 1×1 square deleted. (An L tile may be
rotated so that the “missing” square appears in any of the four positions.) Find a
recursive formula for tn along with enough initial conditions to get the recursion
started. Use this recursive formula to find a closed formula for tn.

14. Prove Lemma 9.20 about advancement operator equations with repeated roots.

15. Use generating functions to solve the recurrence equation rn = 4rn−1 + 6rn−2 for
n ≥ 2 with r0 = 1 and r1 = 3.

16. Let a0 = 0, a1 = 2, and a2 = 5. Use generating functions to solve the recurrence
equation an+3 = 5an+2 − 7an+1 + 3an + 2n for n ≥ 0.

17. Let b0 = 1, b2 = 1, and b3 = 4. Use generating functions to solve the recurrence
equation bn+3 = 4bn+2 − bn+1 − 6bn + 3n for n ≥ 0.

18. Use generating functions to find a closed formula for the Fibonacci numbers fn.

190 cbna

9.9 Exercises

19. How many rooted, unlabeled, binary, ordered, trees (RUBOTs) with 6 leaves are
there? Draw 6 distinct RUBOTs with 6 leaves.

20. In this chapter, we developed a generating function for the Catalan numbers. We
first encountered the Catalan numbers in chapter 2, where we learned they count
certain lattice paths. Develop a recurrence for the number ln of lattice paths similar
to the recurrence

cn =

n∑
k=0

ckcn−k for n ≥ 2

for RUBOTs by thinking of ways to break up a lattice path from (0, 0) to (n, n) that
does not cross the diagonal y = x into two smaller lattice paths of this type.

cbna 191

CHAPTER 10
Probability

It was a slow day andDave said hewas bored. It was just after lunch, and he complained
that there was nothing to do. Nobody really seemed to be listening, although Alice said
that Davemight consider studying, even reading ahead in the chapter. Undeterred, Dave
said “Hey Alice, how about we play a game. We could take turns tossing a coin, with the
other person calling heads or tails. We could keep score with the first one to a hundred
being the winner.” Alice rolled her eyes at such a lame idea. Sensing Alice’s lack of
interest, Dave countered “OK, how about a hundred games of Rock, Paper or Scissors?”
Zori said “Why play a hundred times? If that’s what you’re going to do, just play a single
game.”
Now it was Alice’s turn. “If you want to play a game, I’ve got a good one for you.

Just as you wanted, first one to score a hundred wins. You roll a pair of dice. If you
roll doubles, I win 2 points. If the two dice have a difference of one, I win 1 point. If the
difference is 2, then it’s a tie. If the difference is 3, youwin one point; if the difference is 4,
you win two points; and if the difference is 5, you win three points. Xing interrupted to
say “In other words, if the difference is d, then Dave wins d− 2 points.” Alice continues
“Right! And there are threeways Dave canwin, with one of them being the biggest prize
of all. Also, rolling doubles is rare, so this has to be a good game for Dave.”
Zori’s ears perked up with Alice’s description. She had a gut feeling that this game

wasn’t really in Dave’s favor and that Alice knew what the real situation was. The idea
of a payoff with some uncertainty involved seemed very relevant. Carlos was scribbling
on a piece of paper, then said politely “Dave, you really should be reading ahead in the
chapter”.
So what do you think? Is this a fair game? What does it mean for a game to be fair?

Should Dave play—independent of the question of whether such silly stuff should oc-
cupy one’s time? Andwhat does any of this conversation have to dowith combinatorics?

10.1 An Introduction to Probability

We continue with an informal discussion intended to motivate the more structured de-
velopment that will follow. Consider the “spinner” shown in Figure 10.1. Suppose we

193

Chapter 10 Probability

Figure 10.1: A Spinner for Games of Chance

give it a good thwack so that the arrow goes round and round. We then record the num-
ber of the region in which the pointer comes to rest. Then observers, none of whom have
studied combinatorics, might make the following comments:

1. The odds of landing in region 1 are the same as those for landing in region 3.

2. You are twice as likely to land in region 2 as in region 4.

3. When you land in an odd numbered region, then 60% of the time, it will be in
region 5.

We will now develop a more formal framework that will enable us to make such dis-
cussions far more precise. We will also see whether Alice is being entirely fair to Bob in
her proposed game to one hundred.
We begin by defining a probability space as a pair (S, P) where S is a finite set and P

is a function that whose domain is the family of all subsets of S and whose range is the
set [0, 1] of all real numbers which are non-negative and at most one. Furthermore, the
following two key properties must be satisfied:

1. P (∅) = 0 and P (S) = 1.

2. If A and B are subsets of S, and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

When (S, P) is a probability space, the function P is called a probability measure, the
subsets of S are called events, and when E ⊆ S, the quantity P (E) is referred to as the
probability of the event E.

Note that we can consider P to be extended to a mapping from S to [0, 1] by setting
P (x) = P ({x}) for each element x ∈ S. We call the elements of S outcomes (some people
prefer to say the elements are elementary outcomes) and the quantity P (x) is called the
probability of x. It is important to realize that if you know P (x) for each x ∈ S, then you
can calculate P (E) for any event E, since (by the second property), P (E) =

∑
x∈X P (x).

194 cbna

10.1 An Introduction to Probability

Example 10.1. For the spinner, we can take S = {1, 2, 3, 4, 5}, with P (1) = P (3) = P (4) =
1/8, P (2) = 2/8 = 1/4 and P (5) = 3/8. So P ({2, 3}) = 1/8 + 2/8 = 3/8.

Example 10.2. Let S be a finite, nonempty set and let n = |S|. For each E ⊆ S, set
P (E) = |E|/n. In particular, P (x) = 1/n for each element x ∈ S. In this trivial example,
all outcomes are equally likely.

Example 10.3. If a single six sided die is rolled and the number of dots on the top face is
recorded, then the ground set is S = {1, 2, 3, 4, 5, 6} and P (i) = 1/6 for each i ∈ S. On
the other hand, if a pair of dice are rolled and the sum of the dots on the two top faces is
recorded, then S = {2, 3, 4, . . . , 11, 12}with P (2) = P (12) = 1/36, P (3) = P (11) = 2/36,
P (4) = P (10) = 3/36, P (5) = P (9) = 4/36, P (6) = P (8) = 5/36 and P (7) = 6/36. To
see this, consider the two die as distinguished, one die red and the other one blue. Then
each of the pairs (i, j) with 1 ≤ i, j ≤ 6, the red die showing i spots and the blue die
showing j spots is equally likely. So each has probability 1/36. Then, for example, there
are three pairs that yield a total of four, namely (3, 1), (2, 2) and (1, 3). So the probability
of rolling a four is 3/36 = 1/12.

Example 10.4. InAlice’s game as described above, the setS can be taken as {0, 1, 2, 3, 4, 5},
the set of possible differenceswhen a pair of dice are rolled. In this game, wewill see that
the correct definition of the function P will set P (0) = 6/36; P (1) = 10/36; P (2) = 8/36;
P (3) = 6/36; P (4) = 4/36; and P (5) = 2/36. Using Xing’s more compact notation, we
could say that P (0) = 1/6 and P (d) = 2(6− d)/36 when d > 0.

Example 10.5. A jar contains twenty marbles, of which six are red, nine are blue and
the remaining five are green. Three of the twenty marbles are selected at random.1 Let
X = {0, 1, 2, 3, 4, 5}, and for each x ∈ X , let P (x) denote the probability that the number
of blue marbles among the three marbles selected is x. Then P (i) = C(9, i)C(11, 3 −
i)/C(20, 3) for i = 0, 1, 2, 3, while P (4) = P (5) = 0. Bob says that it doesn’t make sense
to have outcomes with probability zero, but Carlos says that it does.

Example 10.6. In some cards games, each player receives five cards from a standard deck
of 52 cards—four suits (spades, hearts, diamonds and clubs) with 13 cards, ace though
king in each suit. A player has a full house if there are two values x and y for which he
has three of the four x’s and two of the four y’s, e.g. three kings and two eights. If five
cards are drawn at random from a standard deck, the probability of a full house is

(
13
1

)(
12
1

)(
4
3

)(
4
2

)(
52
5

) ≈ 0.00144.

1This is sometimes called sampling without replacement. You should imagine a jar with opaque sides—so you
can’t see through them. The marbles are stirred/shaken, and you reach into the jar blind folded and draw
out three marbles.

cbna 195

Chapter 10 Probability

10.2 Conditional Probability and Independent Events

A jar contains twenty marbles of which six are red, nine are blue and the remaining five
are green. While blindfolded, Xing selects two of the twenty marbles random (without
replacement) and puts one in his left pocket and one in his right pocket. He then takes
off the blindfold.
The probability that the marble in his left pocket is red is 6/20. But Xing first reaches

into his right pocket, takes this marble out and discovers that it is is blue. Is the prob-
ability that the marble in his left pocket is red still 6/20? Intuition says that it’s slightly
higher than that. Here’s a more formal framework for answering such questions.
Let (S, P) be a probability space and let B be an event for which P (B) > 0. Then for

every event A ⊆ S, we define the probability of A, given B, denoted P (A|B), by setting
P (A|B) = P (A ∩B)/P (B).
Discussion 10.7. Returning to the question raised at the beginning of the section, Bob says
that this is just conditional probability. He says let B be the event that the marble in the
right pocket is blue and let A be the event that the marble in the left pocket is red. Then
P (B) = 9/20, P (A) = 6/20 and P (A∩B) = (9 · 6)/380, so that P (A|B) = 54

380
20
9 = 6/19,

which is of course slightly larger than 6/20. Alice is impressed.
Example 10.8. Consider the jar of twentymarbles from the preceding example. A second
jar of marbles is introduced. This jar has eighteen marbles: nine red, five blue and four
green. A jar is selected at random and from this jar, two marbles are chosen at random.
What is the probability that both are green? Bob is on a roll. He says “Let G be the
event that both marbles are green, and let J1 and J2 be the event that the marbles come
from the first jar and the second jar, respectively. Then G = (G ∩ J1) ∪ (G ∩ J2), and
(G∩J1)+(G∩J2) = ∅. Furthermore, P (G|J1) =

(
5
2

)
/
(
20
2

)
and P (G|J2) =

(
4
2

)
/
(
18
2

)
, while

P (J1) = P (J2) = 1/2. Also P (G ∩ Ji) = P (Ji)P (G|Ji) for each i = 1, 2. Therefore,

P (G) =
1

2

(
5
2

)(
20
2

) +
1

2

(
4
2

)(
18
2

) =
1

2

(20

380
+

12

306

)
.”

Now Alice is speechless.

10.2.1 Independent Events

Let A and B be events in a proability space (S, P). We say A and B are independent if
P (A ∩ B) = P (A)P (B). Note that when P (B) 6= 0, A and B are independent if and
only if P (A) = P (A|B). Two events that are not independent are said to be dependent.
Returning to our earlier example, the two events (A: the marble in Xing’s left pocket is
red and B: the marble in his right pocket is blue) are dependent.
Example 10.9. Consider the two jars of marbles from Example 10.8. One of the two jars
is chosen at random and a single marble is drawn from that jar. Let A be the event that

196 cbna

10.3 Bernoulli Trials

the second jar is chosen, and let B be the event that the marble chosen turns out to be
green. Then P (A) = 1/2 and P (B) = 1

2
5
20 + 1

2
4
18 . On the other hand, P (A∩B) = 1

2
4
18 , so

P (A∩B) 6= P (A)P (B), and the two events are not independent. Intuitively, this should
be clear, since once you know that the marble is green, it is more likely that you actually
chose the first jar.
Example 10.10. A pair of dice are rolled, one red and one blue. Let A be the event that
the red die shows either a 3 or a 5, and let B be the event that you get doubles, i.e., the
red die and the blue die show the same number. Then P (A) = 2/6, P (B) = 6/36, and
P (A ∩B) = 2/36. So A and B are independent.

10.3 Bernoulli Trials

Supposewe have a jar with 7marbles, four of which are red and three are blue. Amarble
is drawn at random and we record whether it is red or blue. The probability p of getting
a red marble is 4/7; and the probability of getting a blue is 1− p = 3/7.
Now suppose the marble is put back in the jar, the marbles in the jar are stirred, and

the experiment is repeated. Then the probability of getting a red marble on the second
trial is again 4/7, and this pattern holds regardless of the number of times the experiment
is repeated.
It is customary to call this situation a series of Bernoulli trials. More formally, we have

an experiment with only two outcomes: success and failure. The probability of success
is p and the probability of failure is 1 − p. Most importantly, when the experiment is
repeated, then the probability of success on any individual test is exactly p.

We fix a positive integer n and consider the case that the experiment is repeated n
times. The outcomes are then the binary strings of length n from the two-letter alphabet
{S, F}, for success and failure, respectively. If x is a string with i sucesses and n − i
failures, then P (x) =

(
n
i

)
pi(1 − p)n−i. Of course, in applications, success and failure

may be replaced by: head/tails, up/down, good/bad, forwards/backwards, red/blue,
etc.
Example 10.11. When a die is rolled, let’s say that we have a success if the result is a two
or a five. Then the probability p of success is 2/6 = 1/3 and the probability of failure is
2/3. If the die is rolled ten times in succession, then the probability that we get exactly
exactly four successes is C(10, 4)(1/3)4(2/3)6.
Example 10.12. A fair coin is tossed 100 times and the outcome (heads or tails) is recorded.
Then the probability of getting heads 40 times and tails the other 60 times is(

100

40

)(
1

2

)40(
1

2

)60

=

(
100
40

)
2100

.

Discussion 10.13. Bob says that if a fair coin is tossed 100 times, it is fairly likely that you
will get exactly 50 heads and 50 tails. Dave is not so certain this is right. Carlos fires

cbna 197

Chapter 10 Probability

up his computer and in few second, he reports that the probability of getting exactly 50
heads when a fair coin is tossed 100 times is

12611418068195524166851562157

158456325028528675187087900672

which is .079589, to six decimal places. In other words, not very likely at all. Xing is
doing a modestly more complicated calculation, and he reports that you have a 99%
chance that the number of heads is at least 20 and at most 80. Carlos adds that when
n is very large, then it is increasingly certain that the number of heads in n tosses will
be close to n/2. Dave asks what do you mean by close, and what do you mean by very
large?

10.4 Discrete Random Variables

Let (S, P) be a probability space and let X : S −→ R be any function that maps the
outcomes in S to real numbers (all values allowed, positive, negative and zero). We call2
X a random variable. The quantity

∑
x∈S X(x)P (x), denoted E(X), is called the expecta-

tion (also called the mean or expected value) of the random variable X . As the suggestive
name reflects, this is what one should expect to be the average behavior of the result of
repeated Bernoulli trials.
Note that since we are dealing only with probability spaces (S, P) where S is a finite

set, the range of the probability measure P is actually a finite set. Accordingly, we can
rewrite the formula for E(X) as

∑
y y · prob(X(x) = y), where the summation extends

over a finite range of values for y.
Example 10.14. For the spinner shown in Figure 10.1, letX(i) = i2 where i is the number
of the region. Then

E(X) =
∑
i∈S

i2P (i) = 12
1

8
+ 22

2

8
+ 32

1

8
+ 42

1

8
+ 52

3

8
=

109

8
.

Note that 109/8 = 13.625. The significance of this quantity is captured in the following
statement. If we record the result from the spinner n times in succession as (i1, i2, . . . , in)
and Xing receives a prize worth i2j for each j = 1, 2, . . . , n), then Xing should “expect” to
receive a total prize worth 109n/8 = 13.625n. Bob asks how this statement can possibly
be correct, since 13.625nmaynot even be an integer, and anyprize Xing receiveswill have
integral value. Carlos goes on to explain that the concept of expected value provides a
formal definition for what is meant by a fair game. If Xing pays 13.625 cents to play the
game and is then paid i2 pennies where i is the number of the region where the spinner
stops, then the game is fair. If he pays less, he has an unfair advantage, and if he pays
2For historical reasons, capital letters, like X and Y are used to denote random variables. They are just
functions, so letters like f , g and hmight more seem more natural—but maybe not.

198 cbna

10.4 Discrete Random Variables

more, the game is biased against him. Bob says “How can Xing pay 13.625 pennies?”
Brushing aside Bob’s question, Carlos says that one can prove that for every ε > 0, there
is some n0 (which depends on ε) so that if n > n0, then the probability that Xing’s total
winningsminus 13.625n, divided by n is within ε of 13.625 is at least 1−ε. Carlos turns to
Dave and explains politely that this statement gives a precise meaning of what is meant
by “close” and “large”.
Example 10.15. ForAlice’s game as detailed at the start of the chapter, S = {0, 1, 2, 3, 4, 5},
we could take X to be the function defined by X(d) = 2 − d. Then X(d) records the
amount that Bob wins when the difference is d (a negative win for Bob is just a win for
Alice in the same amount). We calculate the expectation of X as follows:

E(X) =

5∑
d=0

X(d)p(d) = −2
1

6
− 1

10

36
+ 0

8

36
+ 1

6

36
+ 2

4

36
+ 3236 =

−2

36
.

Note that−2/36 = −.055555 So if points were dollars, each time the game is played,
Bob should expect to lose slightly more than a nickel. Needless to say, Alice likes to play
this game and the more times Bob can be tricked into playing, the more she likes it. On
the other hand, by this time in the chapter, Bob should be getting themessage and telling
Alice to go suck a lemon.

10.4.1 The Linearity of Expectation

The following fundamental property of expectation is an immmediate consequence of
the definition, but we state it formally because it is so important to discussions to follow.

Proposition 10.16. Let (S, P) be a probability space and let X1, X2, . . . , Xn be random vari-
ables. Then

E(X1 +X2 + · · ·+Xt) = E(X1) + E(X2) + · · ·+ E(Xn).

10.4.2 Implications for Bernoulli Trials

Example 10.17. Consider a series of n Bernoulli trials with p, the probability of success,
and let X count the number of successes. Then, we claim that

E(X) =

n∑
i=0

i

(
n

i

)
pi(1− p)n−i = np

To see this, consider the function f(x) = [px + (1 − p)]n. Taking the derivative by the
chain rule, we find that f ′(x) = np[px + (1 − p)]n−1. Now when x = 1, the derivative
has value np.

cbna 199

Chapter 10 Probability

On the other hand, we can use the binomial theorem to expand the function f .

f(x) =

n∑
i=0

(
n

i

)
xipi(1− p)n−i

It follows that

f ′(x) =

n∑
i=0

i

(
n

i

)
xi−pi(1− p)n−i

And now the claim follows by again setting x = 1. Who says calculus isn’t useful!
Example 10.18. Many states have lotteries to finance college scholarships or other public
enterprises judged to have value to the public at large. Although far from a scientific
investigation, it seems on the basis of our investigation that many of the games have an
expected value of approximately fifty cents when one dollar is invested. So the games
are far from fair, and no one should play them unless they have an intrinsic desire to
support the various causes for which the lottery profits are targeted.
By contrast, various games of chance played in gambling centers have an expected

return of slightly less than ninety cents for every dollar wagered. In this setting, we can
only say that one has to place a dollar value on the enjoyment derived from the casino
environment. From a mathematical standpoint, you are going to lose. That’s how they
get the money to build those exotic buildings.

10.5 Central Tendency

Consider the following two situations.
Situation 1. A small town decides to hold a lottery to raise funds for charitable pur-

poses. A total of 10, 001 tickets are sold, and the tickets are labeled with numbers from
the set {0, 1, 2, . . . , 10, 000}. At a public ceremony, duplicate tickets are placed in a big
box, and the mayor draws the winning ticket from out of the box. Just to heighten the
suspense as to who has actually won the prize, the mayor reports that the winning num-
ber is at least 7, 500. The citizens ooh and aah and they can’t wait to see who among
them will be the final winner.
Situation 2. Behind a curtain, a fair coin is tossed 10, 000 times, and the number of

heads is recorded by an observer, who is reputed to be honest and impartial. Again, the
outcome is an integer in the set {0, 1, 2, . . . , 10, 000}. The observer then emerges from
behind the curtain and announces that the number of heads is at least than 7, 500. There
is a pause and then someone says “What? Are you out of your mind?”
So we have two probability spaces, both with sample space S = {0, 1, 2, . . . , 10, 000}.

For each, we have a random variableX , the winning ticket number in the first situation,
and the number of heads in the second. In each case, the expected value, E(X), of the
random variableX is 5, 000. In the first case, we are not all that surprised at an outcome

200 cbna

10.5 Central Tendency

far from the expected value, while in the second, it seems intuitively clear that this is
an extraordinary occurrence. The mathematical concept here is referred to as central
tendency, and it helps us to understand just how likely a random variable is to stray from
its expected value.
For starters, we have the following elementary resultwhich is calledMarkov’s inequal-

ity.

Theorem 10.19. LetX be a random variable in a probability space (S, P). Then for every k > 0,

P (|X| ≥ k) ≤ E(|X|)/k.

Proof. Of course, the inequality holds trivially unless k > E(|X|). For k in this range, we
establish the equivalent inequality: kP (|X| ≥ k) ≤ E(|X|).

kP (|X| ≥ k) =
∑
r≥k

kP (|X| = r)

≤
∑
r≥k

rP (|X| = r)

≤
∑
r>0

rP (|X| = r)

= E(|X|).

To make Markov’s inequality more concrete, we see that on the basis of this trivial
result, the probability that either the winning lottery ticket or the number of heads is at
least 7, 500 is at most 5000/7500 = 2/3. So nothing alarming here in either case. Since we
still feel that the two cases are quite different, a more subtle measure will be required.

10.5.1 Variance and Standard Deviation

Again, let (S, P) be a probability space and let X be a random variable. The quantity
E((X−E(X))2) is called the variance ofX and is denoted var(X). Evidently, the variance
of X is a non-negative number. The standard deviation of X , denoted σX is then defined
as the quantity

√
var(x), i.e., σ2

X = var(X).
Example 10.20. For the spinner shown at the beginning of the chapter, letX(i) = i2 when
the pointer stops in region i. Then we have already noted that the expectation E(X) of
the random variable X is 109/8. It follows that the variance var(X) is:

var(X) = (12 − 109

8
)2

1

8
+ (22 − 109

8
)2

1

4
+ (32 − 109

8
)2

1

8
+ (42 − 109

8
)2

1

8
+ (52 − 109

8
)2

3

8

= (1082 + 1052 + 1002 + 932 + 842)/512

= 48394/512

cbna 201

Chapter 10 Probability

It follows that the standard deviation σX of X is then
√

48394/512 ≈ 9.722.
Example 10.21. Suppose that 0 < p < 1 and consider a series of n Bernoulli trials with
the probability of success being p, and let X count the number of successes. We have
already noted that E(X) = np. Now we claim the the variance of X is given by:

var(X) =

n∑
i=0

(i− np)2
(
n

i

)
pi(1− p)n−i = np(1− p)

There are several ways to establish this claim. One way is to proceed directly from the
definition, using the same method we used previously to obtain the expectation. But
now you need also to calculate the second derivative. Here is a second approach, one
that capitalizes on the fact that separate trials in a Bernoulli series are independent.
Let F = {X1, X2, . . . , Xn} be a family of random variables in a probability space

(S, P). We say the family F is independent if for each i and j with 1 ≤ i < j ≤ n, and for
each pair a, b of real numbers with 0 ≤ a, b ≤ 1, the follwing two events are independent:
{x ∈ S : Xi(x) ≤ a} and {x ∈ S : Xj(x) ≤ b}. When the family is independent, it is
straightforward to verify that

var(X1 +X2 + · · ·+Xn) = var(X1) + var(X2) + · · ·+ var(Xn).

With the aid of this observation, the calculation of the variance of the random variable
X which counts the number of successes becomes a trivial calculation. But in fact, the
entire treatment we have outlined here is just a small part of a more complex subject
which can be treated more elegantly and ultimately much more compactly—provided
you first develop additional background material on families of random variables. For
this we will refer you to suitable probability and statistics texts, such as those given in
our references.
Proposition 10.22. Let X be a random variable in a probability space (S, P). Then var(X) =
E(X2)− E2(X).
Proof. Let E(X) = µ. From its definition, we note that

var(X) =
∑
r

(r − µ)2 prob(X = r)

=
∑
r

(r2 − 2rµ+ µ2) prob(X = r)

=
∑
r

r2 prob(X = r)− 2µ
∑
r

r prob(X = r) + µ2
∑
r

prob(X = r)

= E(X2)− 2µ2 + µ2

= E(X2)− µ2

= E(X2)− E2(X).

202 cbna

10.5 Central Tendency

Variance (and standard deviation) are quite useful tools in discussions of just how
likely a random variable is to be near its expected value. This is reflected in the following
theorem, known as Chebychev’s inequality.

Theorem 10.23. Let X be a random variable in a probability space (S, P), and let k > 0 be a
positive real number. If the expectation E(X) of X is µ and the standard deviation is σX , then

prob(|X − E(X)| ≤ kσX) ≥ 1− 1

k2
.

Proof. Let A = {r ∈ R : |r − µ| > kσX}.
Then we have:

var(X) = E((X − µ)2)

=
∑
r∈R

(r − µ)2 prob(X = r)

≥
∑
r∈A

(r − µ)2 prob(X = r)

≥ k2σ2
X

∑
r∈A

prob(X = r)

≥ k2σ2
X prob(|X − µ| > kσX).

Since var(X) = σ2
X , we may now deduce that 1/k2 ≥ prob(|X − µ|) > kσX). Therefore,

since prob(|X − µ| ≤ kσX) = 1− prob(|X − µ| > kσX), we conclude that

prob(|X − µ| ≤ kσX) ≥ 1− 1

k2
.

Example 10.24. Here’s an example of how this inequality can be applied. Consider n
tosses of a fair coin withX counting the number of heads. As noted before, µ = E(X) =
n/2 and var(X) = n/4, so σX =

√
n/2. When n = 10, 000 and µ = 5, 000 and σX = 50.

Setting k = 50 so that kσX = 2500, we see that the probability that X is within 2500 of
the expected value of 5000 is at least 0.9996. So it seems very unlikely indeed that the
number of heads is at least 7, 500.
Going back to lottery tickets, if we make the rational assumption that all ticket num-

bers are equally likely, then the probability that the winning number is at least 7, 500 is
exactly 2501/100001, which is very close to 1/4.
Example 10.25. In the case of Bernoulli trials, we can use basic properties of binomial
coefficients to make even more accurate estimates. Clearly, in the case of coin tossing,
the probability that the number of heads in 10, 000 tosses is at least 7, 500 is given by

cbna 203

Chapter 10 Probability

10,000∑
i=7,500

(
10, 000

i

)
/210,000

Now a computer algebra system can make this calculation exactly, and you are encour-
aged to check it out just to see how truly small this quantity actually is.

10.6 Probability Spaces with Infinitely Many Outcomes

To this point, we have focused entirely on probability spaces (S, P) with S a finite set.
More generally, probability spaces are defined where S is an infinite set. When S is
countably infinite, we can still define P on the members of S, and now

∑
x∈S P (x) is an

infinite sum which converges absolutely (since all terms are non-negative) to 1. When
S is uncountable, P is not defined on S. Instead, the probabilty function is defined on
a family of subsets of S. Given our emphasis on finite sets and combinatorics, we will
discuss the first case briefly and refer students to texts that focus on general concepts
from probability and statistics for the second.
Example 10.26. Consider the following game. Nancy rolls a single die. She wins if she
rolls a six. If she rolls any other number, she then rolls again and again until the first
time that one of the following two situations occurs: (1) she rolls a six, which now this
results in a loss or (2) she rolls the same number as she got on her first roll, which results
in a win. As an example, here are some sequences of rolls that this game might take:

1. (4, 2, 3, 5, 1, 1, 1, 4). Nancy wins!

2. (6). Nancy wins!

3. (5, 2, 3, 2, 1, 6). Nancy loses. Ouch.

So what is the probability that Nancy will win this game?
Nancy can win with a six on the first roll. That has probability 1/6. Then she might

win on round n where n ≥ 2. To accomplish this, she has a 5/6 chance of rolling a
number other than six on the first roll; a 4/6 chance of rolling something that avoids a
win/loss decision on each of the rolls, 2 through n− 1 and then a 1/6 chance of rolling
the matching number on round n. So the probability of a win is given by:

1

6
+
∑
n≥2

5

6

(
4

6

)n−2
1

6
=

7

12
.

Example 10.27. You might think that something slightly more general is lurking in the
background of the preceding example—and it is. Suppose we have two disjoint events
A andB in a probability space (S, P) and that P (A)+P (B) < 1. Then suppose wemake

204 cbna

10.7 Discussion

repeated samples from this space with each sample independent of all previous ones.
Call it a win if event A holds and a loss if event B holds. Otherwise, it’s a tie and we
sample again. Now the probability of a win is:

P (A) + P (A)
∑
n≥1

(1− P (A)− P (B))n =
P (A)

P (A) + P (B)
.

10.7 Discussion

Bob was late for morning coffee and the group was well into dissecting today’s applied
combinatorics class. As he approached the table, he blurted out “Ok guys, here’s a prob-
lem that doesn’t make any sense to me, except that Nadja, my friend from biology, says
that if I have a good feel for probability, then it is transparent.” Alice not very softly in-
terjected “Not much goes through six inches of iron.” Bob didn’t bite “A guy eats lunch
at the same diner every day. After lunch, the waiter asks if he wants dessert. He asks for
the choices and the waiter replies ‘We have three kinds of pie: apple, cherry and pecan.’
Then the guy always says ‘I’ll have pecan pie.’ This goes on for six months. Then one
day, the waiter says ‘I have bad news. Today, we don’t have any apple pie, so your only
choices are cherry and pecan.’ Now the guy says ‘In this case, I’ll have the cherry pie.’
I have to tell you all that this doesn’t make any sense to me. Why would the guy ask
for cherry pie in preference to pecan pie when he consistently takes pecan pie over both
cherry pie and apple pie?”
Zori was the first to say something ‘Ok guys, I’ve finally willing to accept the premise

that big integer arithmetic, and things that reflect the same flavor, might and I emphasize
might, have some relevance in the realworld, but this conversation about dessert in some
stupid diner is too much.” Xing was hesitant but still offered “There’s something here.
That much I’m sure.” Dave said “Yeah, a great dessert. Especially the pecan pie.” Alice
was not amused. All the while Carlos was thinking. Finally, he said “I think it has
something to do with conditional probability. The patron’s preference for pecan pie was
conditioned on the fact that there were three choices. When there were only two choices,
his preferences changed.”
NowYolanda sawmore “Doesn’t this happen all the time in presidential politics? Peo-

ple prefer candidate Awhen A, B and C are running, but when candidate C drops out,
they shift their preference to candidate B.” Alice said “You could say the same thing
about close personal relationships.” Although she didn’t say it, she was thinking that it
wouldn’t matter how many dropped out if Bob was one of the remaining.

10.8 Exercises

1. Our gang of seven (Alice, Bob, Carlos, Dave, Xing, Yolanda and Zori) are students
in a class with a total enrollment of 35. The professor chooses three students at

cbna 205

Chapter 10 Probability

random to go to the board to work challenge problems.
a) What is the probability that Yolanda is chosen?
b) What is the probability that Yolanda is chosen and Zori is not?
c) What is the probability that exactly two members of the club are chosen?
d) What is the probability that none of the seven members of club are chosen?

2. Bob says to no one in particular, “Did you know that the probability that you will
get at least one “7” in three rolls of a pair of dice is slightly less than 1/2. On the
other hand, the probability that you’ll get at least one “5” in six rolls of the dice is
just over 1/2.” Is Bob on target, or out to lunch?

3. Consider the spinner shown in Figure 10.1 at the beginning of the chapter.
a) What is the probability of getting at least one “5” in three spins?
b) What is the probability of getting at least one “3” in three spins?
c) If you keep spinning until you get either a “2” or a “5”, what is the probability

that you get a “2” first?
d) If you receive i dollars when the spinner halts in region i, what is the expected

value? Since three is right in the middle of the possible outcomes, is it rea-
sonable to pay three dollars to play this game?

4. Alice proposes to Bob the following game. Bob pays one dollar to play. Fifty balls
marked 1, 2, . . . , 50 are placed in a big jar, stirred around, and then drawn out one
by one by Zori, who is wearing a blindfold. The result is a random permutation σ
of the integers 1, 2, . . . , 50. Bob wins with a payout of two dollars and fifty cents
if the permutation σ is a derangement, i.e., σ(i) 6= i for all i = 1, 2, . . . , n. Is this a
fair game for Bob? If not how should the payoff be adjusted to make it fair?

5. A randomgraphwith vertex set {1, 2, . . . , 10} is constructed by the followingmethod.
For each two element subset {i, j} from {1, 2, . . . , 10}, a fair coin is tossed and
the edge {i, j} then belongs to the graph when the result is “heads.” For each 3-
element subset S ⊆ {1, 2, . . . , n}, let ES be the event that S is a complete subgraph
in our random graph.
a) Explain why P (ES) = 1/8 for each 3-element subset S.
b) Explain why ES and ET are independent when |S ∩ T | ≤ 1.
c) Let S = {1, 2, 3}, T = {2, 3, 4} and U = {3, 4, 5}. Show that P (ES |ET) 6=
P (ES |ETEU).

6. Ten marbles labeled 1, 2, . . . , 10 are placed in a big jar and then stirred up. Zori,
wearing a blindfold, pulls them out of the jar two at a time. Players are allowed

206 cbna

10.8 Exercises

to place bets as to whether the sum of the two marbles in a pair is 11. There are
C(10, 2) = 45 different pairs and exactly 5 of these pairs sums to eleven.
Suppose Zori draws out a pair; the results are observed; then she returns the two
balls to the jar and all ten balls are stirred before the next sample is taken. Since
the probability that the sum is an “11” is 5/45 = 1/9, then it would be fair to pay
one dollar to play the game if the payoff for an “11” is nine dollars. Similarly, the
payoff for a wager of one hundred dollars should be nine hundred dollars.
Now consider an alternative way to play the game. Now Zori draws out a pair; the
results are observed; and the marbles are set aside. Next, she draws another pair
from the remaining eight marbles, followed by a pair selected from the remaining
six, etc. Finally, the fifth pair is just the pair that remains after the fourth pair has
been selected. Now players may be free to wager on the outcome of any or all or
just some of the five rounds. Explain why either everyone should or no one should
wager on the fifth round. Accordingly, the last round is skipped and all marbles
are returned to the jar and we start over again.
Also explain why an observant player can make lots of money with a payout ratio
of nine to one. Now for a more challenging problem, what is the minimum payout
ratio above which a player has a winning strategy?

cbna 207

CHAPTER 11
Applying Probability to

Combinatorics
Bob likes to think of himself as a wild and crazy guy, totally unpredictable. Most guys
do. But Alice says that Bob can’t change his basic nature, which is excruciatingly boring.
Carlos remarks that perhaps we shouldn’t be so hard on Bob, because under certain
circumstances, we can all be forced to be dull and repetitive.

11.0.1 The Pigeon Hole Principle Revisited

Recall that when n is a positive integer, we let [n] = {1, 2, . . . , n}. In this chapter, whenX
is a set and k is a non-negative integer with k ≤ |X|, we borrow from our in-line notation
for binomial coefficients and let C(X, k) denote the family of all k-element subsets ofX .
So |C([n], k)| = C(n, k) whenever 0 ≤ k ≤ n.

Recall that the pigeon hole principle asserts that if n+ 1 pigeons are placed in n holes,
then there must be some hole into which two or more pigeons have been placed. More
formally, if n and k are positive integers, t > n(k − 1) and f : [t] −→ [n] is any function,
then there is a k-element subsetH ⊆ [t] and an element j ∈ [n] so that f(i) = j for every
i ∈ H .
We now embark on a study of an elegant extension of this basic result, one that con-

tinues to fascinate and challenge.

11.0.2 A First Taste of Ramsey Theory

Returning to the discussion at the start of this section, you might say that an induced
subgraphH of a graphG is “boring” if it is either a complete subgraph or an independent
set. In either case, exactly every pair of vertices inH behaves in exactly the same boring
way. So is boredom inevitable? The answer is yes—at least in a relative sense. As a
starter, let’s show that any graph on six (or more) vertices has a boring subgraph of size
three.
Lemma 11.1. Let G be any graph with six of more vertices. Then either G contains a complete
subgraph of size 3 or an independent set of size 3.

209

Chapter 11 Applying Probability to Combinatorics

Proof. Let x be any vertex in G. Then split the remaining vertices into two sets S1 and
S2 with S1 being the neighbors of x and S2 the non-neighbors. Since G has at least six
vertices, we know that either |S1| ≥ 3 or |S2| ≥ 3. Suppose first that |S1| ≥ 3 and let
y1, y2 and y3 be distinct vertices from S1. If yiyj is an edge in G for some distinct pair
i, j ∈ {1, 23}, then {x, yi, yj} is a complete subgraph of size 3 in G. On the other hand,
if there are no edges among the vertices in {y1, y2, y3}, then we have an independent set
of size 3.
The argument when |S2| ≥ 3 is dual.

We note that the bound of six in the preceding lemma is sharp, as a cycle on five
vertices does not contain either a complete set of size 3 nor an independent set of size 3.

Next, here is the general statement for a result, which is usually called the graph ver-
sion of Ramsey’s theorem.

Theorem 11.2. Ifm and n are positive integers, then there exists a least positive integerR(m,n)
so that if G is a graph and G has at least R(m,n) vertices, then either G contains a complete
subgraph onm vertices, or G contains an independent set of size n.

Proof. We show that R(m,n) exists and is at most
(
m+n−2
m−1

)
. This claim is trivial when

eitherm ≤ 2 or n ≤ 2, so we may assume thatm,n ≥ 3. From this point, we proceed by
induction on t = m+ n assuming that the result holds when t ≤ 5.

Now let x be any vertex inG. Then there are at least
(
m+n−2
m−1

)
−1 other vertices, which

we partition as S1 ∪ S2, where S1 are those vertices adjacent to x in G and S2 are those
vertices which are not adjacent to s.

We recall that the binomial coefficients satisfy(
m+ n− 2

m− 1

)
=

(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
=

(
m+ n− 3

m− 2

)
+

(
m+ n− 3

n− 2

)
So either |S1| ≥

(
m+n−3
m−2

)
or |S1| ≥

(
m+n−3
m−1

)
. If the first option holds, and S1 does not

have an independent set of size n, then it contains a complete subgraph of sizem− 1. It
follows that we may add x to this set to obtain a complete subgraph of sizem in G.

Similarly, if the second option holds, and S2 does not contain a complete subgraph of
size m, then S2 contains an independent set of size n − 1, and we may add x to this set
to obtain an independent set of size n in G.

11.1 Small Ramsey Numbers

Actually determing the Ramsey numbers R(m,n) referenced in Theorem 11.2 seems to
be a notoriously difficult problem, and only a handful of these values are known pre-
cisely. In particular, R(3, 3) = 6 and R(4, 4) = 18, while 43 ≤ R(5, 5) ≤ 49. The dis-
tinguished Hungarian mathematician Paul Erdös said on many occasions that it might
be possible to determineR(5, 5) exactly, if all the world’s mathematical talent were to be

210 cbna

11.2 Estimating Ramsey Numbers

focused on the problem. But he also said that finding the exact value ofR(6, 6) might be
beyond our collective abilities.
In the following table, we provide information about the ramsey numbers R(m,n)

when m and n are at least 3 and at most 9. When a cell contains a single number, that
is the precise answer. When there are two numbers, they represent upper and lower
bounds.

n 3 4 5 6 7 8 9
m
3 6 9 14 18 23 36 39
4 18 25 35, 41 49, 61 56, 84 69, 115
5 43, 49 58, 87 80, 143 95, 216 121, 316
6 102, 165 111, 298 127, 495 153, 780
7 205, 540 216, 1031 216, 1713
8 282, 1870 282, 3583
9 565, 6588

For additional data, do a web search and look for Stanley Radziszowski, who main-
tains the most current information on his web site.

11.2 Estimating Ramsey Numbers

Wewill find it convenient to utilize the following approximation due to Stirling. You can
find a proof in almost any advanced calculus book.

n! ≡
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
− 139

51840n3
+O(

1

n4
)
)
.

Of course, we will normally be satisfied with the first term:

n! ≡
√

2πn
(n
e

)n
Using Stirling’s approximation, we have the following upper bound:

R(n, n) ≤
(

2n− 2

n− 1

)
≡ 22n

4
√
πn

11.3 Applying Probability to Ramsey Theory

The following theorem, due to P. Erdös, is a true classic, and is presented here in a man-
ner that is faithful to how it was first published. Aswe shall see later, it was subsequently
recast—but that’s getting the cart ahead of the horse.

cbna 211

Chapter 11 Applying Probability to Combinatorics

Theorem 11.3.
R(n, n) ≥ n

e
√

2
2

1
2n

Proof. Let t be an integer with t > n and consider the set F of all labeled graphs with
vertex set {1, 2, . . . , t}. Clearly, there are 2C(t,2) graphs in this family. Let F1 denote the
subfamily consisting of those graphs which contain a complete subgraph of size n. It is
easy to see that

|F1| ≤
(
t

n

)
2n(t−n)2C(t−n,2).

Similarly, let F2 denote the subfamily consisting of those graphs which contain an inde-
pendent set of size n. It follows that

|F2| ≤
(
t

n

)
2n(t−n)2C(t−n,2).

Wewant to take the integer t as large as we canwhile still guaranteeing that |F1|+ |F2| ≤
|F|. This will imply that there is a graph G in F which does not contain a complete
subgraph of size n or an independent set of size n. So consider the following inequality:

2

(
t

n

)
2n(t−n)2C(t−n,2) < 2C(t,2). (11.1)

Now we ask how large can t be without violating inequality 11.1? To answer this, we
use the trivial inequality

(
t
n

)
≤ tn/n! and the use the Stirling approximation for n!. After

some algebra and taking the nth root of both sides, we see that we need only guarantee
that

t ≤ n

e
√
n

2
1
2n

Now let’s take a second look at the proof of Theorem 11.3. We consider a probability
space (S, P) where the outcomes are graphs with vertex set {1, 2, . . . , t}. For each i and
j with 1 ≤ i < j ≤ t, edge ij is present in the graph with probability 1/2. Furthermore,
the events for distinct pairs are independent.
Let X1 denote the random variable which counts the number of n-element subsets

of {1, 2, . . . , t} for which all
(
n
2

)
pairs are edges in the graph. Similarly, X2 is the ran-

domvariablewhich counts the number ofn-element independent subsets of {1, 2, . . . , t}.
Then set X = X1 +X2.
By linearity of expectation, E(X) = E(X1) + E(X2) while

E(X1) = E(X2) =

(
t

n

)
1

2C(n,2)
.

212 cbna

11.4 Ramsey’s Theorem

If E(X) < 1, then there must exist a graph with vertex set {1, 2, . . . , t} without a Kn

or an In. And the question of how large t can be while maintaining E(X) < 1 leads to
exactly the same calculation we had before.
Aftermore thanfifty years and the efforts ofmanyvery bright researchers, onlymarginal

improvements have been made on the bounds on R(n, n) from Theorem 11.2 and The-
orem 11.3. In particular, no one can settle whether there is some constant c < 2 and an
integer n0 so that R(n, n) < 2cn when n > n0. Similarly, no one has been able to answer
whether there is some constant d > 1/2 and an integer n1 so that R(n, n) > 2dn when
n > n1. We would certainly give you an A for this course if you managed to do either.

Carlos said that he had been trying to prove a good lower bound onR(n, n) using only
constructive methods, i.e., no random techniques allowed. But he was having problems.
Anything he tried seemed only to show that R(n, n) ≥ nc where c is a constant. That
seems soweak compared to the exponential boundwhich the probabilisticmethod gives
easily. Usually Alice was not very sympathetic to the complaints of others and certainly
not from Carlos, who seemed always to be out front. But this time, Alice said to Carlos
and in a manner that all could hear “Maybe you shouldn’t be so hard on yourself. I read
an article on theweb that nobody has been able to show that there is a constant c > 1 and
an integer n0 so thatR(n, n) > cnwhen n > n0, provided that only constructivemethods
are allowed. And maybe, just maybe, saying that you are unable to do something that
lots of other famous people seem also unable to do is not so bad.” Bob saw a new side
of Alice and this too wasn’t all bad.

11.4 Ramsey’s Theorem

By this time, you are probably not surprised to see that there is a very general form of
Ramsey’s theorem. We have a bounded number of bins or colors and we are placing the
subsets of a fixed size into these categories. The conclusion is that there is a large set
which is treated uniformly.
Here’s the formal statement.

Theorem 11.4. Let r and s be positive integers and let h = (h1, h2, . . . , hr) be a string of
integers with hi ≥ s for each i = 1, 2, . . . , s. Then there exists a least positive integer R(s :
h1, h2, . . . , hr) so that if n ≥ n0 and φ : C([n], s] −→ [r] is any function, then there exists an
integerα ∈ [r] and a subsetHα ⊆ [n]with |Hα| = hα so that φ(S) = α for everyS ∈ C(Hα, s).

We don’t include the proof of this general statement here, but the more ambitious
students may attempt it on their own. Note that the case s = 1 is just the Pigeon Hole
principle, while the case s = r = 2 is just the graph version of Ramsey’s theorem, as
established in Theorem 11.2. An argument using double induction is required for the
proof in the general case. The first induction is on r and the second is on s.

cbna 213

Chapter 11 Applying Probability to Combinatorics

11.5 The Probabilistic Method

At the outset of this chapter, we presented Erdős’ original proof for the lower bound for
the Ramsey number R(n, n) using counting. Later, we recast the proof in a probabilistic
setting. History has shown that this second perspective is the right one. To illustrate
the power of this approach, we present a classic theorem, which is also due to Erdős,
showing that there are graphs with large girth and large chromatic number.
The girth g of a graphG is the smallest integer forwhichG contains a cycle on g vertices.

The girth of a forest is taken to be infinite, while the girth of a graph is three if and only
if it has a triangle. You can check the families of triangle-free, large chromatic number,
graphs constructed in chapter 5 and see that each has girth four.

Theorem 11.5 (Erdős). For every pair g, t of integers with g ≥ 3, there exists a graph G with
χ(G) > t and the girth of G greater than g.

Proof. Before proceeding with the details of the argument, let’s pause to get the general
idea behind the proof. We choose integers n and s with n > s, and it will eventually
be clear how large they need to be in terms of g and t. We will then consider a random
graph on vertex set {1, 2, . . . , n}, and just as before, for each i and j with 1 ≤ i < j ≤ n,
the probability that the pair ij is an edge is p, but now pwill depend on n. Of course, the
probability that any given pair is an edge is completely independent of all other pairs.
Our first goal is to choose the values of n, s and p so that with high probability, a

random graph does not have an independent set of size s. You might think as a second
goal, we would try to get a random graph without small cycles. But this goal is too
restrictive. Instead, we just try to get a graph in which there are relatively few small
cycles. In fact, we want the number of small cycles to be less than n/2. Then we will
remove one vertex from each small cycles, resulting in a graph with at least n/2 vertices,
having no small cycles and no independent set of size s. The chromatic number of this
graph is at least n/2s, so we will want to have the inequality n > 2st.
Now for some details. Let X1 be the random variable that counts the number of s-

element independent sets. Then

E(X1) =

(
n

s

)
(1− p)C(s,2)

Now we want E(X1) < 1/4. Since C(n, s) ≤ ns = es lnn and (1 − p)C(s,2) ≤ e−ps
2/2,

it suffices to set s = 2 lnn/p. By Markov’s law, the probability that X1 exceeds 1/2 ≥
2E(X1) is less than 1/2.
Now let X2 count the number of cycles in G of size at most g. Then

E(X2) ≤
g∑
i=3

n(n− 1)(n− 2) . . . (n− i+ 1)pi ≤ g(pn)g.

214 cbna

11.6 Discussion

Now, we want E(X2) ≤ n/4, and an easy calculation shows that g(np)g ≤ n/4 when
p = n1/g−1/10. Again by Markov’s Law, the probability that X2 exceeds n/2 ≥ 2E(X2)
is less than 1/2.
We conclude that there is a graphG for whichX1 = 0 andX2 ≤ n/2. Remove a vertex

from each of the small cycles in G and let H be the graph that remains. Clearly, H has
at least n/2 vertices, no cycle of size at most g and no independent set of size s. Finally,
the inequality n > 2st requires n1/g/(40 lnn) > t.

11.5.1 Gaining Intuition with the Probabilistic Method

Experienced researchers are able to simplify the calculations in an argument of this type,
as they know what can safely be discarded and what can not. Here’s a quick tour of the
essential steps. WewantE(X1) to be small, so we set nse−ps2 = 1 and get s = lnn/p. We
want the number of small cycles to be about n so we set (gp)g = n and get p = n1/g−1.
Finally, we want n = st which requires n1/g = t. The rest is just paying attention to
details.

11.6 Discussion

Zori started the conversation with “Who in their right mind would trust their lives to
an algorithm that used randommethods?” Xing quickly responded “Everyone. At least
everyone should. We routinely deal with probabilistic concepts, like getting run over by
a bus when crossing the street or having a piano fall on our head. The general public is
much more comfortable with notions of probability, even though they may never know
the formal definition of a probability space. I for one am completely comfortable taking
an airline flight if I can be assured that the probability of a disaster is less than 10−20.”

Dave wasn’t biting on this topic. Instead he offered “You have to be struck by the
statements that it appears difficult to construct objectswhich you can prove exist in abun-
dance. I wonder why this is so.” Alice said “We all find your brain to be a totally ran-
dom thing, sometimes making sense but often not.” There was laughter or at least some
snickering. But after a bit, Carlos said “There’s something fundamental here. Maybe
one could prove that there are easily stated theorems which only have long proofs.” Bob
blurted “That doens’t make any sense.” Zori saw an opportunity where a client would,
at considerable expense, commission her to solve a problem (at least better than the com-
petition) that was readily understood but somehow difficult in the end. She knew about
the class NP but maybe there were even bigger challenges (and bigger paychecks) out
there.

cbna 215

Chapter 11 Applying Probability to Combinatorics

11.7 Exercises

1. Consider a random graph with vertex set {1, 2, ,̇n}. If the edge probability is p =
1/2, then letX denote the number of complete subgraphs is size t = 2 log n and let
Y denote the number of independent sets of size t = 2 log n.
a) Show that E(X + Y) < 1, when n is sufficiently large.
b) Use the result from part a to show that ω(G) is less than 2 log n, while the

chromatic number of G is at least n/(2 log n) (both statements holding with
high probability). As a result, the basic inequality χ(G) ≥ ω(G) is far from
being tight for a random graph.

2. We form a random tournament as follows. Start with a complete graphwith vertex
set {1, 2, . . . , n}. For each distinct pair i, j with 1 ≤ i < j ≤ n, flip a fair coin. If the
result is heads, orient the edge from i to j, which we denote by (x, y). If the toss
is tails, then the edge is oriented from j to i, denoted (y, x). Show that when n is
large, with high probability, the following statement is true: For every set S of size
log n/10, there is a vertex x so that (x, y) in T for every y ∈ S.

3. Let T be a random tournament on n vertices. Show that with high probability, the
following statement is true: For every pair x, y of distinct vertices, either (1) (x, y)
in T , or (2) there is a vertex z for which both (x, z) and (z, y) are in T .

4. Many statements for random graphs exhibit a threshold behavior. Show that a
random graph with edge probability p = 10 log n/n almost certainly has no iso-
lated vertices, while a random graph with edge probability p = log n/(10n) almost
certainly has at least one isolated vertices.

5. In the sense of the preceding problem, determine the threshold probability for a
graph to be connected.

216 cbna

CHAPTER 12
Graph Algorithms

In previous chapters, we have encountered a few algorithms for problems involving dis-
crete structures such as finding euler circuits (chapter 5) or partitioning a poset into
antichains (chapter 6). This chapter begins a sequence of three chapters that focus on
algorithms. In this chapter we explore two minimization problems for graphs in which
we assign a weight to each edge of the graph. The first problem studied is determining
a spanning tree of minimumweight. The second is of finding shortest paths from a root
vertex to each other vertex in a directed graph.

12.1 Minimum Weight Spanning Trees

In this section, we consider pairs (G, w) where G = (V,E) is a connected graph and
w : E → N0. For each edge e ∈ E, the quantity w(e) is called the weight of e. Given a set
S of edges, we define the weight of S, denoted w(S), by setting w(S) =

∑
e∈S w(e). In

particular, the weight of a spanning tree T is just the sum of the weights of the edges in
T .
Weighted graphs arise in many contexts. One of the most natural is when the weights

on the edges are distances or costs. For example, consider the weighted graph in Fig-
ure 12.1. Suppose the vertices represent nodes of a network and the edges represent the
ability to establish direct physical connections between those nodes. The weights asso-
ciated to the edges represent the cost (let’s say in thousands of dollars) of building those
connections. The company establishing the network among the nodes only cares that
there is a way to get data between each pair of nodes. Any additional links would create
redundancy in which they are not interested at this time. A spanning tree of the graph
ensures that each node can communicatewith each of the others and has no redundancy,
since removing any edge disconnects it. Thus, to minimize the cost of building the net-
work, we want to find a minimumweight (or cost) spanning tree. To do this, this section
considers the following problem:
Problem. Find a minimum weight spanning tree T of G.
To solve this problem, wewill develop two efficient graph algorithms, each having cer-

tain computational advantages and disadvantages. Before developing the algorithms,

217

Chapter 12 Graph Algorithms

a

b

c

d

e

f

g

h

i

j

k

l

39

56

87
30

38
29

55

25
26

96

88

43 23

79

34

83

92

71
56

8884

66
58

59

49

79

m68

Figure 12.1: A weighted graph

we need to establish some preliminaries about spanning trees and forests.

12.1.1 Preliminaries

The following proposition about the number of components in a spanning forest of a
graphG has an easy inductive proof. You are asked to provide it in the exercises.

Proposition 12.1. Let G = (V,E) be a graph on n vertices, and let H = (V, S) be a spanning
forest. Then 0 ≤ |S| ≤ n − 1. Futhermore, if |S| = n − k, then H has k components. In
particular,H is a spanning tree if and only if it contains n− 1 edges.

The following proposition establishes a way to take a spanning tree of a graph, re-
move an edge from it, and add an edge of the graph that is not in the spanning tree to
create a new spanning tree. Effectively, the process exchanges two edges to form the new
spanning tree, so we call this the exchange principle.

Proposition 12.2 (Exchange Principle). Let T = (V, S) be spanning tree in a graph G, and
let e = xy be an edge of G which does not belong to T. Then

1. There is a unique path P = (x0, x1, x2, . . . , xt) with (a) x = x0; (b) y = xt; and
(c) xixi+1 ∈ S for each i = 0, 1, 2, . . . , t− 1.

2. For each i = 0, 1, 2, . . . , t− 1, let fi = xixi+1 and then set

Si = {e} ∪ {g ∈ S : g 6= fi},

218 cbna

12.1 Minimum Weight Spanning Trees

i.e., we exchange edge fi for edge e. Then Ti = (V, Si) is a spanning tree ofG.

Proof. For the first fact, it suffices to note that if there were more than one distinct path
from x to y inT, we would be able to find a cycle inT. This is impossible since it is a tree.
For the second, we refer to Figure 12.2. The black and green edges in the graph shown at
the left represent the spanning tree T. Thus, f lies on the unique path from x to y in T
and e = xy is an edge of G not in T. Adding e to T creates a graph with a unique cycle,
since T had a unique path from x to y. Removing f (which could be any edge fi of the
path, as stated in the proposition) destroys this cycle. Thus Ti is an acyclic subgraph of
Gwith n− 1 + 1− 1 = n− 1 edges, so it is a spanning tree.

e

f

x
y e

x
y

Figure 12.2: The exchange principle

For both of the algorithms we develop, the argument to show that the algorithm is
optimal rests on the following technical lemma. To avoid trivialities, we assume n ≥ 3.

Lemma 12.3. Let F be a spanning forest of G and let C be a component of F. Also, let e = xy
be an edge of minimum weight among all edges with one endpoint in C and the other not in C.
Then among all spanning trees of G that contain the forest F, there is one of minimum weight
that contains the edge e.

Proof. LetT = (V, S) be any spanning tree ofminimumweight among all spanning trees
that contain the forest F, and suppose that e = xy is not an edge inT. (If it were an edge
in T, we would be done.) Then let P = (x0, x1, x2, . . . , xt) be the unique path in T with
(a) x = x0; (b) y = xt; and (c) xixi+1 ∈ S for each i = 0, 1, 2, . . . , t − 1. Without loss of
generality, we may assume that x = x0 is a vertex in C while y = xt does not belong to
C. Then there is a least non-negative integer i for which xi is in C and xi+1 is not in C.
It follows that xj is in C for all j with 0 ≤ j ≤ i.
Let f = xixi+1. The edge ehasminimumweight among all edgeswith one endpoint in

C and the other not inC, sow(e) ≤ w(f). Now letTi be the tree obtained by exchanging
the edge f for edge e. It follows thatw(Ti) = w(T)−w(f)+w(e) ≤ w(T). Furthermore,
Ti contains the spanning forest F as well as the edge e. It is therefore the minimum
weight spanning tree we seek.

cbna 219

Chapter 12 Graph Algorithms

12.2 Discussion

Although Bob’s combinatorial intuition has improved over the course he doesn’t quite
understand why we need special algorithms to find minimum weight spanning trees.
He figures there can’t be that many spanning trees, so he wants to just write them down.
Alice groans as she senses that Bob must have been absent when the material from sec-
tion 5.6 was discussed. In that section, we learned that a graph on n vertices can have as
many as nn−2 spanning trees (or horrors, the instructor may have left it off the syllabus).
Regardless, this exhaustive approach is already unusable when n = 20. Dave mumbles
something about being greedy and just adding the lightest edges one-by-onewhile never
adding an edge that would make a cycle. Zori remembers a strategy like this working
for finding the height of a poset, but she’s worried about the nightmare situation that we
learned about with using FirstFit to color graphs. Alice agrees that greedy algorithms
have an inconsistent track record but suggests that Lemma 12.3 may be enough to get
one to succeed here.

12.2.1 Kruskal’s Algorithm

In this secton, we develop one of the best known algorithms for finding a minimum
weight spanning tree. It is known as Kruskal’s Algorithm, although some prefer the
descriptive label Avoid Cycles because of the way it builds the spanning tree.

To start Kruskal’s algorithm, we sort the edges according to weight. To be more pre-
cise, letmdenote the number of edges inG = (V,E). Then label the edges as e1, e2, e3, . . . , em
so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em). Any of the many available efficient sorting algo-
rithms can be used to do this step.
Once the edges are sorted, Kruskal’s algorithm proceeds to an initialization step and

then inductively builds the spanning tree T = (V, S):

Initialization. Set S = ∅ and i = 0.

Inductive Step. While |S| < n−1, let j be the least non-negative integer so that j > i
and there are no cycles in S ∪ {ej}. Then (using pseudo-code) set

i = j and S = S ∪ {j}.

The correctness of Kruskal’s Algorithm follows from an inductive argument. First,
the set S is initialized as the empty set, so there is certainly a minimumweight spanning
tree containing all the edges in S. Now suppose that for some i with 0 ≤ i < n, |S| = i
and there is a minimumweight spanning tree containing all the edges in S. Let F be the
spanning forest determined by the edges in S, and let C1, C2, . . . , Cs be the components
of F. For each k = 1, 2, . . . , s, let fk be a minimum weight edge with one endpoint
in Ck and the other not in Ck. Then the edge e added to S by Kruskal’s Algorithm is
just the edge {f1, f2, . . . , fs} having minimum weight. Applying Lemma 12.3 and the

220 cbna

12.2 Discussion

inductive hypothesis, we know that there will still be a minimum weight spanning tree
of G containing all the edges of S ∪ {e}.

Example 12.4. Let’s see what Kruskal’s algorithm does on the
weighted graph in Figure 12.1. It first sorts all of the edges
by weight. We won’t reproduce the list here, since we won’t
need all of it. The edge of least weight is ck, which has weight
23. It continues adding the edge of least weight, adding ag,
fg, fi, fj, and bj. However, after doing this, the edge of low-
est weight is fb, which has weight 38. This edge cannot be
added, as doing so would make fjb a cycle. Thus, the algo-
rithm bypasses it and adds bc. Edge ai is next inspected, but
it, too, would create a cycle and is eliminated from consider-
ation. Then em is added, followed by dl. There are now two
edges of weight 56 to be considered: al and dj. Our sorting
algorithm has somehow decided one of them should appear
first, so let’s say it’s dj. After adding dj, we cannot add al, as
agfjdl would form a cycle. Edge dk is next considered, but
it would also form a cycle. However, ek can be added. Edges
km and dm are then bypassed. Finally, edge ch is added as the
twelfth and final edge for this 13-vertex spanning tree. The
full list of edges added (in order) is shown to the right. The
total weight of this spanning tree is 504.

Kruskal’s Algorithm
c k 23
a g 25
f g 26
f i 29
f j 30
b j 34
b c 39
e m 49
d l 55
d j 56
e k 59
c h 79

12.2.2 Prim’s Algorithm

We now develop Prim’s Algorithm for finding a minimum weight spanning tree. This
algorithm is also known by a more descriptive label: Build Tree. We begin by choosing
a root vertex r. Again, the algorithm proceeds with an initialization step followed by a
series of inductive steps.

Initialization. SetW = {r} and S = ∅.

Inductive Step. While |W | < n, let e be an edge ofminimumweight among all edges
with one endpoint inW and the other not inW . If e = xy, x ∈W and y 6∈W , updateW
and S by setting (using pseudo-code)

W = W ∪ {y} and S = S ∪ {e}.

The correctness of Prim’s algorithm follows immediately from Lemma 12.3.

cbna 221

Chapter 12 Graph Algorithms

Example 12.5. Let’s see what Prim’s algorithm does on the
weighted graph in Figure 12.1. We start with vertex a as the
root vertex. The lightest edge connecting a (the only vertex in
the tree so far) to the rest of the graph is ag. Next, fg is added.
This is followed by fi, fj, bj, and bc. Next, the algorithm iden-
tifies ck as the lightest edge connecting {a, g, i, f, j, b, c} to the
remaining vertices. Notice that this is considerably later than
Kruskal’s algorithm finds the same edge. The algorithm then
determines that al and jd, both of weight 56 are the lightest
edges connecting vertices in the tree to the other vertices. It
picks arbitrarily, so let’s say it takes al. It next finds dl, then ek,
and then em. The final edge added is ch. The full list of edges
added (in order) is shown to the right. The total weight of this
spanning tree is 504. This (not surprisingly) the same weight
we obtained using Kruskal’s algorithm. However, notice that
the spanning tree found is different, as this one contains al in-
stead of dj. This is not an issue, of course, since in both cases
an arbitrary choice between two edges of equal weight was
made.

Prim’s Algorithm

a g 25
f g 26
f i 29
f j 30
b j 34
b c 39
c k 23
a l 56
d l 55
e k 59
e m 49
c h 79

12.2.3 Comments on Efficiency

An implementation of Kruskal’s algorithm seems to require that the edges be sorted. If
the graph has n vertices and m edges, this requires m logm operations just for the sort.
But once the sort is done, the process takes only n − 1 steps—provided you keep track
of the components as the spanning forest expands. Regardless, it is easy to see that at
most O(n2 log n) operations are required.

On the other hand, an implementation of Prim’s algorithm requires the program to
conveniently keep track of the edges incident with each vertex and always be able to
identify the edge with least weight among subsets of these edges. In computer science,
the data structure that enables this task to be carried out is called a heap.

12.3 Digraphs

In this section, we introduce another useful variant of a graph. In a graph, the existence
of an edge xy can be used to model a connection between x and y that goes in both ways.
However, sometimes such a model is insufficient. For instance, perhaps it is possible to
fly fromAtlanta directly to Fargo but not possible to fly from Fargo directly to Atlanta. In
a graph representing the airline network, an edge between Atlanta and Fargo would lose
the information that the flights only operate in one direction. To deal with this problem,
we introduce a new discrete structure. A digraph G is a pair (V,E) where V is a vertex
set and E ⊂ V × V with x 6= y for every (x, y) ∈ E. We consider the pair (x, y) as a

222 cbna

12.4 Dijkstra’s Algorithm for Shortest Paths

a
bc

d

e

f

g

h

Figure 12.3: A Digraph

directed edge from x to y. Note that for distinct vertices x and y from V , the ordered pairs
(x, y) and (y, x) are distinct, so the digraphmay have one, both or neither of the directed
edges (x, y) and (y, x). This is in contrast to graphs, where edges are sets, so {x, y} and
{y, x} are the same.
Diagrams of digraphs use arrowheads on the edges to indicate direction. This is illus-

trated in Figure 12.3. For example, the digraph illustrated there contains the edge (a, f)
but not the edge (f, a). It does contain both edges (c, d) and (d, c), however.
When G is a digraph, a sequence P = (r = u0, u1, . . . , ut = x) of distinct vertices

is called a directed path from r to x when (uiui+1) is a directed edge in G for every i =
0, 1, . . . , t− 1. A directed path C = (r = u0, u1, . . . , ut = x) is called a directed cyclewhen
(ut, u0) is a directed edge ofG.

12.4 Dijkstra’s Algorithm for Shortest Paths

Just as with graphs, it is useful to assign weights to the directed edges of a digraph.
Specifically, in this section we consider a pair (G, w) whereG = (V,E) is a digraph and
w : E → N0 is a function assigning to each directed edge (x, y) a non-negative weight
w(x, y). However, in this section, we interpret weight as distance so that w(x, y) is now
called the length of the edge (x, y). If P = (r = u0, u1, . . . , ut = x) is a directed path
from r to x, then the length of the path P is just the sum of the lengths of the edges in the
path,

∑t−1
i=0 w(uiui+1). The distance from r to x is then defined to be the minimum length

of a directed path from r to x. Our goal in this section is to solve the following natural
problem, which has many applications:

Problem. For each vertex x, find the distance from r to x. Also, find a shortest path
from r to x.

cbna 223

Chapter 12 Graph Algorithms

12.4.1 Description of the Algorithm

To describe Dijkstra’s algorithm in a compact manner, it is useful to extend the definition
of the function w. We do this by by setting w(x, y) = ∞ when x 6= y and (x, y) is not
a directed edge of G. In this way, we will treat∞ as if it were a number (although it is
not!).1
Let n = |V |. At Step i, where 1 ≤ i ≤ n, we will have determined:

1. A sequence σ = (v1, v2, v3, . . . , vi) of distinct vertices from G with r = v1. These
vertices are called permanent vertices, while the remaining vertices will be called
temporary vertices.

2. For each vertex x ∈ V , we will have determined a number δ(x) and a path P (x)
from r to x of length δ(x).

Initialization (Step 1). Set i = 1. Set δ(r) = 0 and let P (r) = (r) be the trivial one-point
path. Also, set σ = (r). For each x 6= r, set δ(x) = w(r, x) and P (x) = (r, x). Let x be a
temporary vertex for which δ(x) is minimum. Set v2 = x, and update σ by appending
v2 to the end of it. Increment i.

Inductive Step (Step i, i > 1). If i < n, then for each temporary x, let

δ(x) = min{δ(x), δ(vi) + w(vi, x)}.

If this assignment results in a reduction in the value of δ(x), letP (x) be the path obtained
by adding x to the end of P (vi).
Let x be a temporary vertex for which δ(x) is minimum. Set vi+1 = x, and update σ

by appending vi+1 to it. Increment i.

12.4.2 Example

Before establishing why Dijkstra’s algorithm works, it may be helpful to see an example
of how it works. To do this, consider the digraph G shown in Figure 12.4. For visual
clarity, we have chosen a digraph which is an oriented graph, i.e., for each distinct pair
x, y of vertices, the graph contains at most one of the two possible directed edges (x, y)
and (y, x).
Suppose that the root vertex r is the vertex labeled a. The initialization step of Dijk-

stra’s algorithm then results in the following values for δ and P :
Initialization (Step 1)

σ = (a)
δ(a) = 0; P (a) = (a)
δ(b) =∞; P (b) = (a, b)

1This is not an issue for computer implementation of the algorithm, as instead of using ∞, a value given by
the product of the number of vertices and the maximum edge weight may be used to simulate infinity.

224 cbna

12.4 Dijkstra’s Algorithm for Shortest Paths

a
b

c

d

e

f

g

h

23

55

74

42

47

70

29

31

79

120

24

66

31
8825

66

Figure 12.4: A digraph with edge lengths

δ(c) = 47; P (c) = (a, c)
δ(d) =∞; P (d) = (a, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) =∞; P (g) = (a, g)
δ(h) =∞; P (h) = (a, h)

Before finishing Step 1, the algorithm identifies vertex f as closest to a and appends it
to σ, making a permanent. When entering Step 2, Dijkstra’s algorithm attempts to find
shorter paths from a to each of the temporary vertices by going through f . We call this
process “scanning from vertex f .” In this scan, the path to vertex d is updated, since
δ(f) + w(f, d) = 24 + 120 = 144 <∞ = w(a, d).

Step 2. Scan from vertex f .

σ = (a, f)
δ(a) = 0; P (a) = (a)
δ(b) =∞; P (b) = (a, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 144 = 24 + 120 = δ(f) + w(f, d); P (d) = (a, f, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) =∞; P (g) = (a, f)
δ(h) =∞; P (h) = (a, h)

Before proceeding to the next step, vertex c is made permanent by making it v3. In
Step 3, therefore, the scan is from vertex c. Vertices b, d, and g have their paths updated.

cbna 225

Chapter 12 Graph Algorithms

However, although δ(c) + w(c, e) = 47 + 23 = 70 = δ(e), we do not change P (e) since
δ(e) is not decreased by routing P (e) through c.
Step 3. Scan from vertex c.

σ = (a, f, c)
δ(a) = 0; P (a) = (a)
δ(b) = 102 = 47 + 55 = δ(c) + w(c, b); P (b) = (a, c, b) updated
δ(c) = 47; P (c) = (a, c)
δ(d) = 135 = 47 + 88 = δ(c) + w(c, d); P (d) = (a, c, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 113 = 47 + 66 = δ(c) + w(c, g); P (g) = (a, c, g) updated
δ(h) =∞; P (h) = (a, h)

Now vertex e is made permanent.
Step 4. Scan from vertex e.

σ = (a, f, c, e)
δ(a) = 0; P (a) = (a)
δ(b) = 101 = 70 + 31 = δ(e) + w(e, b); P (b) = (a, e, b) updated
δ(c) = 47; P (c) = (a, c)
δ(d) = 135; P (d) = (a, c, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112 = 70 + 42 = δ(e) + w(e, g); P (g) = (a, e, g) updated
δ(h) =∞; P (h) = (a, h)

Now vertex b is made permanent.
Step 5. Scan from vertex b.

σ = (a, f, c, e, b)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132 = 101 + 31 = δ(b) + w(b, d); P (d) = (a, e, b, d) updated
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 180 = 101 + 79 = δ(b) + w(b, h); P (h) = (a, e, b, h) updated

Now vertex g is made permanent.
Step 6. Scan from vertex g.

226 cbna

12.4 Dijkstra’s Algorithm for Shortest Paths

σ = (a, f, c, e, b, g)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 178 = 112 + 66 = δ(g) + w(g, h); P (h) = (a, e, g, h) updated

Now vertex d is made permanent.

Step 7. Scan from vertex d.

σ = (a, f, c, e, b, g, d)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 161 = 132 + 29 = δ(d) + w(d, h); P (h) = (a, e, b, d, h) updated

Now vertex h is made permanent. Since this is the last vertex, the algorithm halts and
returns the following:

FINAL RESULTS

σ = (a, f, c, e, b, g, d, h)
δ(a) = 0; P (a) = (a)
δ(b) = 101; P (b) = (a, e, b)
δ(c) = 47; P (c) = (a, c)
δ(d) = 132; P (d) = (a, e, b, d)
δ(e) = 70; P (e) = (a, e)
δ(f) = 24; P (f) = (a, f)
δ(g) = 112; P (g) = (a, e, g)
δ(h) = 161; P (h) = (a, e, b, d, h)

12.4.3 The Correctness of Dijkstra’s Algorithm

Now that we’ve illustrated Dijkstra’s algorithm, it’s time to prove that it actually does
what we claimed it does: find the distance from the root vertex to each of the other

cbna 227

Chapter 12 Graph Algorithms

vertices and a path of that length. To do this, we first state two elementary propositions.
The first is about shortest paths in general, while the second is specific to the sequence
of permanent vertices produced by Dijkstra’s algorithm.

Proposition 12.6. Let x be a vertex and let P = (r = u0, u1, . . . , ut = x) be a shortest path
from r to x. Then for every integer j with 0 < j < t, (u0, u1, . . . , uj) is a shortest path from r to
uj and (uj , uj+1, . . . , ut) is a shortest path from uj to ut

Proposition 12.7. When the algorithm halts, let σ = (v1, v2, v3, . . . , vn). Then

δ(v1) ≤ δ(v2) ≤ · · · ≤ δ(vn).

We are now ready to prove the correctness of the algorithm. The proof we give will
be inductive, but the induction will have nothing to do with the total number of vertices
in the digraph or the step number the algorithm is in.

Theorem 12.8. Dijkstra’s algorithm yields shortest paths for every vertex x inG. That is, when
Dijkstra’s algorithm terminates, for each x ∈ V , the value δ(x) is the distance from r to x and
P (x) is a shortest path from r to x.

Proof. The theorem holds trivially when x = r. So we consider the case where x 6= r.
We argue that δ(x) is the distance from r to x and that P (x) is a shortest path from r to
x by induction on the minimum number k of edges in a shortest path from r to x. When
k = 1, the edge (r, x) is a shortest path from r to x. Since v1 = r, wewill set δ(x) = w(r, x)
and P (x) = (r, x) at Step 1.

Now fix a positive integer k. Assume that if the minimum number of edges in a short-
est path from r to x is at most k, then δ(x) is the distance from r to x andP (x) is a shortest
path from r to x. Let x be a vertex for which the minimum number of edges in a shortest
path from r to x is k + 1. Fix a a shortest path P = (u0, u1, u2, . . . , uk+1) from r = u0 to
x = uk+1. Then Q = (u0, u1, . . . , uk) is a shortest path from r to uk. (See Figure 12.5.)

By the inductive hypothesis, δ(uk) is the distance from r to uk, and P (uk) is a shortest
path from r to uk. Note that P (uk) need not be the same as path Q, as we suggest in
Figure 12.5. However, if distinct, the two paths will have the same length, namely δ(uk).

r

Q

P (uk)

uk
P

x

Figure 12.5: Shortest paths

228 cbna

12.5 Historical Notes

Also, the distance from r to x is δ(uk) +w(uk, x) ≥ δ(uk) since P is a shortest path from
r to x and w(uk, x) ≥ 0.
Let i and j be the unique integers for which uk = vi and x = vj . If j < i, then

δ(x) = δ(vj) ≤ δ(vi) = δ(uk) ≤ δ(uk) + w(uk).

Therefore the algorithm has found a path P (x) from r to x having length δ(x) which is
at most the distance from r to x. Clearly, this implies that δ(x) is the distance from r to
x and that P (x) is a shortest path.
On the other hand, if j > i, then the inductive step at Step i results in

δ(x) ≤ δ(vi) + w(vi, y) = δ(uk) + w(uk, x).

As before, this implies that δ(x) is the distance from r to x and that P (x) is a shortest
path.

12.5 Historical Notes

Kruskal’s algorithm was published in 1956 by Joseph B. Kruskal in a three-page paper
that appeared in Proceedings of the American Mathematical Society. Robert C. Prim pub-
lished the algorithm that now bears his name the following year in The Bell System Tech-
nical Journal. Prim’s paper focuses on application of the minimum weight (or length or
cost) spanning tree problem to telephone networks. He was aware of Kruskal’s prior
work, as they were colleagues at Bell Laboratories at the time he published his paper. It
turns out that Prim had been beaten to the punch byCzechmathematicianVojtěch Jarník
in 1929, so some refer to Prim’s algorithmas Jarník’s algorithm. (Itwas later rediscovered
by Dijkstra, so some attach his name as well, referring to it as the Dijkstra-Jarník-Prim
algorithm.) Edsger Dijkstra published his algorithm for finding shortest paths in 1959
in a three-page paper2 appearing in Numerische Mathematik. In fact, Dijkstra’s algorithm
had been discovered (in an equivalent form) by Edward F. Moore two years earlier. His
result appeared in Proceedings of an International Symposium on the Theory of Switching.

12.6 Exercises

1. For the graph in Figure 12.6, use Kruskal’s algorithm (“avoid cycles”) to find a
minimumweight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject
in the course of running the algorithm.

2This is also the paper in which Prim’s algorithm was published for the third time. Dijkstra was aware of
Kruskal’s prior work but argued that his algorithmwas preferable because it required that less information
about the graph be stored in memory at each step of the algorithm.

cbna 229

Chapter 12 Graph Algorithms

d
b

f

e

a

l

c

h

13 j

i

15

8

16

5

20

12

47

5

16

16

14

10

8
22 12

94

g

k

8

8

15

5

8

Figure 12.6: Find a minimum weight spanning tree

2. For the graph in Figure 12.6, use Prim’s algorithm (“build tree”) to find aminimum
weight spanning tree. Your answer should list the edges selected by the algorithm
in the order they were selected.

3. For the graph in Figure 12.7, use Kruskal’s algorithm (“avoid cycles”) to find a
minimumweight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject
in the course of running the algorithm.

d

b

f

e

a

l

c

h

j

i

g

k

4

20

4

4

1

1

1

12

10
10

25

6
5

17

18

10

15

25

7

Figure 12.7: Find a minimum weight spanning tree

4. For the graph in Figure 12.7, use Prim’s algorithm (“build tree”) to find aminimum
weight spanning tree. Your answer should list the edges selected by the algorithm
in the order they were selected.

5. For the graph in Figure 12.8, use Kruskal’s algorithm (“avoid cycles”) to find a

230 cbna

12.6 Exercises

minimumweight spanning tree. Your answer should include a complete list of the
edges, indicating which edges you take for your tree and which (if any) you reject
in the course of running the algorithm.

d b
f

ea

c h

j

i

g

k

3

5

1

4
19

318

6

17
26

47
7

24

13

9

10

2

Figure 12.8: Find a minimum weight spanning tree

6. For the graph in Figure 12.8, use Prim’s algorithm (“build tree”) to find aminimum
weight spanning tree. Your answer should list the edges selected by the algorithm
in the order they were selected.

7. A new local bank is being created andwill establish a headquarters h, two branches
b1 and b2, and four ATMs a1, a2, a3, and a4. They need to build a computer net-
work such that the headquarters, branches, and ATMs can all intercommunicate.
Furthermore, they will need to be networked with the Federal Reserve Bank of
Atlanta, f . The costs of the feasible network connections (in units of $10,000) are
listed below:

hf 80 hb1 10

hb2 20 b1b2 8

fb1 12 fa1 20

b1a1 3 a1a2 13

ha2 6 b2a2 9

b2a3 40 a1a4 3

a3a4 6

The bank wishes to minimize the cost of building its network (which must allow
for connection, possibly routed through other nodes, from each node to each other
node), however due to the need for high-speed communication, they must pay to
build the connection from h to f as well as the connection from b2 to a3. Give a list
of the connections the bank should establish in order to minimize their total cost,
subject to this constraint. Be sure to explain how you selected the connections and
how you know the total cost is minimized.

cbna 231

Chapter 12 Graph Algorithms

8. A disconnected weighted graph obviously has no spanning trees. However, it is
possible to find a spanning forest of minimum weight in such a graph. Explain
how to modify both Kruskal’s algorithm and Prim’s algorithm to do this.

9. Prove Proposition 12.1.

10. In the paper where Kruskal’s algorithm first appeared, he considered the algo-
rithm a route to a nicer proof that in a connected weighted graph with no two
edges having the same weight, there is a unique minimum weight spanning tree.
Prove this fact using Kruskal’s algorithm.

11. Use Dijkstra’s algorithm to find the distance from a to each other vertex in the
digraph shown in Figure 12.9 and a directed path of that length.

2

a b

d

e

f

g

h

c

6

1

10
2

2

1

5

4

3

1

5
4

8

Figure 12.9: A directed graph

12. The table to the right contains the length of
the directed edge (x, y) in the intersection of
row x and column y in a digraphwith vertex
set {a, b, c, d, e, f}. For example, w(b, d) =
21. (On the other hand, w(d, b) = 10.) Use
this data andDijkstra’s algorithm to find the
distance from a to each of the other vertices
and a directed path of that length from a.

w a b c d e f
a 0 12 8 43 79 35
b 93 0 18 21 60 33
c 17 3 0 37 50 30
d 85 10 91 0 17 7
e 28 47 39 14 0 108
f 31 7 29 73 20 0

13. Use Dijkstra’s algorithm to find the distance from a to each other vertex in the
digraph shown in Figure 12.10 and a directed path of that length.

232 cbna

12.6 Exercises

2

a

b

d

ef

gh

c

2

3

4

1

3

15

1

1

3
615

2

i

Figure 12.10: A directed graph

14. The table to the right contains the length of
the directed edge (x, y) in the intersection of
row x and column y in a digraphwith vertex
set {a, b, c, d, e, f}. For example, w(b, d) =
47. (On the other hand, w(d, b) = 6.) Use
this data andDijkstra’s algorithm to find the
distance from a to each of the other vertices
and a directed path of that length from a.

w a b c d e f
a 0 7 17 55 83 42
b 14 0 13 47 27 17
c 37 42 0 16 93 28
d 10 6 8 0 4 32
e 84 19 42 8 0 45
f 36 3 76 5 17 0

15. Give an example of a digraph having an undirected path between each pair of ver-
tices, but having a root vertex r so that Dijkstra’s algorithm cannot find a path of
finite length from r to some vertex x.

16. Notice that in our discussion of Dijkstra’s algorithm, we required that the edge
weights be nonnegative. If the edge weights are lengths and meant to model dis-
tance, this makes perfect sense. However, in some cases, it might be reasonable to
allow negative edge weights. For example, suppose that a positive weight means
there is a cost to travel along the directed edgewhile a negative edgeweight means
that you make money for traveling along the directed edge. In this case, a directed
path with positive total weight results in paying out to travel it, while one with
negative total weight results in a profit.
a) Give an example to show that Dijkstra’s algorithm does not always find the

path of minimum total weight when negative edge weights are allowed.
b) Bob and Xing are considering this situation, and Bob suggests that a little

modification to the algorithm should solve the problem. He says that if there
are negative weights, they just have to find the smallest (i.e., most negative

cbna 233

Chapter 12 Graph Algorithms

weight) and add the absolute value of that weight to every directed edge. For
example, if w(x, y) ≥ −10 for every directed edge (x, y), Bob is suggesting
that they add 10 to every edge weight. Xing is skeptical, and for good reason.
Give an example to show why Bob’s modification won’t work.

234 cbna

CHAPTER 13
Network Flows

This chapter continues our look at the topics of algorithms and optimization. On an in-
tuitive level, networks and network flows are fairly simple. We want to move something
(merchandise, water, data) from an initial point to a destination. We have a set of inter-
mediate points (freight terminals, valves, routers) and connections between them (roads,
pipes, cables) with each connection able to carry a limited amount. The natural goal is to
move as much as possible from the initial point to the destination while respecting each
connection’s limit. Rather than just guessing at how to perform this maximization, we
will develop an algorithm that does it. We’ll also see how to easily justify the optimality
of our solution though the classic Max Flow-Min Cut Theorem.

13.1 Basic Notation and Terminology

Recall that a directed graph in which for each pair of vertices x, y at most one of the
directed edges (x, y) and (y, x) between them is present is called an oriented graph. The
basic setup for a network flow problem begins with an oriented graph G, called a net-
work, in which we have two special vertices called the source and the sink. We use the
letter S to denote the source, while the letter T is used to denote the sink (terminus).
All edges incident with the source are oriented away from the source, while all edges
incident with the sink are oriented with the sink. Futhermore, on each edge, we have
a non-negative capacity, which functions as a constraint on how much can be transmit-
ted via the edge. The capacity of the edge e = (x, y) is denoted c(e) or by c(x, y). In a
computer program, the nodes of a network may be identified with integer keys, but in
this text, we will typically use letters in labeling the nodes of a network. This helps to
distinguish nodes from capacities in diagrams of networks. We illustrate a network in
Figure 13.1. The numbers associated with the edges are their capacities, so, for instance,
c(E,B) = 24 and c(A, T) = 56.
A flow φ in a network is a function which assigns to each directed edge e = (x, y) a

non-negative value φ(e) = φ(x, y) ≤ c(x, y) so that the following “conservation” laws
hold:

1.
∑
x φ(S, x) =

∑
x φ(x, T), i.e., the amount leaving the source is equal to the amount

235

Chapter 13 Network Flows

S

T

23

17

41

31

24

56

20
25

31

15

24

42
20

15

A

B

C

D
E

F

Figure 13.1: A Network

arriving at the sink. This quantity is called the value of the flow φ.

2. For every vertex ywhich is neither the source nor the sink,
∑
x φ(x, y) =

∑
x φ(y, x),

i.e., the amount leaving y is equal to the amount entering y.

We illustrate a flow in a network in Figure 13.2. In this figure, the numbers asso-

S

T

23
, 8

17, 9

41, 13

31 4

24, 12

56, 16

20, 10

25 2

31
, 1

4
15

 6
24 5

42, 2

20, 8

15, 6

A

B

C

D
E

F

Figure 13.2: A Network Flow

ciated with each edge are its capacity and the amount of flow that φ places on that
edge. For example, the edge (E,D) has capacity 20 and currently carries a flow of 8.
(Since φ(x, y) ≤ c(x, y), it is always easy to determine which number is the capacity
and which is the flow.) The value of this flow is 30 = φ(S, F) + φ(S,B) + φ(S,E) =
φ(A, T) + φ(C, T). To see that the second conservation law holds at, for example, vertex
B, note that the flow into B is φ(S,B) + φ(E,B) + φ(D,B) = 20 and the flow out of B
is φ(B,F) + φ(B,A) + φ(B,C) = 20.
Remark 13.1. Given a network, it is very easy to find a flow. We simply assign φ(e) = 0
for every edge e. It is very easy to underestimate the importance of this observation, ac-

236 cbna

13.2 Flows and Cuts

tually. Network flow problems are a special case of a more general class of optimization
problems known as linear programs, and in general, it may be very difficult to find a fea-
sible solution to a linear programming problem. In fact, conceptually, finding a feasible
solution—any solution—is just as hard as finding an optimal solution.

13.2 Flows and Cuts

Considering the applications suggested at the beginning of the chapter, it is natural to
ask for the maximum value of a flow in a given network. Put another way, we want to
find the largest number v0 so that there exists a flow φ of value v0 in the network. Of
course, we not only want to find the maximum value v0, but we also want to find a flow
φ having this value. Although it may seem a bit surprising, we will develop an efficient
algorithm which (a) finds a flow of maximum value, and (b) finds a certificate verifying
the claim of optimality. This certificate makes use of the following important concept.
A partition V = L∪U of the vertex set V of a network with S ∈ L and T ∈ U is called

a cut.1 The capacity of a cut V = L ∪ U , denoted c(L,U), is defined by

c(L,U) =
∑

x∈L,y∈U
c(x, y).

Put another way, the capacity of the cut V = L ∪ U is the total capacity of all edges from
L to U . Note that in computing the capacity of the cut V = L ∪ U , we only add the
capacities of the edges from L to U . We do not include the edges from U to L in this
sum.
Example 13.2. Let’s again take a look at the network in Figure 13.2. Let’s first consider
the cut V = L1 ∪ U1 with

L1 = {S, F,B,E,D} and U1 = {A,C, T}.

Here we see that the capacity of the cut is

c(L1, U1) = c(F,A) + c(B,A) + c(B,C) + c(D,C) = 24 + 15 + 20 + 42 = 101.

We must be a bit more careful, however, when we look at the cut V = L2 ∪ U2 with

L2 = {S, F,B,E} and U2 = {A,D,C, T}.

Here the capacity of the cut is

c(L2, U2) = c(F,A) + c(B,A) + c(B,C) + c(E,D) = 24 + 15 + 20 + 20 = 79.

Notice that we do not include c(D,B) in the calculation as the directed edge (D,B) is
from U2 to L2.
1Our choice of L and U for the names of the two parts of the partition will make more sense later in the
chapter.

cbna 237

Chapter 13 Network Flows

The relationship between flows and cuts rests on the following fundamentally impor-
tant theorem.

Theorem 13.3. LetG = (V,E) be a network, let φ be a flow inG and let V = L ∪ U be a cut.
Then the value of the flow is at most as large as the capacity of the cut.

Proof. In this proof (and throughout the chapter), we adopt the very reasonable conven-
tion that φ(x, y) = 0 if (x, y) is not a directed edge of a network G.

Let φ be a flow of value v0 and let V = L ∪ U be a cut. First notice that

v0 =
∑
y∈V

φ(S, y)−
∑
z∈V

φ(z, S),

since the second summation is 0. Also, by the second of our flow conservation laws, we
have for any vertex other than the source and the sink,∑

y∈V
φ(x, y)−

∑
z∈V

φ(z, x) = 0.

Now we have

v0 =
∑
y∈V

φ(S, y)−
∑
z∈V

φ(z, S)

=
∑
y∈V

φ(S, y)−
∑
z∈V

φ(z, S) +
∑
x∈L
x 6=S

∑
y∈V

φ(x, y)−
∑
z∈V

φ(z, x)

=
∑
x∈L

∑
y∈V

φ(x, y)−
∑
z∈V

φ(z, x)

At this point, we want to pause and look at the last line. Notice that if (a, b) is a directed
edge with both endpoints in L, then when the outer sum is conducted for x = a, we get
an overall contribution of φ(a, b). On the other hand, when it is conducted for x = b, we
get a contribution of −φ(a, b). Thus, the terms cancel out and everything simplifies to∑

x∈L
y∈U

φ(x, y)−
∑
x∈L
z∈U

φ(z, x) ≤
∑
x∈L
y∈U

φ(x, y) ≤
∑
x∈L
y∈U

c(x, y) = c(L,U).

Thus v0 ≤ c(L,U).

Discussion 13.4. Bob’s getting a bit of a sense of déjà vu after reading Theorem 13.3. He
remembers from chapter 5 that the maximum size of a clique in a graph is always at
most the minimum number of colors required to properly color the graph. However, he

238 cbna

13.3 Augmenting Paths

also remembers that there are graphs without cliques of size three but with arbitrarily
large chromatic number, so he’s not too hopeful that this theorem is going to help out
much here. Yolanda chimes in with a reminder of chapter 6, where they learned that the
maximum size of an antichain in a poset is equal to the minimum number of chains into
which the ground set of the poset can be partitioned. Alice points out that Yolanda’s
statement is still true if the words “chain” and “antichain” are swapped. This sparks
some intense debate about whether the maximum value of a flow in a network must
always be equal to the minimum capacity of a cut in that network. After a while, Carlos
suggests that continuing to read might be the best idea for resolving their debate.

13.3 Augmenting Paths

In this section, we develop the classic labeling algorithm of Ford and Fulkerson which
starts with any flow in a network and proceeds to modify the flow—always increasing
the value of the flow—until reaching a stepwhere no further improvements are possible.
The algorithm will also help resolve the debate Alice, Bob, Carlos, and Yolanda were
having above.
Our presentation of the labeling algorithm makes use of some natural and quite de-

scriptive terminology. Suppose we have a network G = (V,E) with a flow φ of value
v. We call φ the current flow and look for ways to augment φ by making a relatively
small number of changes. An edge (x, y) with φ(x, y) > 0 is said to be used, and when
φ(x, y) = c(x, y) > 0, we say the edge is full. When φ(x, y) < c(x, y), we say the edge
(x, y) has spare capacity, and when 0 = φ(x, y) < c(x, y), we say the edge (x, y) is empty.
Note that we simply ignore edges with zero capacity.
The key tool in modifying a network flow is a special type of path, and these paths are

not necessarily directed paths. An augmenting path is a sequence P = (x0, x1, . . . , xm) of
distinct vertices in the network such that x0 = S, xm = T , and for each i = 1, 2, . . . ,m,
either

(a) (xi−1, xi) has spare capacity or

(b) (xi, xi−1) is used.

When condition ((a)) holds, it is customary to refer to the edge (xi−1, xi) as a forward edge
of the augmenting path P . Similarly, if condition ((b)) holds, then the (nondirected) edge
(xi−1, xi) is called a backward edge since the pathmoves from xi−1 to xi, which is opposite
the direction of the edge.
Example 13.5. Let’s look again at the network and flow in Figure 13.2. The sequence of
vertices (S, F,A, T) meets the criteria to be an augmenting path, and each edge in it is
a forward edge. Notice that increasing the flow on each of (S, F), (F,A), and (A, T) by
any positive amount δ ≤ 12 results in increasing the value of the flow and preserves the
conservation laws.

cbna 239

Chapter 13 Network Flows

If our first example jumped out at you as an augmenting path, it’s probably less clear
at a quick glance that (S,E,D,C,B,A, T) is also an augmenting path. All of the edges
are forward edges except for (C,B), since it’s actually (B,C) that is a directed edge in
the network. Don’t worry if it’s not clear how this path can be used to increase the value
of the flow in the network, as that’s our next topic.
Ignoring, for the moment, the issue of finding augmenting paths, let’s see how they

can be used to modify the current flow in a way that increases its value by some δ > 0.
Here’s how for an augmenting path P = (x0, x1, . . . , xm). First, let δ1 be the positive
number defined by:

δ1 = min{c(xi−1, xi)− φ(xi−1, xi) : (xi−1, xi) a foward edge of P.}

The quantity c(xi−1, xi)−φ(xi−1, xi) is nothing but the spare capacity on the edge (xi−1, xi),
and thus δ1 is the largest amount by which all of the forward edges of P . Note that the
edges (x0, x1) and (xm−1, xm) are always forward edges, so the positive quantity δ1 is
defined for every augmenting path.
When the augmenting path P has no backward edges, we set δ = δ1. But when P has

one or more backward edges, we pause to set

δ2 = min{φ(xi, xi−1) : (xi−1, xi) a backward edge of P}.

Since every backward edge is used, δ2 > 0 whenever we need to define it. We then set
δ = min{δ1, δ2}.
In either case, we nowhave a positive number δ andwemake the following elementary

observation, for which you are asked to provide a proof in exercise 4.

Proposition 13.6. Suppose we have an augmenting path P = (x0, x1, . . . , xm) with δ > 0
calculated as above. Modify the flow φ by changing the values along the edges of the path P by
an amount which is either +δ or −δ according to the following rule:

1. Increase the flow along the edges of P which are forwards, and

2. Decrease the flow along the edges of P which are backwards.

Then the resulting function φ̂ is a flow and it has value v + δ.

Example 13.7. The network flow shown in Figure 13.2 has many augmenting paths. We
already saw two of them in Example 13.5, which we call P1 and P3 below. In the list
below, be sure you understand why each path is an augmenting path and how the value
of δ is determined for each path.

1. P1 = (S, F,A, T) with δ = 12. All edges are forward.

2. P2 = (S,B,A, T) with δ = 8. All edges are forward.

240 cbna

13.3 Augmenting Paths

S T

A

B

1

M M

M M

Figure 13.3: A Small Network

3. P3 = (S,E,D,C,B,A, T) with δ = 9. All edges are forward, except (C,B) which
is backward.

4. P4 = (S,B,E,D,C,A, T) with δ = 2. All edges are forward, except (B,E) and
(C,A) which are backward.

In exercise 7, you are asked to update the flow in Figure 13.2 for each of these four paths
individually.

13.3.1 Caution on Augmenting Paths

Bob’s gotten really good at using augmenting paths to increase the value of a network
flow. He’s not sure how to find them quite yet, but he knows a good thing when he sees
it. He’s inclined to think that any augmenting path will be a good deal in his quest for a
maximum-valued flow. Carlos is pleased about Bob’s enthusiasm for network flows but
is beginning to think that he should warn Bob about the dangers in using just any old
augmenting path to update a network flow. They agree that the best situation is when
the number of updates that need to bemade is small in terms of the number of vertices in
the network and that the size of the capacities on the edges and the value of a maximum
flow should not have a role in the number of updates.
Bob says he can’t see any way that the edge capacities could create a situation where

a network with only a few vertices requires many updates, Carlos is thinking that an
example is in order. He asks Bob to pick his favorite very large integer and to call itM .
He then draws the network on four vertices shown in Figure 13.3. Bob quickly recognizes
that the maximum value of a flow in this network is 2M . He does this using the flow
with φ(S,A) = M , φ(A, T) = M , φ(S,B) = M , φ(B, T) = M and φ(A,B) = 0. Carlos is
pleased with Bob’s work.
Since this network is really small, it was easy for Bob to find themaximum flow. How-

ever, Bob and Carlos agree that “eyeballing” is not an approach that scales well to larger
networks, so they need to have an approach to finding that flowusing augmenting paths.

cbna 241

Chapter 13 Network Flows

Bob tells Carlos to give him an augmenting path, and he’ll do the updating. Carlos sug-
gests the augmenting path (S,A,B, T), and Bob determines that δ = 1 for this augment-
ing path. He updates the network (starting from the zero flow, i.e., with φ(e) = 0 for
every edge e) and it now has value 1. Bob asks Carlos for another augmenting path, so
Carlos gives him (S,B,A, T). Now (B,A) is backward, but that doesn’t phase Bob. He
performs the update, obtaining a flow of value 2 with (A,B) empty again.

Despite Carlos’ hope that Bob could already see where this was heading, Bob eagerly
asks for another augmenting path. Carlos promptly gives him (S,A,B, T), which again
has δ = 1. Bob’s update gives them a flow of value 3. Before Carlos can suggest another
augmenting path, Bob realizes what the problem is. He points out that Carlos can just
give him (S,B,A, T) again, which will still have δ = 1 and result in the flow value
increasing to 4. He says that they could keep alternating between those two augmenting
paths, increasing the flow value by 1 each time, until they’d made 2M updates to finally
have a flow of value 2M . Since the network only has four vertices andM is very large,
he realizes that using any old augmenting path is definitely not a good idea.
Carlos leaves Bob to try to figure out a better approach. He realizes that starting from

the zero flow, he’d only need the augmenting paths (S,A, T) and (S,B, T), each with
δ = M to quickly get the maximum flow. However, he’s not sure why an algorithm
should find those augmenting paths to be preferable. About this time, Dave wanders
by and mumbles something about the better augmenting paths using only two edges,
while Carlos’ two evil augmenting paths each used three. Bob thinks that maybe Dave’s
onto something, so he decides to go back to reading his textbook.

13.4 The Ford-Fulkerson Labeling Algorithm

In this section, we outline the classic Ford-Fulkerson labeling algorithm for finding a
maximum flow in a network. The algorithm begins with a linear order on the ver-
tex set which establishes a notion of precedence. Typically, the first vertex in this lin-
ear order is the source while the second is the sink. After that, the vertices can be
listed in any order. In this book, we will use the following convention: the vertices
will be labeled with capital letters of the English alphabet and the linear order will be
(S, T,A,B,C,D,E, F,G, . . .), which we will refer to as the pseudo-alphabetic order. Of
course, this convention only makes sense for networks with at most 26 vertices, but this
limitation will not cramp our style. For real world problems, we take comfort in the fact
that computers can deal quite easily with integer keys of just about any size.
Before providing a precise description of the algorithm, let’s take a minute to consider

a general overview. In carrying out the labeling algorithm, vertices will be classified as
either labeled or unlabeled. At first, we will start with only the source being labeled while
all other vertices will be unlabeled. By criteria yet to be spelled out, we will systemat-
ically consider unlabeled vertices and determine which should be labeled. If we ever
label the sink, then we will have discovered an augmenting path, and the flow will be

242 cbna

13.4 The Ford-Fulkerson Labeling Algorithm

suitably updated. After updating the flow, we start over again with just the source being
labeled.
This process will be repeated until (andwewill see that this always occurs) we reach a

point where the labeling halts with some vertices labeled (one of these is the source) and
some vertices unlabeled (one of these is the sink). We will then note that the partition
V = L ∪ U into labeled and unlabeled vertices (hence our choice of L and U as names)
is a cut whose capacity is exactly equal to the value of the current flow. This resolves
the debate from earlier in the chapter and says that the maximum flow/minimum cut
question is more like antichains and partitioning into chains than clique number and
chromatic number. In particular, the labeling algorithm will provide a proof of the fol-
lowing theorem:

Theorem 13.8 (The Max Flow–Min Cut Theorem). Let G = (V,E) be a network. Then let
v0 be the maximum value of a flow, and let c0 be the minimum capacity c0 of a cut. Then v0 = c0.

We’re now ready to describe the Ford-Fulkerson labeling algorithm in detail.

Labeling the Vertices. Vertices will be labeledwith ordered triples of symbols. Each time
we start the labeling process, we begin by labeling the sourcewith the triple (∗,+,∞).
The rules by which we label vertices will be explicit.

Potential on a Labeled Vertex. Let u be a labeled vertex. The third coordinate of the label
given to u will be positive real number—although it may be infinite. We call this
quantity the potential on u and denote it by p(u). (The potential will serve as the
amount that the flow can be updated by.) Note that the potential on the source is
infinite.

First Labeled, First Scanned. The labeling algorithm involves a scan from a labeled vertex
u. As the vertices are labeled, they determine another linear order. The source will
always be the first vertex in this order. After that, the order in which vertices are
labeled will change with time. But the important rule is that we scan vertices in
the order that they are labeled—until we label the sink. If for example, the initial
scan—always done from the source—results in labels being applied to verticesD,
G andM , then we next scan from vertex D. If that scan results in vertices B, F , G
and Q being labeled, then we next scan from G, as it was labeled before B, even
thoughB precedesG in the pseudo-alphabetic order. This aspect of the algorithm
results in a breadth-first search of the vertices looking for ways to label previously
unlabeled vertices.

Never Relabel a Vertex. Once a vertex is labeled, we do not change its label. We are con-
tent to label previously unlabeled vertices—up until the time where we label the
sink. Then, after updating the flow and increasing the value, all labels, except of
course the special label on the source, are discarded and we start all over again.

cbna 243

Chapter 13 Network Flows

Labeling Vertices Using Forward Edges. Suppose we are scanning from a labeled vertex
u with potential p(u) > 0. From u, we consider the unlabeled neighbors of u in
pseudo-alphabetic order. Now suppose that we are looking at a neighbor v of u
with the edge (u, v) belonging to the network. This means that the edge is directed
from u to v. If e = (u, v) is not full, then we label the vertex v with the triple
(u,+, p(v)) where p(v) = min{p(u), c(e) − φ(e)}. We use this definition since the
flow cannot be increased by more than the prior potential or the spare capacity on
e. Note that the potential p(v) is positive since a is the minimum of two positive
numbers.

Labeling Vertices Using Backward Edges. Now suppose that we are looking at a neighbor
v of u with the edge (v, u) belonging to the network. This means that the edge is
directed from v to u. If e = (v, u) is used, then we label the vertex v with the triple
(u,−, p(v)) where p(v) = min{p(u), φ(e)}. Here p(v) is defined this way since the
flow on e cannot be decreased by more than φ(e) or p(u). Again, note that the
potential p(v) is positive since a is the minimum of two positive numbers.

What Happens When the Sink is Labeled? The labeling algorithm halts if the sink is ever
labeled. Note that we are always trying our best to label the sink, since in each
scan the sink is the very first vertex to be considered. Now suppose that the sink is
labeled with the triple (u,+, a). Note that the second coordinate on the label must
be + since all edges incident with the sink are oriented towards the sink.

We claim that we can find an augmenting path P which results in an increased
flow with δ = a, the potential on the sink. To see this, we merely back-track. The
sink T got its label from u = u1, u1 got its label from u2, and so forth. Eventually,
we discover a vertex um which got its label from the source. The augmenting path
is then P = (S = um, um−1, . . . , u1, T). The value of δ for this path is the potential
p(T) on the sink since we’ve carefully ensured that p(um) ≥ p(um−1) ≥ · · · ≥
p(u1) ≥ p(T).

And if the Sink is Not Labeled? On the other hand, suppose we have scanned from every
labeled vertex and there are still unlabeled vertices remaining, one of which is the
sink. Now we claim victory. To see that we have won, we simply observe that if L
is the set of labeled vertices, and U is the set of unlabeled vertices, the every edge
e = (x, y) with x ∈ L and y ∈ U is full, i.e., φ(e) = c(e). If this were not the
case, then y would qualify for a label with x as the first coordinate. Also, note that
φ(y, x) = 0 for every edge e with x ∈ L and y ∈ U . Regardless, we see that the
capacity of the cut V = L∪U is exactly equal to the value of the current flow, so we
have both amaximum flow andminimum cut providing a certificate of optimality.

244 cbna

13.5 A Concrete Example

13.5 A Concrete Example

Let’s apply the Labeling Algorithm to the network flow shown in Figure 13.2. Then we
start with the source:

S : (∗,+,∞)

Since the source S is the first vertex labeled, it is also the first one scanned. So we look
at the neighbors of S using the pseudo-alphabetic order on the vertices. Thus, the first
one to be considered is vertex B and since the edge (S,B) is not full, we label B as

B : (S,+, 8).

We then consider vertex E and label it as

E : (S,+, 28).

Next is vertex F , which is labeled as

F : (S,+, 15).

At this point, the scan from S is complete.
The first vertex after S to be labeled was B, so we now scan from B. The (unlabeled)

neighbors of B to be considered, in order, are A, C, andD. This results in the following
labels:

A : (B,+, 8)

C : (B,+, 8)

D : (B,−, 6)

The next vertex to be scanned isE, butE has no unlabeled neighbors, sowe thenmove
on to F , which again has no unlabeled neighbors. Finally, we scan from A, and using
the pseudo-alphabetic order, we first consider the sink T (which in this case is the only
remaining unlabeled vertex). This results in the following label for T .

T : (A,+, 8)

Now that the sink is labeled, we know there is an augmenting path. We discover this
path by backtracking. The sink T got its label from A, A got its label from B, and B got
its label from S. Therefore, the augmenting path is P = (S,B,A, T) with δ = 8. All
edges on this path are forward. The flow is then updated by increasing the flow on the
edges of P by 8. This results in the flow shown in Figure 13.4. The value of this flow is
38.
Here is the sequence of labels thatwill be foundwhen the labeling algorithm is applied

to this updated flow (Note that in the scan from S, the vertexB will not be labeled, since
now the edge (S,B) is full.

cbna 245

Chapter 13 Network Flows

S

T

23
, 8

17, 17

41, 13

31 4

24, 12

56, 24

20, 10

25 2

31
, 1

4

15
 6

24 5

42, 2

20, 8

15, 14

A

B

C

D
E

F

Figure 13.4: An Updated Network Flow

S : (∗,+,∞)

E : (S,+, 28)

F : (S,+, 15)

B : (E,+, 19)

D : (E,+, 12)

A : (F,+, 12)

C : (B,+, 10)

T : (A,+, 12)

This labeling results in the augmenting path P = (S, F,A, T) with δ = 12.

After this update, the value of the flow has been increased and is now 50 = 38 + 12.
We start the labeling process over again and repeat until we reach a stage where some
vertices (including the source) are labeled and some vertices (including the sink) are
unlabeled.

13.5.1 How the Labeling Algorithm Halts

Consider the network flow in Figure 13.5. The value of the current flow is 172. Applying

246 cbna

13.5 A Concrete Example

86, 6
3

24, 24

93, 85

41, 41

8, 8

38, 35

45, 34

76, 65

8, 8
4 4

29, 18

2, 2

94
, 8

7

6, 6

10, 10

12 5

16 6

31 14 23, 23

8,8

35, 27 13 1327 20

40, 40

25, 25
28 28

57, 53

22 5

18, 3

29, 29

S T

A

B

C

D

E

F

GH

I

J

K

L

Figure 13.5: Another Network Flow

the labeling algorithm using the pseudo-alphabetic order results in the following labels:

S : (∗,+,∞)

C : (S,+, 8)

F : (S,+, 23)

H : (C,+, 7)

I : (H,+, 7)

E : (I,−, 3)

G : (E,−, 3)

L : (E,+, 3)

B : (G,+, 3)

T : (L,+, 3)

These labels result in the augmenting path P = (S,C,H, I, E, L, T) with δ = 3. After
updating the flow and increasing its value to 175, the labeling algorithm halts with the
following labels:

S : (∗,+,∞)

C : (S,+, 5)

F : (S,+, 23)

H : (C,+, 4)

I : (H,+, 4)

cbna 247

Chapter 13 Network Flows

Now we observe that the labeled and unlabeled vertices are L = {S,C, F,H, I} and
U = {T,A,B,D,E,G, J,K}. Furthermore, the capacity of the cut V = L ∪ U is

41 + 8 + 23 + 8 + 13 + 29 + 28 + 25 = 175.

This shows that we have found a cut whose capacity is exactly equal to the value of the
current flow. In turn, this shows that the flow is optimal.

13.6 Integer Solutions of Linear Programming Problems

A linear programming problem is an optimization problem that can be stated in the
following form: Find the maximum value of a linear function

c1x1 + c2x2 + c3x3 + · · ·+ cnxn

subject tom constraints C1, C2, . . . , Cm, where each constraint Ci is a linear equation of
the form:

Ci : ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = bi

where all coefficients and constants are real numbers.
While the general subject of linear programming is far too broad for this course, we

would be remiss if we didn’t point out that:

1. Linear programming problems are a very important class of optimization problems
and they have many applications in engineering, science, and industrial settings.

2. There are relatively efficient algorithms for finding solutions to linear program-
ming problems.

3. A linear programming problem posed with rational coefficients and constants has
an optimal solution with rational values—if it has an optimal solution at all.

4. A linear programming problem posedwith integer coefficients and constants need
not have an optimal solution with integer values—even when it has an optimal
solution with rational values.

5. A very important theme in operations research is to determine when a linear pro-
gramming problem posed in integers has an optimal solution with integer values.
This is a subtle and often very difficult problem.

6. The problem of finding a maximum flow in a network is a special case of a linear
programming problem.

7. A network flowproblem inwhich all capacities are integers has amaximumflow in
which the flow on every edge is an integer. The Ford-Fulkerson labeling algorithm
guarantees this!

248 cbna

13.7 Exercises

10
, 6

2, 1
4,4

6 3

8 9

15, 13

5, 5

14, 10 7, 6

8 4
11, 10

3 2
12,

 10
16, 9

14, 12

6, 0

10, 5

S

T

A

BC

D

E
F

H

G

I

Figure 13.6: An invalid flow in a network

8. In general, linear programming algorithms are not used on networks. Instead, spe-
cial purpose algorithms, such as Ford-Fulkerson, have proven to be more efficient
in practice.

13.7 Exercises

1. Consider the network diagram in Figure 13.6. For each directed edge, the first
number is the capacity and the second value is intended to give a flow φ in the
network. However, the flow suggested is not valid.
a) Identify the reason(s) φ is not valid.
b) Without changing any of the edge capacities, modify φ into a valid flow φ̂.

Try to use as few modifications as possible.

2. Alice claims to have found a (valid) network flow of value 20 in the network shown
in Figure 13.7. Bob tells her that there’s no way she’s right, since no flow has value
greater than 18. Who’s right and why?

3. Find an augmenting path P with at least one backward edge for the flow φ in the
network shown in Figure 13.8. What is the value of δ for P ? Carry out an update
of φ using P to obtain a new flow φ̂. What is the value of φ̂?

4. Prove Proposition 13.6. You will need to verify that the flow conservation laws
hold at each vertex along an augmenting path (other than S and T). There are four
cases to consider depending on the forward/backward status of the two edges on
the augmenting path that are incident with the vertex.

cbna 249

Chapter 13 Network Flows

40

18
87

9

12
30

17
8

14

19

12

6

2

10

42
76

38

38

14

S

T

A

B

C

D

E

F

H

G

I

Figure 13.7: A network

10
, 2

2,2

12,8

11,9
7,3

9,2

6,1

4,4

17 0

8,0

14,4

42 1

13,6

8,8

19,12

20,106 2

15,2

5,1

S

T

A

B

C

D

E

F

H

G

I

Figure 13.8: A network with flow

250 cbna

13.7 Exercises

S
T

E

D

H

G

A

F

C

B

49, 49

22, 20

10, 7

5, 4

36, 30
16, 16

60, 46

10, 2

30, 30

12, 3

3, 0

24, 24

10, 6

17, 13 34, 34

28, 28 14, 435, 35
14, 14

Figure 13.9: A network with flow

5. Find the capacity of the cut (L,U) with

L = {S, F,H,C,B,G, I} and U = {A,D,E, T}

in the network shown in Figure 13.8.

6. Find the capacity of the cut (L,U) with

L = {S, F,D,B,A} and U = {H,C, I,G,E, T}

in the network shown in Figure 13.8.

7. For each of the augmenting paths P1, P2, P3, and P4 in Example 13.7, update the
flow in Figure 13.2. (Note that your solution to this exercise should consist of four
network flows. Do not attempt to use the four paths in sequence to create one
updated network flow.)

8. Continue running the Ford-Fulkerson labeling algorithm on the network flow in
Figure 13.4 until the algorithm halts without labeling the sink. Find the value of
the maximum flow as well as a cut of minimum capacity.

9. Use the Ford-Fulkerson labeling algorithm to find a maximum flow and a mini-
mum cut in the network shown in Figure 13.9 by starting from the current flow
shown there.

cbna 251

Chapter 13 Network Flows

S

T

30

47

20

10

14

C

F

G

B

E

A

D

20

19

14

18

20

50

43

8

18

8

15

12

Figure 13.10: A network

10. Figure 13.10 shows a network. Starting from the zero flow, i.e., the flow with
φ(e) = 0 for every directed edge e in the network, use the Ford-Fulkerson labeling
algorithm to find a maximum flow and a minimum cut in this network.

11. Consider a network in which the source S has precisely three neighbors: B,E, and
F . Suppose also that c(S,B) = 30, c(S,E) = 20, and c(S, F) = 25. You know that
there is a flow φ on the network but you do not know how much flow is on any
edge. You do know, however, that when the Ford-Fulkerson labeling algorithm is
run on the network with current flow φ, the first two vertices labeled are S with
label (∗,+,∞) and F with label (S,+, 15). Use this information to determine the
value of the flow φ and explain how you do so.

252 cbna

CHAPTER 14
Combinatorial Applications of

Network Flows
Clearly finding the maximum flow in a network can have many direct applications to
problems in business, engineering, and computer science. However, you may be sur-
prised to learn that finding network flows can also provide reasonably efficient algo-
rithms for solving combinatorial problems. In this chapter, we consider a restricted
version of network flows in which each edge has capacity 1. Our goal is to establish
algorithms for two combinatorial problems: finding maximum matchings in bipartite
graphs and finding the width of a poset as well as a minimal chain partition.

14.1 Introduction

Before delving into the particular combinatorial problems we wish to consider in this
chapter, we will state a key theorem. When working with network flow problems, our
examples thus far have always had integer capacities and we always found a maximum
flow in which every edge carried an integer amount of flow. It is not, however, immedi-
ately obvious that this can always be done. Why, for example, could it not be the case
that the maximum flow in a particularly pathalogical network with integer capacities is
23/3? Or how about something even worse, such as

√
21π? We can rule out the latter

because network flow problems fall into a larger class of problems known as linear pro-
gramming problems, and a major theorem tells us that if a linear program is posed with
all integer constraints (capacities in our case), the solution must be a rational number.
However, in the case of network flows, something even stronger is true.

Theorem 14.1. In a network flow problem in which every edge has integer capacity, there is a
maximum flow in which every edge carries an integer amount of flow.

Notice that the above theorem does not guarantee that every maximum flow has inte-
ger capacity on every edge, just that we are able to find one. With this theorem in hand,
we now see that if we consider network flow problems in which the capacities are all 1
we can find a maximum flow in which every edge carries a flow of either 0 or 1. This

253

Chapter 14 Combinatorial Applications of Network Flows

can give us a combinatorial interpretation of the flow, in a sense using the full edges as
edges that we “take” in some useful sense.

14.2 Matchings in Bipartite Graphs

Recall that a bipartite graph G = (V,E) is one in which the vertices can be properly
colored using only two colors. It is clear that such a coloring then partitions V into two
independent sets V1 and V2, and so all the edges are between V1 and V2. Bipartite graphs
have many useful applications, particularly when we have two distinct types of objects
and a relationship that makes sense only between objects of distinct types. For example,
suppose that you have a set of workers and a set of jobs for the workers to do. We can
consider theworkers as the set V1 and the jobs as V2 and add an edge fromworkerw ∈ V1
to job j ∈ V2 if and only if w is qualified to do j.
For example, the graph in Figure 14.1 is a bipartite graph in which we’ve drawn V1 on

the bottom and V2 on the top.

Figure 14.1: A bipartite graph

IfG = (V,E) is a graph, a setM ⊆ E is amatching inG if no two edges ofM share an
endpoint. If v is a vertex that is the endpoint of an edge inM , we say thatM saturates v
or v is saturated byM . WhenG is bipartite with V = V1∪V2, a matching is then away to
pair vertices in V1 with vertices in V2 so that no vertex is pairedwithmore than one other
vertex. We’re usually interested in finding amaximummatching, which is amatching that
contains the largest number of edges possible, and in bipartite graphs we usually fix the
sets V1 and V2 and seek a maximum matching from V1 to V2. In our workers and jobs
example, the matching problem thus becomes trying to find an assignment of workers
to jobs such that

(i) eachworker is assigned to a job forwhich he is qualified (meaning there’s an edge),

(ii) each worker is assigned to at most one job, and

(iii) each job is assigned at most one worker.

As an example, in Figure 14.2, the thick edges form amatching from V1 to V2. Suppose
that you’re the manager of these workers (on the bottom) and must assign them to the
jobs (on the top). Are you really making the best use of your resources by only putting
four of six workers to work? There are no trivial ways to improve the number of busy

254 cbna

14.2 Matchings in Bipartite Graphs

workers, as the two without responsibilities right now cannot do any of the jobs that are
unassigned. Perhaps there’s a more efficient assignment that can be made by redoing
some of the assignments, however. If there is, how should you go about finding it? If
there is not, how would you justify to your boss that there’s no better assignment of
workers to jobs?

Figure 14.2: A matching in a bipartite graph

At the end of the chapter, we’ll briefly look at a theorem on matchings in bipartite
graphs that tells us precisely when an assignment of workers to jobs exists that ensures
each worker has a job. First, however, we want to see how network flows can be used to
find maximum matchings in bipartite graphs. The algorithm we give, while decent, is
not the most efficient algorithm known for this problem. Therefore, it is not likely to be
the one used in practice. However, it is a nice example of how network flows can be used
to solve a combinatorial problem. The network that we use is formed from a bipartite
graph G by placing an edge from the source S to each vertex of V1 and an edge from
each vertex of V2 to the sink T . The edges between V1 and V2 are oriented from V1 to V2,
and every edge is given capacity 1. Figure 14.3 contains the network corresponding to
our graph from Figure 14.1. Edges in this network are all oriented from bottom to top
and all edges have capacity 1. The vertices in V1 are x1, . . . , x6 in order from left to right,
while the vertices in V2 are y1, . . . , y7 from left to right.

S

T

x1 x6

y1 y7

Figure 14.3: The network corresponding to a bipartite graph

Now that we have translated a bipartite graph into a network, we need to address the
correspondence between matchings and network flows. To turn a matching M into a
network flow, we start by placing one unit of flow on the edges of the matching. To have
a valid flow, we must also place one unit of flow on the edges from S to the vertices of
V1 saturated byM . Since each of these vertices is incident with a single edge ofM , the
flow out of each of them is 1, matching the flow in. Similarly, routing one unit of flow to

cbna 255

Chapter 14 Combinatorial Applications of Network Flows

T from each of the vertices of V2 saturated byM takes care of the conservation laws for
the remaining vertices. To go the other direction, simply note that the full edges from V1
to V2 in an integer-valued flow is a matching. Thus, we can find a maximum matching
from V1 to V2 by simply running the labeling algorithm on the associated network in
order to find a maximum flow.
In Figure 14.4, we show thick edges to show the edges with flow 1 in the flow cor-

responding to our guess at a matching from Figure 14.2. Now with priority sequence

S

T

x1 x6

y1 y7

Figure 14.4: The flow corresponding to a matching

S, T, x1, x2, . . . , x6, y1, y2, . . . , y7 replacing our usual pseudo-alphabetic order, the label-
ing algorithm produces the labels shown below.

S : (∗,+,∞) y6 : (x6,+, 1)

x3 : (S,+, 1) x1 : (y6,−, 1)

x5 : (S,+, 1) y1 : (x1,+, 1)

y4 : (x3,+, 1) y2 : (x1,+, 1)

y5 : (x3,+, 1) y3 : (x1,+, 1)

x6 : (y4,−, 1) x2 : (y1,−, 1)

x4 : (y5,−, 1) T : (y2,+, 1)

This leads us to the augmenting path S, x3, y4, x6, y6, x1, y2, T , which gives us the flow
shown in Figure 14.5. Is this a maximum flow? Another run of the labeling algorithm
produces

S : (∗,+,∞) x4 : (y5,−, 1)

x5 : (S,+, 1) y4 : (x4,+, 1)

y5 : (x5,+, 1) x3 : (y4,−, 1)

and then halts. Thus, the flow in Figure 14.5 is a maximum flow.
Now that we know we have a maximum flow, we’d like to be able to argue that the

matching we’ve found is also maximum. After all, the boss isn’t going to be happy if

256 cbna

14.3 Chain partitioning

S

T

x1 x6

y1 y7

Figure 14.5: The augmented flow

he later finds out that this fancy algorithm you claimed gave an optimal assignment of
jobs to workers left the fifth worker (x5) without a job when all six of them could have
been put to work. Let’s take a look at which vertices were labeled by the Ford-Fulkerson
labeling algorithm on the last run. There were three vertices (x3, x4, and x5) from V1
labeled, while there were only two vertices (y4 and y5) from V2 labeled. Notice that y4
and y5 are the only vertices that are neighbors of x3, x4, or x5 in G. Thus, no matter
how we choose the matching edges from {x3, x4, x5}, one of these vertices will be left
unsaturated. Therefore, one of the workers must go without a job assignment. (In our
example, it’s the fifth, but it’s possible to choose different edges for the matching so
another one of them is left without a task.)
The phenomenon we’ve just observed is not unique to our example. In fact, in every

bipartite graph G = (V,E) with V = V1 ∪ V2 in which we cannot find a matching that
saturates all the vertices of V , we will find a similar configuration. This is a famous
theorem of Hall, which we state below.

Theorem 14.2 (Hall). Let G = (V,E) be a bipartite graph with V = V1 ∪ V2. There is a
matching which saturates all vertices of V1 if and only if for every subset A ⊆ V1, the setN ⊆ V
of neighbors of the vertices in A satisfies |N | ≥ |A|.

14.3 Chain partitioning

In chapter 6, we discussed Dilworth’s theorem (Theorem 6.9), which told us that for any
poset P of width w, there is a partition of P into w, but no fewer, chains. However,
we were only able to devise an algorithm to find this chain partition (and a maximum
antichain) in the special case wherePwas an interval order. Now, through the magic of
network flows, we will be able to devise an efficient algorithm that works in general for
all posets. However, to do so, we will require a slightly more complicated network than
we devised in the previous section.
Suppose that the points of our poset P are {x1, x2, . . . , xn}. We construct a network

fromP consisting of the source S, sink T , and two points x′i and x′′i for each point xi ofP.
All edges in our network will have capacity 1. We add edges from S to x′i for 1 ≤ i ≤ n

cbna 257

Chapter 14 Combinatorial Applications of Network Flows

and from x′′i to T for 1 ≤ i ≤ n. Of course, this network wouldn’t be too useful, as it has
no edges from the single-prime nodes to the double-prime nodes. To resolve this, we
add an edge directed from x′i to x′′j if and only if xi < xj in P.

Our running example in this sectionwill be the poset in Figure 14.6a. We’ll discuss the
points of the poset as xi where i is the number printed next to the point in the diagram.

8 15

10

9

2

3

4

6 7

(a)

S

T

x′1 x′10

x′′1 x′′10

(b)

Figure 14.6: A partially ordered set (a) and the associated network (b)

The first step is to create the network, which we show in Figure 14.6b. In this network,
all capacities are 1, edges are directed from bottom to top, the first row of ten vertices
is the x′i arranged consecutively with x′1 at the left and x′10 at the right, and the second
row of ten vertices is the x′′i in increasing order of index. To see how this network is
constructed, notice that x1 < x3 in the poset, so we have the directed edge (x′1, x

′′
3).

Similarly, x4 is less thanx3, x5, andx9 in the poset, leading to three directed edges leaving
x′4 in the network. As a third example, since x9 is maximal in the poset, there are no
directed edges leaving x′9.

We have not yet seen how we might turn a maximum flow (or minimum cut) in the
networkwe’ve just constructed into aminimum chain partition or amaximumantichain.
It will be easier to see how this works once we have a confirmed maximum flow. Rather
than running the labeling algorithm starting from the zero flow, we eyeball a flow, such
as the one shown in Figure 14.7. (Again, we use the convention that thick edges are
full, while thin edges are empty.) When we run the labeling algorithm (using priority

258 cbna

14.3 Chain partitioning

S

T

x′1 x′10

x′′1 x′′10

Figure 14.7: An initial flow

S, T, x′1, . . . , x
′
10, x

′′
1 , . . . , x

′′
10), we obtain the following list of labels:

S : (∗,+,∞) x′′9 : (x′5,+, 1) x′3 : (S,+, 1)

x′3 : (S,+, 1) x′′4 : (x′6,+, 1) x′′1 : (x′7,+, 1)

x′5 : (S,+, 1) x′′5 : (x′6,+, 1) x′′2 : (x′7,+, 1)

x′6 : (S,+, 1) x′1 : (x′′3 ,−, 1) x′2 : (x′7,+, 1)

x′9 : (S,+, 1) x′8 : (x′′9 ,−, 1) T : (x′′2 ,+, 1)

x′′3 : (x′5,+, 1) x′7 : (x′′4 ,−, 1)

Thus, we find the augmenting path (S, x′6, x
′′
4 , x
′
7, x
′′
2 , T), and the updated flow can be

seen in Figure 14.8. If we run the labeling algorithm again, the algorithm assigns the
labels below, leaving the sink unlabeled.

S : (∗,+,∞) x′5 : (S,+, 1) x′′3 : (x′5,+, 1) x′1 : (x′′3 ,−, 1)

x′3 : (S,+, 1) x′9 : (S,+, 1) x′′9 : (x′5,+, 1) x′8 : (x′′9 ,−, 1)

In Figure 14.8, the black vertices are those the labeled in the final run, while the gold
vertices are the unlabeled vertices.
Now that we’ve gone over the part you already knew how to do, we need to discuss

how to translate this network flow and cut into a chain partition and an antichain. If
there is a unit of flow on an edge (x′i, x

′′
j), then a good first instinct is to place xi and xj in

the same chain of a chain partition. To be able to do this successfully, of course, we need
to ensure that this won’t result in two incomparable points being placed in a chain. A

cbna 259

Chapter 14 Combinatorial Applications of Network Flows

S

T

x′1 x′10

x′′1 x′′10

Figure 14.8: A better flow

way to see that everything works as desired is to think of starting with (x′i, x
′′
j) and then

looking for flow leaving x′j . If there is, it goes to a vertex x′′k , so we may add xk to the
chain since xi < xj < xk. Continue in this manner until reaching a vertex in the network
that does not have any flow leaving it. Then see if x′′i has flow coming into it. If it does,
it’s from a vertex x′m that can be added since xm < xi < xj .
Let’s see how following this process for the flow in Figure 14.8 leads to a chain parti-

tion. If we start with x′1, we see that (x′1, x
′′
3) is full, so we place x1 and x3 in chain C1.

Since x′3 has no flow leaving it, there are no greater elements to add to the chain. How-
ever, x′′1 has flow in from x′2, so we add x2 to C1. We now see that x′′2 has flow in from
x′7, so now C1 = {x1, x2, x3, x7}. Vertex x′′7 has no flow into it, so the building of the first
chain stops. The first vertex we haven’t placed into a chain is x4, so we note that (x′4, x

′′
5)

is full, placing x4 and x5 in chain C2. We then look from x′5 and see no flow leaving.
However, there is flow into x′′4 from x′6, so x6 is added to C2. There is no flow out of x′′6 ,
so C2 = {x4, x5, x6}. Now the first point not in a chain is x8, so we use the flow from x′8
to x′′9 to place x8 and x9 in chain C3. Again, no flow out of x′9, so we look to x′′8 , which
is receiving flow from x′′10. Adding x10 to C3 gives C3 = {x8, x9, x10}, and since every
point is now in a chain, we may stop.
Even once we see that the above process does in fact generate a chain partition, it is

not immediately clear that it’s a minimum chain partition. For this, we need to find an
antichain of as many points as there are chains in our partition. (In the example we’ve
been using, we need to find a three-element antichain.) This iswhere tracking the labeled
vertices comes in handy. Supposewehave determined a chainC = {x1 < x2 < · · · < xk}
using the network flow. Since x1 is the minimal element of this chain, there is no flow
into x′′1 and hence no flow out of x′′1 . Since T is unlabeled, this must mean that x′′1 is
unlabeled. Similarly, xk is the maximal element of C, so there is no flow out of x′k. Thus,

260 cbna

14.4 Exercises

x′k is labeled. Now considering the sequence of vertices

x′k, x
′′
k , x
′
k−1, x

′′
k−1, . . . , x

′
2, x
′′
2 , x
′
1, x
′′
1 ,

there must be a place where the vertices switch from being labeled to unlabeled. This
must happen with x′i labeled and x′′i unlabeled. To see why, suppose that x′i and x′′i are
both unlabeledwhile x′i+1 and x′′i+1 are both labeled. Because xi and xi+1 are consecutive
inC, there is flow on (x′i, x

′′
i+1). Therefore, when scanning from x′′i+1, the vertex x′iwould

be labeled. For each chain of the chain partition, we then take the first element y for
which y′ is labeled and y′′ is unlabeled to form an antichain A = {y1, . . . , yw}. To see
that A is an antichain, notice that if yi < yj , then (y′i, y

′′
j) is an edge in the network.

Therefore, the scan from y′i would label y′′j . Using this process, we find that a maximum
antichain in our example is {x1, x5, x8}.

14.4 Exercises

1. Use the techniques of this chapter to find a maximum matching from V1 to V2 in
the graph shown in Figure 14.9. The vertices on the bottom are the set V1, while
the vertices on the top are the set V2. If you cannot find a matching that saturates
all of the vertices in V1, explain why.

Figure 14.9: Is there a matching saturating V1?

2. Use the techniques of this chapter to find a maximum matching from V1 to V2 in
the graph shown in Figure 14.10. The vertices on the bottom are the set V1, while
the vertices on the top are the set V2. If you cannot find a matching that saturates
all of the vertices in V1, explain why.

Figure 14.10: Is there a matching saturating V1?

3. Students are preparing to do final projects for an applied combinatorics course.
The five possible topics for their final projects are graph algorithms, posets, induc-
tion, graph theory, and generating functions. There are five students in the class,

cbna 261

Chapter 14 Combinatorial Applications of Network Flows

and they have each given their professor the list of topics onwhich they are willing
to do their project. Alice is interested in posets or graphs. Bob would be willing to
do his project on graph algorithms, posets, or induction. Carlos will only consider
posets or graphs. Dave likes generating functions and induction. Yolanda wants
to do her project on either graphs or posets. To prevent unauthorized collabora-
tion, the professor does not want to have two students work on the same topic. Is
it possible to assign each student a topic from the lists above so that no two stu-
dents work on the same project? If so, find such an assignment. If not, find an
assignment that maximizes the number of students who have assignments from
their lists and explain why you cannot satisfy all the students’ requests.

4. Seven colleges and universities are competing to recruit six high school football
players to play for their varsity teams. Each school is only allowed to sign one
more player, and each player is only allowed to commit to a single school. The
table below lists the seven institutions and the students they are trying to recruit,
have been admitted, and are also interested in playing for that school. (There’s no
point in assigning a school a player who cannot meet academic requirements or
doesn’t want to be part of that team.) The players are identified by the integers 1
through 6. Find a way of assigning the players to the schools that maximizes the
number of schools who sign one of the six players.

School Player numbers
Boston College 1, 3, 4

Clemson University 1, 3, 4, 6
Georgia Institute of Technology 2, 6

University of Georgia None interested
University of Maryland 2, 3, 5

University of North Carolina 1, 2, 5
Virginia Polytechnic Institute and State University 1, 2, 5, 6

5. The questions in this exercise refer to the network diagram in Figure 14.11. This
network corresponds to a posetP. As usual, all capacities are assumed to be 1, and
all edges are directed upward. Answer the following questions about P without
drawing the diagram of the poset.
a) Which element(s) are greater than x1 in P?
b) Which element(s) are less than x5 in P?
c) Which element(s) are comparable with x6 in P?
d) List the maximal elements of P.
e) List the minimal elements of P.

6. Draw the diagram of the poset that corresponds to the network in Figure 14.11.

262 cbna

14.4 Exercises

S

T

x′1 x′6

x′′1 x′′6

Figure 14.11: The network corresponding to a poset

7. Use the methods developed in this chapter to find the width w of the poset cor-
responding to the network in Figure 14.11. Also find an antichain of size w and a
partition into w chains.

8. In Figure 14.12 we show a poset P and a network used to find a chain partition of
P. (All edges in the network have a capacity of 1 and are directed from bottom to
top. The bold edges currently carry a flow of 1.) Using the network, find the width
w of P, a partition of P into w chains, and an antichain with w elements.

x1
x2

x3

x4

x5 x6 S

T

x′1 x′6

x′′1 x′′6

Figure 14.12: A poset and the corresponding network diagram

9. Draw the network corresponding to the poset P shown in Figure 14.13. Use the
network to find the widthw ofP, a partition intow chains, and an antichain of size
w.

cbna 263

Chapter 14 Combinatorial Applications of Network Flows

x1

x2

x3

x4

x5

x6

x7

x8

x9
x10

Figure 14.13: A poset

264 cbna

CHAPTER 15
Pólya’s Enumeration Theorem

In this chapter, we introduce a powerful enumeration technique generally referred to
as Pólya’s enumeration theorem1. Pólya’s approach to counting allows us to use sym-
metries (such as those of geometric objects like polygons) to form generating functions.
These generating functions can then be used to answer combinatorial questions such as

1. Howmanydifferent necklaces of six beads can be formedusing red, blue and green
beads? What about 500-bead necklaces?

2. How many musical scales consisting of 6 notes are there?

3. Howmany isomers of the compound xylenol, C6H3(CH3)2(OH), are there? What
about CnH2n+2? (In chemistry, isomers are chemical compounds with the same
number of molecules of each element but with different arrangements of those
molecules.)

4. How many nonisomorphic graphs are there on four vertices? How many of them
have three edges? What about on 1000 vertices with 257, 000 edges? How many
r-regular graphs are there on 40 vertices? (A graph is r-regular if every vertex has
degree r.)

To use Pólya’s techniques, we will require the idea of a permutation group. However,
our treatment will be self-contained and driven by examples. We beginwith a simplified
version of the first question above.

15.1 Coloring the Vertices of a Square

Let’s begin by coloring the vertices of a square usingwhite and gold. Ifwefix the position
of the square in the plane, there are 24 = 16 different colorings. These colorings are
shown in Figure 15.1. However, if we think of the square as a metal frame with a white
1Like so many results of mathematics, the crux of the result was originally discovered by someone other than
the mathematician whose name is associated with it. J.H. Redfield published this result in 1927, 10 years
prior to Pólya’s work. It would take until 1960 for Redfield’s work to be discovered, by which time Pólya’s
name was firmly attached to the technique.

265

Chapter 15 Pólya’s Enumeration Theorem

C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16

Figure 15.1: The 16 colorings of the vertices of a square.

bead or a gold bead at each corner and allow the frame to be rotated and flipped over,
we realize that many of these colorings are equivalent. For instance, if we flip coloring
C7 over about the vertical line dividing the square in half, we obtain coloring C9. If we
rotate coloring C2 clockwise by 90◦, we obtain coloring C3. In many cases, we want to
consider such equivalent colorings as a single coloring. (Recall our motivating example
of necklaces made of colored beads. It makes little sense to differentiate between two
necklaces if one can be rotated and flipped to become the other.)
To systematically determine how many of the colorings shown in Figure 15.1 are not

equivalent, we must think about the transformations we can apply to the square and
what each does to the colorings. Before examining the transformations’ effects on the
colorings, let’s take a moment to see how they rearrange the vertices. To do this, we
consider the upper-left vertex to be 1, the upper-right vertex to be 2, the lower-right
vertex to be 3, and the lower-left vertex to be 4. We denote the clockwise rotation by 90◦

by r1 and see that r1 sends the vertex in position 1 to position 2, the vertex in position 2 to
position 3, the vertex in position 3 to position 4, and the vertex in position 4 to position
1. For brevity, we will write r1(1) = 2, r1(2) = 3, etc. We can also rotate the square
clockwise by 180◦ and denote that rotation by r2. In this case, we find that r2(1) = 3,
r2(2) = 4, r2(3) = 1, and r2(4) = 2. Notice that we can achieve the transformation r2
by doing r1 twice in succession. Furthermore, the clockwise rotation by 270◦, r3, can
be achieved by doing r1 three times in succession. (Counterclockwise rotations can be
avoided by noting that they have the same effect as a clockwise rotation, although by a
different angle.)
When it comes to flipping the square, there are four axes about which we can flip it:

vertical, horizontal, positive-slope diagonal, and negative-slope diagonal. We denote
these flips by v, h, p, and n, respectively. Now notice that v(1) = 2, v(2) = 1, v(3) = 4,
and v(4) = 3. For the flip about the horizontal axis, we have h(1) = 4, h(2) = 3, h(3) = 2,
and h(4) = 1. For p, we have p(1) = 3, p(2) = 2, p(3) = 1, and p(4) = 4. Finally, for n
we find n(1) = 1, n(2) = 4, n(3) = 3, and n(4) = 2. There is one more transformation
that we must mention; the transformation that does nothing to the square is called the
identity transformation, denoted ι. It has ι(1) = 1, ι(2) = 2, ι(3) = 3, and ι(4) = 4.

266 cbna

15.1 Coloring the Vertices of a Square

Now that we’ve identified the eight transformations of the square, let’s make a table
showing which colorings from Figure 15.1 are left unchanged by the application of each
transformation. Not surprisingly, the identity transformation leaves all of the colorings
unchanged. Because r1 moves the vertices cyclically, we see that onlyC1 andC16 remain
unchanged when it is applied. Any coloring with more than one color would have a
vertex of one color moved to one of the other color. Let’s consider which colorings are
fixed by v, the flip about the vertical axis. For this to happen, the color at position 1 must
be the same as the color at position 2, and the color at position 3 must be the same as the
color at position 4. Thus, we would expect to find 2 · 2 = 4 colorings unchanged by v.
Examining Figure 15.1, we see that these colorings are C1, C6, C8, and C16. Performing
a similar analysis for the remaining five transformations leads to Table 15.1.
At this point, it’s natural to ask where this is going. After all, we’re trying to count

the number of nonequivalent colorings, and Table 15.1 makes no effort to group colorings
based on how a transformation changes one coloring to another. It turns out that there is
a useful connection between counting the nonequivalent colorings and determining the
number of colorings fixed by each transformation. To develop this connection, we first
need to discuss the equivalence relation created by the action of the transformations
of the square on the set C of all 2-colorings of the square. (Refer to section A.13 for a
refresher on the definition of equivalence relation.) To do this, notice that applying a
transformation to a square with colored vertices results in another square with colored
vertices. For instance, applying the transformation r1 to a square colored as inC12 results
in a square colored as in C13. We say that the transformations of the square act on the
set C of colorings. We denote this action by adding a star to the transformation name.
For instance, r∗1(C12) = C13 and v∗(C10) = C11.
If τ is a transformation of the square with τ∗(Ci) = Cj , then we say colorings Ci and

Cj are equivalent and write Ci ∼ Cj . Since ι∗(C) = C for all C ∈ C, ∼ is reflexive. If
τ∗1 (Ci) = Cj and τ∗2 (Cj) = Ck, then τ∗2 (τ∗1 (Ci)) = Ck, so ∼ is transitive. To complete
our verification that ∼ is an equivalence relation, we must establish that it is symmetric.
For this, we require the notion of the inverse of a transformation τ , which is simply the

Transformation Fixed colorings
ι All 16
r1 C1, C16

r2 C1, C10, C11, C16

r3 C1, C16

v C1, C6, C8, C16

h C1, C7, C9, C16

p C1, C3, C5, C10, C11, C13, C15, C16

n C1, C2, C4, C10, C11, C12, C14, C16

Table 15.1: Colorings fixed by transformations of the square

cbna 267

Chapter 15 Pólya’s Enumeration Theorem

transformation τ−1 that undoes whatever τ did. For instance, the inverse of r1 is the
counterclockwise rotation by 90◦, which has the same effect on the location of the vertices
as r3. If τ∗(Ci) = Cj , then τ−1

∗
(Cj) = Ci, so ∼ is symmetric.

Before proceeding to establish the connection between the number of nonequivalent
colorings (equivalence classes under∼) and the number of colorings fixed by a transfor-
mation in full generality, let’s see how it looks for our example. In looking at Figure 15.1,
you should notice that ∼ partitions C into six equivalence classes. Two contain one col-
oring each (the all white and all gold colorings). One contains two colorings (C10 and
C11). Finally, three contain four colorings each (one gold vertex, one white vertex, and
the remaining four with two vertices of each color). Now look again at Table 15.1 and
add up the number of colorings fixed by each transformation. In doing this, we obtain
48, and when 48 is divided by the number of transformations (8), we get 6 (the number
of equivalence classes)! It turns out that this is far from a fluke, as we will soon see.
First, however, we introduce the concept of a permutation group to generalize our set of
transformations of the square.

15.2 Permutation Groups

Entire books have been written on the theory of the mathematical structures known as
groups. However, our study of Pólya’s enumeration theorem requires only a few facts
about a particular class of groups that we introduce in this section. First, recall that a
bijection from a set X to itself is called a permutation. A permutation group is a set P of
permutations of a set X so that

1. the identity permutation ι is in P ;

2. if π1, π2 ∈ P , then π2 ◦ π1 ∈ P ; and

3. if π1 ∈ P , then π−11 ∈ P .

For our purposes, X will always be finite and we will usually take X = [n] for some
positive integer n. The symmetric group on n elements, denoted Sn, is the set of all permu-
tations of [n]. Every finite permutation group (and more generally every finite group) is
a subgroup of Sn for some positive integer n.

As our first example of a permutation group, consider the set of permutations we
discussed in section 15.1, called the dihedral group of the square. We will denote this group
byD8. We denote byD2n the similar group of transformations for a regular n-gon, using
2n as the subscript because there are 2n permutations in this group.2 The first criterion
to be a permutation group is clearly satisfied by D8. Verifying the other two is quite
tedious, so we only present a couple of examples. First, notice that r2 ◦ r1 = r3. This can
be determined by carrying out the composition of these functions as permutations or by
2Some authors and computer algebra systems useDn as the notation for the dihedral group of the n-gon.

268 cbna

15.2 Permutation Groups

noting that rotating 90◦ clockwise and then 180◦ clockwise is the same as rotating 270◦

clockwise. For v ◦ r, we find v ◦ r(1) = 1, v ◦ r(3) = 3, v ◦ r(2) = 4, and v ◦ r(4) = 2,
so v ◦ r = n. For inverses, we have already discussed that r−11 = r3. Also, v−1 = v, and
more generally, the inverse of any flip is that same flip.

15.2.1 Representing permutations

The way a permutation rearranges the elements of X is central to Pólya’s enumeration
theorem. A proper choice of representation for a permutation is very important here, so
let’s discuss how permutations can be represented. One way to represent a permutation
π of [n] is as a 2× nmatrix in which the first row represents the domain and the second
row represents π by putting π(i) in position i. For example,

π =

(
1 2 3 4 5
2 4 3 5 1

)
is the permutation of [5] with π(1) = 2, π(2) = 4, π(3) = 3, π(4) = 5, and π(5) = 1.
This notation is rather awkward and provides only the most basic information about the
permutation. A more compact (and more useful for our purposes) notation is known as
cycle notation. One way to visualize how the cycle notation is constructed is by construct-
ing a digraph from a permutation π of [n]. The digraph has [n] as its vertex set and a
directed edge from i to j if and only if π(i) = j. (Here we allow a directed edge from a
vertex to itself if π(i) = i.) The digraph corresponding to the permutation π from above
is shown in Figure 15.2. Since π is a permutation, every component of such a digraph is
a directed cycle. We can then use these cycles to write down the permutation in a com-
pact manner. For each cycle, we start at the vertex with smallest label and go around the
cycle in the direction of the edges, writing down the vertices’ labels in order. We place
this sequence of integers in parentheses. For the 4-cycle in Figure 15.2, we thus obtain
(1245). (If n ≥ 10, we place spaces or commas between the integers.) The component
with a single vertex is denoted simply as (3), and thus we may write π = (1245)(3). By
convention, the disjoint cycles of a permutation are listed so that their first entries are in
increasing order.

1

2 34

5

Figure 15.2: The digraph corresponding to permutation π = (1245)(3)

cbna 269

Chapter 15 Pólya’s Enumeration Theorem

Example 15.1. The permutation π = (1483)(27)(56) has π(1) = 4, π(8) = 3, π(3) = 1, and
π(5) = 6. The permutation π′ = (13)(2)(478)(56) has π′(1) = 3, π′(2) = 2, and π′(8) = 4.
We say that π consists of two cycles of length 2 and one cycle of length 4. For π′, we have
one cycle of length 1, two cycles of length 2, and one cycle of length 3. A cycle of length
k will also called a k-cycle in this chapter.

15.2.2 Multiplying permutations

Because the operation in an arbitrary group is frequently calledmultiplication, it is com-
mon to refer to the composition of permutations asmultiplication andwrite π2π1 instead
of π2◦π1. The important thing to remember here, however, is that the operation is simply
function composition. Let’s see a couple of examples.
Example 15.2. Let π1 = (1234) and π2 = (12)(34). (Notice that these are the permutations
r1 and v, respectively, from D8.) Let π3 = π2π1. To determine π3, we start by finding
π3(1) = π2π1(1) = π2(2) = 1. We next find that π3(2) = π2π1(2) = π2(3) = 4. Similarly,
π3(3) = 3 and π3(4) = 2. Thus, π3 = (1)(24)(3), which we called n earlier.

Now let π4 = π1π2. Then π4(1) = 3, π4(2) = 2, π4(3) = 1, and π4(4) = 4. Therefore,
π4 = (13)(2)(4), which we called p earlier. It’s important to note that π1π2 6= π2π1, which
hopefully does not surprise you, since function composition is not in general commu-
tative. To further illustrate the lack of commutativity in permutation groups, pick up
a book (Not this one! You need to keep reading directions here.) so that cover is up
and the spine is to the left. First, flip the book over from left to right. Then rotate it 90◦

clockwise. Where is the spine? Now return the book to the cover-up, spine-left position.
Rotate the book 90◦ clockwise and then flip it over from left to right. Where is the spine
this time?
It quickly gets tedious towrite downwhere the product of two (ormore) permutations

sends each element. A more efficient approach would be to draw the digraph and then
write down the cycle structure. With some practice, however, you can build the cycle
notation as you go along, as we demonstrate in the following example.
Example 15.3. Let π1 = (123)(487)(5)(6) and π2 = (18765)(234). Let π3 = π2π1. To start
constructing the cycle notation for π3, we must determine where π3 sends 1. We find
that it sends it to 3, since π1 sends 1 to 2 and π2 sends 2 to 3. Thus, the first cycle begins
13. Now where is 3 sent? It’s sent to 8, which goes to 6, which goes to 5, which goes to
1, completing our first cycle as (13865). The first integer not in this cycle is 2, which we
use to start our next cycle. We find that 2 is sent to 4, which is set to 7, which is set to 2.
Thus, the second cycle is (247). Now all elements of 8 are represented in these cycles, so
we know that π3 = (13865)(247).
We conclude this section with one more example.

Example 15.4. Let’s find [(123456)][(165432)], where we’ve written the two permutations
being multiplied inside brackets. Since we work from right to left, we find that the first

270 cbna

15.3 Burnside’s Lemma

permutation applied sends 1 to 6, and the second sends 6 to 1, so our first cycle is (1).
Next, we find that the product sends 2 to 2. It also sends i to i for every other i ≤ 6.
Thus, the product is (1)(2)(3)(4)(5)(6), which is better known as the identity permuta-
tion. Thus, (123456) and (165432) are inverses.
In the next section, we will use standard counting techniques we’ve seen before in this

book to prove results about groups acting ons ets. We will state the results for arbitrary
groups, but youmay safely replace “group” by “permutation group”without losing any
understanding required for the remainder of the chapter.

15.3 Burnside’s Lemma

Burnside’s lemma3 relates the number of equivalence classes of the action of a group on
a finite set to the number of elements of the set fixed by the elements of the group. Before
stating and proving it, we need some notation and a proposition. If a group G acts on
a finite set C, let ∼ be the equivalence relation induced by this action. (As before, the
action of π ∈ G on C will be denoted π∗.) Denote the equivalence class containing C ∈ C
by 〈C〉. For π ∈ G, let fixC(π) = {C ∈ C : π∗(C) = C}, the set of colorings fixed by π. For
C ∈ C, let stabG(C) = {π ∈ G : π(C) = C} be the stabilizer of C in G, the permutations
in G that fix C.

To illustrate these concepts before applying them, refer back to Table 15.1. Using that
information, we can determine that fixC(r2) = {C1, C10, C11, C16}. Determining the sta-
bilizer of a coloring requires finding the rows of the table in which it appears. Thus,
stabD8

(C7) = {ι, h} and stabD8
(C11) = {ι, r2, p, n}.

Proposition 15.5. Let a group G act on a finite set C. Then for all C ∈ C,∑
C′∈〈C〉

| stabG(C ′)| = |G|.

Proof. Let stabG(C) = {π1, . . . , πk} and T (C,C ′) = {π ∈ G : π∗(C) = C ′}. (Note that
T (C,C) = stabG(C).) Take π ∈ T (C,C ′). Then π ◦ πi ∈ T (C,C ′) for 1 ≤ i ≤ k.
Furthermore, if π ◦ πi = π ◦ πj , then π−1 ◦ π ◦ πi = π−1 ◦ π ◦ πj . Thus πi = πj and i = j.
If π′ ∈ T (C,C ′), then π−1 ◦ π′ ∈ T (C,C). Thus, π−1 ◦ π′ = πi for some i, and hence
π′ = π ◦ πi. Therefore T (C,C ′) = {π ◦ π1, . . . , π ◦ πk}. Additionally, we observe that
T (C ′, C) = {π−1 : π ∈ T (C,C ′)}. Now for all C ′ ∈ 〈C〉,

| stabG(C ′)| = |T (C ′, C ′)| = |T (C ′, C)| = |T (C,C ′)| = |T (C,C)| = | stabG(C)|.

Therefore, ∑
C′∈〈C〉

| stabG(C ′)| =
∑

C′∈〈C〉

|T (C,C ′)|.

3Again, not originally proved by Burnside. It was known to Frobenius and for the most part by Cauchy.
However, it was most easily found in Burnside’s book, and thus his name came to be attached.

cbna 271

Chapter 15 Pólya’s Enumeration Theorem

Now notice that each element of G appears in T (C,C ′) for precisely one C ′ ∈ 〈C〉, and
the proposition follows.

With Proposition 15.5 established, we are now prepared for Burnside’s lemma.

Lemma 15.6 (Burnside’s Lemma). Let a groupG act on a finite set C and letN be the number
of equivalence classes of C induced by this action. Then

N =
1

|G|
∑
π∈G
|fixC(π)|.

Before we proceed to the proof, note that the calculation in Burnside’s lemma for the
example of 2-coloring the vertices of a square is exactly the calculation we performed at
the end of section 15.1.

Proof. Let X = {(π,C) ∈ G × C : π(C) = C}. Notice that
∑
π∈G |fixC(π)| = |X|, since

each term in the sum counts how many ordered pairs of X have π in their first coor-
dinate. Similarly,

∑
C∈C | stabG(C)| = |X|, with each term of this sum counting how

many ordered pairs of X have C as their second coordinate. Thus,
∑
π∈G |fixC(π)| =∑

C∈C | stabG(C)|. Now note that the latter sum may be rewritten as

∑
equivalence
classes 〈C〉

 ∑
C′∈〈C〉

| stabG(C ′)|

 .

By Proposition 15.5, the inner sum is |G|. Therefore, the total sum is N · |G|, so solving
for N gives the desired equation.

Burnside’s lemmahelpfully validates the computationswe did in the previous section.
However, what if instead of a square we were working with a hexagon and instead of
two colors we allowed four? Then there would be 46 = 4096 different colorings and the
dihedral group of the hexagon has 12 elements. Assembling the analogue of Table 15.1
in this situation would be a nightmare! This is where the genius of Pólya’s approach
comes into play, as we see in the next section.

15.4 Pólya’s Theorem

Before getting to the full version of Pólya’s formula, we must develop a generating func-
tion as promised at the beginning of the chapter. Todo this, wewill return to our example
of section 15.1.

272 cbna

15.4 Pólya’s Theorem

Transformation Monomial Fixed colorings
ι = (1)(2)(3)(4) x41 16

r1 = (1234) x14 2

r2 = (13)(24) x22 4

r3 = (1432) x14 2

v = (12)(34) x22 4

h = (14)(23) x22 4

p = (14)(2)(3) x21x
1
2 8

n = (1)(24)(3) x21x
1
2 8

Table 15.2: Monomials arising from the dihedral group of the square

15.4.1 The cycle index

Unlike the generating functions we encountered in chapter 8, the generating functions
we will develop in this chapter will have more than one variable. We begin by associ-
ating a monomial with each element of the permutation group involved. In this case,
it is D8, the dihedral group of the square. To determine the monomial associated to a
permutation, we need to write the permutation in cycle notation and then determine the
monomial based on the number of cycles of each length. Specifically, if π is a permuta-
tion of [n] with jk cycles of length k for 1 ≤ k ≤ n, then the monomial associated to π is
xj11 x

j2
2 · · ·xjnn . Note that j1 + 2j2 + 3j3 + · · · + njn = n. For example, the permutation

r1 = (1234) is associatedwith themonomial x14 since it consists of a single cycle of length
4. The permutation r2 = (13)(24) has two cycles of length 2, and thus its monomial is x22.
For p = (14)(2)(3), we have two 1-cycles and one 2-cycle, yielding themonomial x21x12. In
Table 15.2, we show all eight permutations inD8 alongwith their associatedmonomials.
Now let’s see how the number of 2-colorings of the square fixed by a permutation can

be determined from its cycle structure and associated monomial. If π(i) = j, then we
know that for π to fix a coloring C, vertices i and j must be colored the same in C. Thus,
the second vertex in a cycle must have the same color as the first. But then the third
vertex must have the same color as the second, which is the same color as the first. In
fact, all vertices appearing in a cycle of πmust have the same color inC if π fixesC! Since
we are coloring with the two colors white and gold, we can choose to color the points
of each cycle uniformly white or gold. For example, for the permutation v = (12)(34) to
fix a coloring of the square, vertices 1 and 2 must be colored the same color (2 choices)
and vertices 3 and 4 must be colored the same color (2 choices). Thus, there are 2 · 2 = 4
colorings fixed by v. Since there are two choices for how to uniformly color the elements
of a cycle, letting xi = 2 for all i in the monomial associated with π gives the number
of colorings fixed by π. In Table 15.2, the “Fixed colorings” column gives the number of
2-colorings of the square fixed by each permutation. Before, we obtained this manually

cbna 273

Chapter 15 Pólya’s Enumeration Theorem

by considering the action ofD8 on the set of all 16 colorings. Nowwe only need the cycle
notation and the monomials that result from it to derive this!
Recall that Burnside’s lemma (15.6) states that the number of colorings fixed by the

action of a group can be obtained by adding up the number fixed by each permutation
and dividing by the number of permutations in the group. If we do that instead for
the monomials arising from the permutations in a permutation groupG in which every
cycle of every permutation has at most n entries, we obtain a polynomial known as the
cycle index PG(x1, x2, . . . , xn). For our running example, we find

PD8
(x1, x2, x3, x4) =

1

8

(
x41 + 2x21x

1
2 + 3x22 + 2x14

)
.

To find the number of distinct 2-colorings of the square, we thus let xi = 2 for all i and
obtain PD8(2, 2, 2, 2) = 6 as before. Notice, however, that we have something more pow-
erful than Burnside’s lemma here. We may substitute any positive integerm for each xi
to find out howmany nonequivalentm-colorings of the square exist. We no longer have
to analyze howmany colorings each permutation fixes. For instance, PD8

(3, 3, 3, 3) = 21,
meaning that 21 of the 81 colorings of the vertices of the square using three colors are
distinct.

15.4.2 The full enumeration formula

Hopefully the power of the cycle index to count colorings that are distinct when sym-
metries are considered is becoming apparent. In the next section, we will provide addi-
tional examples of how it can be used. However, we still haven’t seen the full power of
Pólya’s technique. From the cycle index alone, we can determine howmany colorings of
the vertices of the square are distinct. However, what if we want to know how many of
them have two white vertices and two gold vertices? This is where Pólya’s enumeration
formula truly plays the role of a generating function.
Let’s again consider the cycle index for the dihedral group D8:

PD8
(x1, x2, x3, x4) =

1

8

(
x41 + 2x21x

1
2 + 3x22 + 2x14

)
.

Instead of substituting integers for the xi, let’s consider what happens if we substitute
something that allows us to track the colors used. Since x1 represents a cycle of length 1
in a permutation, the choice of white or gold for the vertex in such a cycle amounts to a
single vertex receiving that color. What happens if we substitute w + g for x1? The first
term in PD8

corresponds to the identity permutation ι, which fixes all colorings of the
square. Letting x1 = w + g in this term gives

(w + g)4 = g4 + 4g3w + 6g2w2 + 4gw3 + w4,

which tells us that ι fixes one coloring with four gold vertices, four colorings with three
gold vertices and one white vertex, six colorings with two gold vertices and two white

274 cbna

15.4 Pólya’s Theorem

vertices, four colorings with one gold vertex and three white vertices, and one coloring
with four white vertices.
Let’s continue establishing a pattern here by considering the variable x2. It represents

the cycles of length 2 in a permutation. Such a cycle must be colored uniformly white
or gold to be fixed by the permutation. Thus, choosing white or gold for the vertices in
that cycle results in two white vertices or two gold vertices in the coloring. Since this
happens for every cycle of length 2, we want to substitute w2 + g2 for x2 in the cycle
index. The x21x12 terms in PD8

are associated with the flips p and n. Letting x1 = w + g
and x2 = w2 + g2, we find

x21x
1
2 = g4 + 2g3w + 2g2w2 + 2gw3 + w4,

from which we are able to deduce that p and n each fix one coloring with four gold ver-
tices, two colorings with three gold vertices and onewhite vertex, and so on. Comparing
this with Table 15.1 shows that the generating function is right on.
By now the pattern is becoming apparent. If we substitute wi + gi for xi in the cycle

index for each i, we then keep track of how many vertices are colored white and how
many are colored gold. The simplification of the cycle index in this case is then a gener-
ating function in which the coefficient on gswt is the number of distinct colorings of the
vertices of the square with s vertices colored gold and t vertices colored white. Doing
this and simplifying gives

PD8(w + g, w2 + g2, w3 + g3, w4 + g4) = g4 + g3w + 2g2w2 + gw3 + w4.

From thiswe find one coloringwith all vertices gold, one coloringwith all verticeswhite,
one coloring with three gold vertices and one white vertex, one coloring with one gold
vertex and three white vertices, and two colorings with two vertices of each color.
As with the other results we’ve discovered in this chapter, this property of the cycle

index holds up beyond the case of coloring the vertices of the square with two colors.
The full version is Pólya’s enumeration theorem:
Theorem 15.7 (Pólya’s Enumeration Theorem). Let S be a set with |S| = r and C the set
of colorings of S using the colors c1, . . . , cm. Let a permutation group G act on S to induce an
equivalence relation on C. Then

PG

(
m∑
i=1

ci,

m∑
i=1

c2i , . . . ,

m∑
i=1

cri

)
is the generating function for the number of nonequivalent colorings of S in C.

If we return to coloring the vertices of the square but now allow the color blue as well,
we find

PD8(w + g + b, w2 + g2 + b2, w3 + g3 + b3, w3 + g3 + b3) = b4 + b3g + 2b2g2 + bg3 + g4

+ b3w + 2b2gw + 2bg2w + g3w + 2b2w2 + 2bgw2 + 2g2w2 + bw3 + gw3 + w4.

cbna 275

Chapter 15 Pólya’s Enumeration Theorem

From this generating function, we can readily determine the number of nonequivalent
colorings with two blue vertices, one gold vertex, and one white vertex to be 2. Be-
cause the generating function of Pólya’s enumeration theorem records the number of
nonequivalent patterns, it is sometimes called the pattern inventory.
What if we were interested in making necklaces with 500 (very small) beads colored

white, gold, and blue? This would be equivalent to coloring the vertices of a regular 500-
gon, and the dihedral group D1000 would give the appropriate transformations. With
a computer algebra system4 such as Mathematica R©, it is possible to quickly produce the
pattern inventory for such a problem. In doing so, we find that there are

3636029179586993684238526707954331911802338502600162304034603583258060

0191583895484198508262979388783308179702534404046627287796430425271499

2703135653472347417085467453334179308247819807028526921872536424412922

79756575936040804567103229 ≈ 3.6× 10235

possible necklaces. Of them,

2529491842340460773490413186201010487791417294078808662803638965678244

7138833704326875393229442323085905838200071479575905731776660508802696

8640797415175535033372572682057214340157297357996345021733060 ≈ 2.5× 10200

have 225 white beads, 225 gold beads, and 50 blue beads.
The remainder of this chapter will focus on applications of Pólya’s enumeration theo-

rem and the pattern inventory in a variety of settings.

15.5 Applications of Pólya’s Enumeration Formula

This section explores a number of situations in which Pólya’s enumeration formula can
be used. The applications are from a variety of domains and are arranged in increasing
order of complexity, beginningwith an example frommusic theory and concludingwith
counting nonisomorphic graphs.

15.5.1 Counting musical scales

Westernmusic is generally based on a system of 12 equally-spaced notes. Although these
notes are usually named by letters of the alphabet (with modifiers), for our purposes it
will suffice to number them as 0, 1, . . . , 11. These notes are arranged into octaves so that
the next pitch after 11 is again named 0 and the pitch before 0 is named 11. For this
4With some more experience in group theory, it is possible to give a general formula for the cycle index of
the dihedral group D2n, so the computer algebra system is a nice tool, but not required.

276 cbna

15.5 Applications of Pólya’s Enumeration Formula

S1 S2 S3

Figure 15.3: Three scales depicted by coloring

reason, we may consider the system of notes to correspond to the integers modulo 12.
With these definitions, a scale is a subset of {0, 1, . . . , 11} arranged in increasing order. A
transposition of a scale is a uniform transformation that replaces each note x of the scale
by x + a (mod 1)2 for some constant a. Musicians consider two scales to be equivalent
if one is a transposition of the other. Since a scale is a subset, no regard is paid to which
note starts the scale, either. The question we investigate in this section is “How many
nonequivalent scales are there consisting of precisely k notes?”

Because of the cyclic nature of the note names, we may consider arranging them in
order clockwise around a circle. Selecting the notes for a scale then becomes a coloring
problem if we say that selected notes are colored black and unselected notes are colored
white. In Figure 15.3, we show three 5-note scales using this convention. Notice that
since S2 can be obtained from S1 by rotating it forward seven positions, S1 and S2 are
equivalent by the transposition of adding 7. However, S3 is not equivalent to S1 or S2,
as it cannot be obtained from them by rotation. (Note that S3 could be obtained from
S1 if we allowed flips in addition to rotations. Since the only operation allowed is the
transposition, which corresponds to rotation, they are inequivalent.)
We have now mathematically modeled musical scales as discrete structures in a way

thatwe canuse Pólya’s enumeration theorem. What is the group acting on our black/white
colorings of the vertices of a regular 12-gon? One permutation in the group is τ =
(0 1 2 3 4 5 6 7 8 9 10 11), which corresponds to the transposition by one note. In fact,
every element of the group can be realized as some power of τ since only rotations are
allowed and τ is the smallest possible rotation. Thus, the group acting on the colorings is
the cyclic group of order 12, denoted C12 = {ι, τ, τ2, . . . , τ11}. Exercise 5 asks you to write
all the elements of this group in cycle notation. The best way to do this is by multiplying
τ i−1 by τ (i.e., compute ττ i−1) to find τ . Once you’ve done this, you will be able to easily
verify that the cycle index is

PC12
(x1, . . . , x12) =

x121
12

+
x62
12

+
x43
6

+
x34
6

+
x26
6

+
x12
3
.

Since we’ve chosen colorings using black andwhite, it wouldmake sense to substitute

cbna 277

Chapter 15 Pólya’s Enumeration Theorem

xi = bi + wi for all i in PC12 now to find the number of k-note scales. However, there is
a convenient shortcut we may take to make the resulting generating function look more
like those to which we grew accustomed in chapter 8. The information about howmany
notes are not included in our scale (the number colored white) can be deduced from the
number that are included. Thus, we may eliminate the use of the variable w, replacing
it by 1. We now find

PC12
(1 + b, 1 + b2, . . . , 1 + b12) = b12 + b11 + 6b10 + 19b9 + 43b8 + 66b7 + 80b6

+ 66b5 + 43b4 + 19b3 + 6b2 + b+ 1.

From this, we are able to deduce that the number of scales with k notes is the coefficient
on bk. Therefore, the answer to our question at the beginning of the chapter about the
number of 6-note scales is 80.

15.5.2 Enumerating isomers

Benzene is a chemical compound with formula C6H6, meaning it consists of six carbon
atoms and six hydrogen atoms. These atoms are bonded in such away that the six carbon
atoms form a hexagonal ring with alternating single and double bonds. A hydrogen
atom is bonded to each carbon atom (on the outside of the ring). From benzene it is
possible to form other chemical compounds that are part of a family known as aromatic
hydrocarbons. These compounds are formed by replacing one or more of the hydrogen
atoms by atoms of other elements or functional groups such as CH3 (methyl group) or
OH (hydroxyl group). Because there are six choices forwhich hydrogen atoms to replace,
molecules with the same chemical formula but different structures can be formed in this
manner. Such molecules are called isomers. In this subsection, we will see how Pólya’s
enumeration theorem can be used to determine the number of isomers of the aromatic
hydrocarbon xylenol (also known as dimethylphenol).
Before we get into the molecular structure of xylenol, we need to discuss the permu-

tation group that will act on a benzene ring. Much like with our example of coloring
the vertices of the square, we find that there are rotations and flips at play here. In fact,
the group we require is the dihedral group of the hexagon, D12. If we number the six
carbon atoms in clockwise order as 1, 2, . . . , 6, then we find that the clockwise rotation
by 60◦ corresponds to the permutation r = (123456). The other rotations are the higher
powers of r, as shown in Table 15.3. The flip across the vertical axis is the permutation
f = (16)(25)(34). The remaining elements of D12 (other than the identity ι) can all be
realized as some rotation followed by this flip. The full list of permutations is shown in
Table 15.3, where each permutation is accompanied by the monomial it contributes to
the cycle index.
With the monomials associated to the permutations in D12 identified, we are able to

278 cbna

15.5 Applications of Pólya’s Enumeration Formula

Permutation Monomial Permutation Monomial
ι = (1)(2)(3)(4)(5)(6) x61 f = (16)(25)(34) x32

r = (123456) x16 fr = (15)(24)(3)(6) x21x
2
2

r2 = (135)(246) x23 fr2 = (14)(23)(56) x32

r3 = (14)(25)(36) x32 fr3 = (13)(2)(46)(5) x21x
2
2

r4 = (153)(264) x23 fr4 = (12)(36)(45) x32

r5 = (165432) x16 fr5 = (1)(26)(35)(4) x21x
2
2

Table 15.3: Cycle representation of permutations in D12

write down the cycle index

PD12(x1, . . . , x6) =
1

12
(x61 + 2x16 + 2x23 + 4x32 + 3x21x

2
2).

With the cycle index determined, we now turn our attention to using it to find the num-
ber of isomers of xylenol. This aromatic hydrocarbon has three hydrogen molecules,
two methyl groups, and a hydroxyl group attached to the carbon atoms. Recalling that
hydrogen atoms are the default from benzene, we can more or less ignore them when
choosing the appropriate substitution for the xi in the cycle index. If we let m denote
methyl groups and h hydroxyl groups, we can then substitute xi = 1 +mi + hi in PD12 .
This substitution gives the generating function

1 + h+ 3h2 + 3h3 + 3h4 + h5 + h6 +m+ 3hm+ 6h2m+ 6h3m

+ 3h4m+ h5m+ 3m2 + 6hm2 + 11h2m2 + 6h3m2 + 3h4m2 + 3m3 + 6hm3

+ 6h2m3 + 3h3m3 + 3m4 + 3hm4 + 3h2m4 +m5 + hm5 +m6.

Since xylenol has one hydroxyl group and two methyl groups, we are looking for the
coefficient on hm2 in this generating function. The coefficient is 6, so there are six isomers
of xylenol.
In his original paper, Pólya used his techniques to enumerate the number of isomers of

the alkanes CnH2n+2. When modeled as graphs, these chemical compounds are special
types of trees. Since that time, Pólya’s enumeration theorem has been used to enumerate
isomers for many different chemical compounds.

15.5.3 Counting nonisomorphic graphs

Counting the graphs with vertex set [n] is not difficult. There are C(n, 2) possible edges,
each of which can be included or excluded. Thus, there are 2C(n,2) labeled graphs on n
vertices. It’s only a bit of extra thought to determine that if you only want to count the

cbna 279

Chapter 15 Pólya’s Enumeration Theorem

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

Figure 15.4: Four lalbeled graphs on four vertices

labeled graphs on n vertices with k edges, you simply must choose a k-element subset
of the set of all C(n, 2) possible edges. Thus, there are((n

2

)
k

)
graphs with vertex set [n] and exactly k edges.
A more difficult problem arises when we want to start counting nonisomorphic graphs

on n vertices. (One can think of these as unlabeled graphs as well.) For example, in
Figure 15.4, we show four different labeled graphs on four vertices. The first three graphs
shown there, however, are isomorphic to each other. Thus, only two nonisomorphic
graphs on four vertices are illustrated in the figure. To account for isomorphisms, we
need to bring Pólya’s enumeration theorem into play.
We begin by considering all 2C(n,2) graphs with vertex set [n] and choosing an appro-

priate permutation group to act in the situation. Since any vertex can be mapped to any
other vertex, the symmetric group S4 acts on the vertices. However, we have to be careful
about how we find the cycle index here. When we were working with colorings of the
vertices of the square, we realized that all the vertices appearing in the same cycle of a
permutation π had to be colored the same color. Since we’re concerned with edges here
and not vertex colorings, what we really need for a permutation to fix a graph is that
every edge be sent to an edge and every non-edge be sent to a non-edge. To be specific,
if {1, 2} is an edge of someG and π ∈ S4 fixesG, then {π(1), π(2)}must also be an edge
ofG. Similarly, if vertices 3 and 4 are not adjacent inG, then π(3) and π(4) must also be
nonadjacent inG.
To account for edges, we move from the symmetric group S4 to its pair group S(2)

4 .
The objects that S(2)

4 permutes are the 2-element subsets of {1, 2, 3, 4}. For ease of no-
tation, we will denote the 2-element subset {i, j} by eij . To find the permutations in
S
(2)
4 , we consider the vertex permutations in S4 and see how they permute the eij . The

identity permutation ι = (1)(2)(3)(4) of S4 corresponds to the identity permutation
ι = (e12)(e13)(e14)(e23)(e24)(e34) of S(2)

4 . Now let’s consider the permutation (12)(3)(4).

280 cbna

15.5 Applications of Pólya’s Enumeration Formula

It fixes e12 since it sends 1 to 2 and 2 to 1. It also fixeds e34 by fixing 3 and 4. However, it in-
terchanges e13 with e23 (3 is fixed and 1 is swappedwith 2) and e14 with e24 (1 is sent to 2
and 4 is fixed). Thus, the correspondingpermutation of pairs is (e12)(e13e23)(e14e24)(e34).
For another example, consider the permutation (123)(4). It corresponds to the permu-
tation (e12e23e13)(e14e24e34) in S(2)

4 .
Since we’re only after the cycle index of S(2)

4 , we don’t need to find all 24 permuta-
tions in the pair group. However, we do need to know the types of those permutations
in terms of cycle lengths so we can associate the appropriate monomials. For the three
examples we’ve considered, the cycle structure of the permutation in the pair group
doesn’t depend on the original permutation in S4 other than for its cycle structure. Any
permutation in S4 consisting of a 2-cycle and two 1-cycles will correspond to a permu-
tation with two 2-cycles and two 1-cycles in S(2)

4 . A permutation in S4 with one 3-cycle
and one 1-cycle will correspond to a permutationwith two 3-cycles in the pair group. By
considering an example of a permutation in S4 consisting of a single 4-cycle, we find that
the corresponding permutation in the pair group has a 4-cycle and a 2-cycle. Finally, a
permutation of S4 consisting of two 2-cycles corresponds to a permutation in S(2)

4 having
two 2-cycles and two 1-cycles. (Exercise 8 asks you to verify these claims using specific
permutations.)
Now that we know the cycle structure of the permutations in S(2)

4 , the only task re-
maining before we can find its cycle index of is to determine how many permutations
have each of the possible cycle structures. For this, we again refer back to permutations
of the symmetric group S4. A permutation consisting of a single 4-cycle begins with 1
and then has 2, 3, and 4 in any of the 3! = 6 possible orders, so there are 6 such permuta-
tions. For permutations consisting of a 1-cycle and a 3-cycle, there are 4 ways to choose
the element for the 1-cycle and then 2 ways to arrange the other three as a 3-cycle. (Re-
member the smallest of them must be placed first, so there are then 2 ways to arrange
the remaining two.) Thus, there are 8 such permutations. For a permutation consisting
of two 1-cycles and a 2-cycle, there are C(4, 2) = 6 ways to choose the two elements for
the 2-cycle. Thus, there are 6 such permutations. For a permutation to consist of two 2-
cycles, there are C(4, 2) = 6 ways to choose two elements for the first 2-cycle. The other
two are then put in the second 2-cycle. However, this counts each permutation twice,
once for when the first 2-cycle is the chosen pair and once for when it is the “other two.”
Thus, there are 3 permutations consisting of two 2-cycles. Finally, only ι consists of four
1-cycles.

Now we’re prepared to write down the cycle index of the pair group

P
S

(2)
4

(x1, . . . , x6) =
1

24

(
x16 + 9x21x

2
2 + 8x23 + 6x2x4

)
.

To use this to enumerate graphs, we can now make the substitution xi = 1 + xi for
1 ≤ i ≤ 6. This allows us to account for the two options of an edge not being present or

cbna 281

Chapter 15 Pólya’s Enumeration Theorem

being present. In doing so, we find

P
S

(2)
4

(1 + x, . . . , 1 + x6) = 1 + x+ 2x2 + 3x3 + 2x4 + x5 + x6

is the generating function for the number of 4-vertex graphs with m edges, 0 ≤ m ≤ 6.
To find the total number of nonisomorphic graphs on four vertices, we substitute x = 1
into this polynomial. This allows us to conclude there are 11 nonisomorphic graphs on
four vertices, a marked reduction from the 64 labeled graphs.

The techniques of this subsection can be used, given enough computing power, to find
the number of nonisomorphic graphs on any number of vertices. For 30 vertices, there
are

334494316309257669249439569928080028956631479935393064329967834887217

734534880582749030521599504384 ≈ 3.3× 1098

nonisomorphic graphs, as compared to 2435 ≈ 8.9× 10130 labeled graphs on 30 vertices.
The number of nonisomorphic graphs with precisely 200 edges is

313382480997072627625877247573364018544676703365501785583608267705079

9699893512219821910360979601 ≈ 3.1× 1096.

The last part of the question about graph enumeration at the beginning of the chapter
was about enumerating the graphs on some number of vertices in which every vertex
has degree r. While this might seem like it could be approached using the techniques
of this chapter, it turns out that it cannot because of the increased dependency between
where vertices are mapped.

15.6 Exercises

1. Write the permutations shown below in cycle notation.

π1 =

(
1 2 3 4 5 6
4 2 5 6 3 1

)
π2 =

(
1 2 3 4 5 6
5 6 1 3 4 2

)
π3 =

(
1 2 3 4 5 6 7 8
3 1 5 8 2 6 4 7

)
π4 =

(
1 2 3 4 5 6 7 8
3 7 1 6 8 4 2 5

)
2. Compute π1π2, π2π1, π3π4, and π4π3 for the permutations πi in exercise 1.

3. Find stabD8
(C3) and stabD8

(C16) for the colorings of the vertices of the square
shown in Figure 15.1 by referring to Table 15.1.

4. In Figure 15.5, we show a regular pentagon with its vertices labeled. Use this la-
beling to complete this exercise.

282 cbna

15.6 Exercises

4 3

25

1

Figure 15.5: A pentagon with labeled vertices

a) The dihedral group of the pentagon,D10, contains 10 permutations. Let r1 =
(12345) be the clockwise rotation by 72◦ and f1 = (1)(25)(34) be the flip about
the line passing through 1 and perpendicular to the opposite side. Let r2, r3,
and r4 be the other rotations in D10. Denote the flip about the line passing
through vertex i and perpendicular to the other side by fi, 1 ≤ i ≤ 5. Write
all 10 elements of D10 in cycle notation.

b) Suppose we are coloring the vertices of the pentagon using black and white.
Draw the colorings fixed by r1. Draw the colorings fixed by f1.

c) Find stabD10(C) where C is the coloring of the vertices of the pentagon in
which vertices 1, 2, and 5 are colored black and vertices 3 and 4 are colored
white.

d) Find the cycle index of D10.

e) Use the cycle index to determine the number of nonequivalent colorings of
vertices of the pentagon using black and white.

f) Making an appropriate substitution for the xi in the cycle index, find the num-
ber of nonequivalent colorings of the vertices of the pentagon in which two
vertices are colored black and three vertices are colored white. Draw these
colorings.

5. Write all permutations in C12, the cyclic group of order 12, in cycle notation.

6. The 12-note western scale is not the only system on which music is based. In clas-
sical Thai music, a scale with seven equally-spaced notes per octave is used. As in
western music, a scale is a subset of these seven notes, and two scales are equiv-
alent if they are transpositions of each other. Find the number of k-note scales in
classical Thai music for 1 ≤ k ≤ 7.

7. Xylene is an aromatic hydrocarbon having two methyl groups (and four hydrogen
atoms) attached to the hexagonal carbon ring. How many isomers are there of
xylene?

cbna 283

Chapter 15 Pólya’s Enumeration Theorem

1 2 3

4 5 6

7 8 9

Figure 15.6: Numbered squares of a tic-tac-toe board

8. Find the permutations inS(2)
4 corresponding to the permutations (1234) and (12)(34)

in S4. Confirm that the first consists of a 4-cycle and a 2-cycle and the second con-
sists of two 2-cycles and two 1-cycles.

9. Draw the three nonisomorphic graphs on four vertices with 3 edges and the two
nonisomorphic graphs on four vertices with 4 edges.

10. a) Use the method of subsection 15.5.3 to find the cycle index of the pair group
S
(2)
5 of the symmetric group on five elements.

b) Use the cycle index from 10a to determine the number of nonisomorphic
graphs on five vertices. How many of them have 6 edges?

11. Tic-tac-toe is a two-player gameplayed on a 9×9 grid. The playersmark the squares
of the grid with the symbols X and O. This exercise uses Pólya’s enumeration theo-
rem to investigate the number of different tic-tac-toe boards. (The analysis of games
ismore complex, since it requires attention to the order the squares aremarked and
stopping when one player has won the game.)
a) Two tic-tac-toe boards are equivalent if one may be obtained from the other

by rotating the board or flipping it over. (Imagine that it is drawn on a clear
piece of plastic.) Since the 9 × 9 grid is a square, the group that acts on it in
this manner is the dihedral group D8 that we have studied in this chapter.
However, as with counting nonisomorphic graphs, we have to be careful to
choose theway this group is represented in terms of cycles. Herewe are inter-
ested in how permutations rearrange the nine squares of the tic-tac-toe board
as numbered in Figure 15.6. For example, the effect of the transformation r1,
which rotates the board 90◦ clockwise, can be represented as a permutation
of the nine squares as (13971)(2684)(5).
Write each of the eight elements ofD8 as permutations of the nine squares of
a tic-tac-toe board.

b) Find the cycle index of D8 in terms of these permutations.

284 cbna

15.6 Exercises

c) Make an appropriate substitution for xi in the cycle index to find a generating
function t(X,O) inwhich the coefficient onXiOj is the number of nonequiva-
lent tic-tac-toe boards having i squares filled by symbol X and j squares filled
by symbol O. (Notice that some squares might be blank!)

d) How many nonequivalent tic-tac-toe boards are there?
e) How many nonequivalent tic-tac-toe boards have three X’s and three O’s?
f) When playing tic-tac-toe, the players alternate turns, each drawing their sym-

bol in a single unoccupied square during a turn. Assuming the first player
marks her squares with X and the second marks his with O, then at each
stage of the game there are either the same number of X’s and O’s or one
more X than there are O’s. Use this fact and t(X,O) to determine the number
of nonequivalent tic-tac-toe boards that can actually be obtained in playing
a game, assuming the players continue until the board is full, regardless of
whether one of them has won the game.

12. Suppose you are painting the faces of a cube and you have white, gold, and blue
paint available. Two painted cubes are equivalent if you can rotate one of them
so that all corresponding faces are painted the same color. Determine the number
of nonequivalent ways you can paint the faces of the cube as well as the number
having two faces of each color. Hint: It may be helpful to label the faces as U
(“up”), D (“down”), F (“front”), B (“back”), L (“left”), and R (“right”) instead of
using integers. Working with a three-dimensional model of a cube will also aid in
identifying the permutations you require.

cbna 285

CHAPTER 16
The Many Faces of Combinatorics

16.1 On-line algorithms

Many applications of combinatorics occur in a dynamic, on-line manner. It is rare that
one has all the information about the challenges a problempresents before circumstances
compel that decisions be made. As examples, a decision to proceed with a major con-
struction construction project must be made several years before ground is broken; in-
vestment decisions are made on the basis of today’s information and may look partic-
ularly unwise when tomorrow’s news is available; and deciding to exit a plane with a
parachute is rarely reversible.
In this section, we present two examples intended to illustrate on-line problems in

a combinatorial setting. Our first example involves graph coloring. As is customary
in discussions of on-line algorithms, we consider a two-person game with the players
calledAssigner and Builder. The two players agree in advance on a class C of graphs, and
the game is played in a series of rounds. At round 1 Builder presents a single vertex, and
Assigner assigns it a color. At each subsequent rounds, Builder presents a new vertex,
and provides complete information at to which of the preceding vertices are adjacent
to it. In turn, Assigner must give the new vertex a color distinct from colors she has
assigned previously to its neighbors.
Example 16.1. Even if Builder is constrained to build a path on 4 vertices, then Assigner
can be forced to use three colors. At Round 1, Builder presents a vertex x and Assigner
colors it. At Round 2, Builder presents a vertex y and declares that x and y are not
adjacent.
Now Assigner has a choice. She may either give x and y the same color, or she may

elect to assign a new color to y. If Assigner gives x and y different colors, then in Round 3,
Builder presents a vertex z and declares that z is adjacent to both x and y. NowAssigner
will be forced to use a third color on z. In Round 4, Builder will add a vertex w adjacent
to y but to neither x nor z, but the damage has already been done.

On the other hand, if Assigner x and y the same color, then in Round 3, Builder
presents a vertex z, with z adjacent to x but not to y. Assigner must use a second color
on z, distinct from the one she gave to x and y. In Round 4, Builder presents a vertex w
adjcent to z and y but not to x. Assigner must use a third color on w.

287

Chapter 16 The Many Faces of Combinatorics

Note that a path is a tree and trees are forests. The next result shows that while forests
are trivial to color off-line, there is a genuine challenge ahead when you have to work
on-line. To assist us in keeping track of the colors used by Assigner, we will use the
notation from chapter 5 and write φ(x) for the color given by Assigner to vertex x.

Theorem 16.2. Let n be a positive integer. Then there is a strategy for Builder that will enable
Builder to construct a forest having at most 2n−1 vertices while forcing Assigner to use n colors.

Proof. When n = 1, all Builder does is present a single vertex. When n = 2, two adjacent
vertices are enough. When n = 3, Builder constructs a path on 4 vertices as detailed
in Example 16.1. Now assume that for some k ≥ 3, Builder has a strategy Si for forcing
Assigner to use i colors on a forest of at most 2i−1 vertices, for each i = 1, 2, . . . , k. Here’s
how Builder proceeds to force k + 1 colors.
First, for each i = 1, 2, . . . , k, Builder follows strategy Si to build a forest Fi having

at most 2i−1 vertices on which assigner is forced to use i colors. Furthermore, when
1 ≤ i < j ≤ k, there are no edges between vertices in Fi and vertices in Fj .

Next, Builder chooses a vertex y1 from F1. Since Assigner uses two colors on F2, there
is a vertex y2 from F2 so that φ(y2) 6= φ(y1). Since Assigner uses three colors on F3, there
is a vertex y3 in F3 so that {φ(y1), φ(y2), φ(y3)} are all distinct. It follows that Builder
may identify vertices y1, y2, . . . , yk with yi ∈ Fi so that the colors {φ(yi : 1 ≤ i ≤ k} are
all distinct. Builder now presents a new vertex x and declares x adjacent to all vertices
in {y1, y2, . . . , yk} and to no other vertices. Clearly, (1) the resulting graph is a forest;
(2) Assigner is forced to use a color for x distinct from the k colors she assigned pre-
viously to the vertices in {y1, y2, . . . , yk}. Also, the total number of vertices is at most
1 + [1 + 2 + 4 + 8 + · · ·+ 2k−1] = 2k.

Bob reads the proof and asks whether it was really necessary to treat the cases k = 2
and k = 3 separately. Wasn’t it enough just to note that the case k = 1 holds trivially.
Carlos says yes.

16.1.1 Doing Relatively Well in an On-Line Setting

Theorem 16.2 should be viewed as a negative result. It is hard to imagine a family of
graphs easier to color than forests, yet in an on-line setting, graphs in this family are
difficult to color. On the other hand, in certain settings, one can do reasonably well in an
on-line setting, perhaps not as well as the true optimal off-line result but good enough
to be useful. Here we present a particularly elegant example involving partially ordered
sets.
Recall that a poset P of height h can be partitioned into h antichains—by recursively

removing the set of minimal elements. But how many antichains are required in an
on-line setting? Now Builder constructs a poset P one point at a time, while Assigner
constructs a partition of P into antichains. At each round, Builder will present a new
points x, and list those points presented earlier that are, respectively, less than x, greater

288 cbna

16.1 On-line algorithms

than x and incomparable with x. Subsequently, Assigner will assign x to an antichain.
This will be done either by adding x to an antichain already containing one or more of
the points presented previously, or by assigning x to a new antichain.

Theorem 16.3. For each h ≥ 1, there is a on-line strategy for Assigner that will enable her to
partition a poset P into at most

(
h+1
2

)
antichains, provided the height of P is at most h.

Proof. It is important to note that Assigner does not need to know the value h in advance.
For example, Builder may have in mind that ultimately the value of h will be 300, but
this information does not impact Assigner’s strategy.
When the new point xn enters P , Assigner computes the values r and s, where r is

the largest integer for which there exists a chain C of r points in {x1, x2, . . . , xn} having
xn as its least element. Also, s is the largest integer for which there exists a chain D of
s points in {x1, x2, . . . , xn} having xn as its largest element. Assigner then places x in
a set A(r, s), claiming that any two points in this set are incomparable. To see that this
claim is valid, consider the first moment where Builder has presented a new point x,
Assigner places x inA(r, s) and there is already a point y inA(r, s) for which x and y are
comparable.
When ywas presented, there was at that moment in time a chainC ′ of r points having

y as its least element. Also, there was a chain D of s points having y as its greatest
element.
Now suppose that y > x in P . Then we can add x to C ′ to form a chain of r+ 1 points

having x as its least element. This would imply that x is not assigned inA(r, s). Similarly,
if y < x in P , then we may add x to D′ to form a chain of s + 1 points having x as its
greatest element. Again, this would imply that x is not assigned to A(r, s).

So Assigner has indeed devised a good strategy for partitioning P into antichains, but
how many antichains has she used? This is just asking how many ordered pairs (i, j) of
positive integers are there subject to the restriction that i + j − 1 ≤ h. And we learned
how to solve this kind of question in chapter 2. The answer of course is

(
h+1
2

)
.

The strategy for Assigner is so simple and natural, it might be the case that a more
complex strategy would yield a more efficient partitioning. Not so.

Theorem 16.4 (Szemerédi). For every h ≥ 1, there is a strategy Sh for builder that will enable
him to build a poset P of height h so that assigner is forced to (1) use at least

(
h+1
2

)
antichains in

partitioning P , and (2) use at least h different antichains on the set of maximal elements.

Proof. Strategy S1 is just to present a single point. Now suppose that the theorem holds
for some integer h ≥ 1. We show how strategy Sh+1 proceeds.
First Builder follows strategy Sh to form a poset P1. Then he follows it a second time

for form a poset P2, with all points of P1 incomparable to all points in P2. Now we
consider two cases. Suppose first that Assigner has used h + 1 or more antichains on
the set of maximal elements of P1 ∪ P2. In this case, he follows strategy Sh a third time

cbna 289

Chapter 16 The Many Faces of Combinatorics

to build a poset P3 with all points of P3 less than all maximal elements of P1 ∪ P2 and
incomparable with all other points.
Clearly, the height of the resulting poset is at most h + 1. Also, Assigner must use

h+ 1 +
(
h+1
2

)
=
(
h+2
2

)
antichains in partitioning the poset and she has used h+ 1 on the

set of maximal elements.
So it remains only to consider the casewhere Assigner has used a setW of h antichains

on the maximal elements of P1, and she has used exactly the same h antichains for the
maximal elements ofP2. ThenBuilder presents a newpointx anddeclares it to be greater
than all points ofP1 and incomparablewith all points ofP2. Assignermust put x in some
antichain which is not inW .

Builder then follows strategy Sh a third time, but now all points of P3 are less than x
and the maximal elements of P2. Again, Assigner has been forced to use h+ 1 different
antichains on the maximal elements and

(
h+2
2

)
antichains altogether.

16.2 Extremal Set Theory

Let n be a positive integer and let [n] = 1, 2, . . . , n. In this section, we consider problems
having the following general form: What is the maximum size of a family of subsets of
[n] when the family is required to satisfy certain properties.
Here is an elementary example.

Example 16.5. The maximum size of a family F of subsets of [n], with A ∩ B 6= ∅ for all
A,B ∈ F , is 2n−1.
For the lower bound, consider the family F of all subsets of [n] that contain 1. Clearly

this family has 2n−1 elements and any two sets in the family have non-empty intersection.
For the upper bound, let F be a family of subsets with each pair of sets in F having

non-empty intersection. Thenwhenever a subset S is amember ofF , the complement S′
of S cannot belong to F . Since the entire family of all 2n subsets of [n] can be considered
as 2n−1 complementary pairs, and at most one set from each pair can belong to F , we
conclude that |F| ≤ 2n−1.
As a second example, we can revisit Sperner’s Theorem from the chapter on partially

ordered sets and restate the result as follows.
Example 16.6. The maximum size of a family F of subsets of [n] subject to the constraint
that when A and B are distinct sets in F , then neither is a subset of the other, is

(
n
bn/2c

)
.

It is worth noting that in Example 16.6, there is a very small number (one or two)
extremal families, i.e., when F is a family of subsets of [n], |F| =

(
n
bn/2c

)
, and no set in F

is a proper subset of another, then either F = {S ⊆ [n] : |S| = bn/2c} or F = {S ⊆ [n] :
|S| = dn/2e}. And of course, when n is even, these are exactly the same family.

On the other hand, for Example 16.5, there are many extremal families, since for every
complementary pair of sets, either member can be selected.
We close this brief tasting of extremal set theory with a real classic.

290 cbna

16.3 Markov Chains

Theorem 16.7 (Erdös, Ko, Rado). Let n and k be positive integers with n ≥ 2k. Then the
maximum size of a family F of subsets of [n] subject to the restrictions that (1) A∩B 6= ∅ for all
A,B ∈ F , and (2) |A| = k for all A ∈ F , is

(
n−1
k−1
)
.

Proof. For the lower bound, consider the family F of all k element subset of [n] that
contain 1.

For the upper bound, let F be a family of subsets of [n] satisfying the two constraints.
We show that |F| ≤

(
n−1
k−1
)
. To accomplish this, we consider a circle in the Euclidean

plane with n points p1, p2, . . . , pn equally spaced points around its circumference. Then
there are n! different ways (one for each permutation σ of [n]) to place the integers in [n]
at the points in {p1, p2, . . . , pn} in one to one manner.
For each permutation σ of [n], let F(σ) denote the subfamily of F consisting of all

sets S from F whose elements occur in a consecutive block around the circle. Then let
t =

∑
σ |F(σ)|.

Claim 1. t ≤ kn!.
Proof. Let σ be a permutation and suppose that |F(σ)| = s ≥ 1. Then the union of the
sets from F(σ) is a set of points that form a consecutive block of points on the circle.
Note that since n ≥ 2k, this block does not encompass the entire circle. Accordingly
there is a set S whose elements are the first k in a clockwise sense within this block.
Since each other set in F represents a clockwise shift of one of more positions, it follows
immediately that |F| ≤ k. Since there are n! permutations, the claim follows.
Claim 2. For each set S ∈ F , there are exactly nk!(n − k)! permutations σ for which
S ∈ F(σ).
Proof. There are n positions around the circle and each can be used as the first point in
a block of k consecutive positions in which the elements of S can be placed. Then there
are k! ways to order the elements of S and (n−k)! ways to order the remaining elements.
This completes the proof of the claim.
To complete the proof of the theorem, we note that we have

|F|nk!(n− k)! ≤ t ≤ kn!

And this implies that |F|le
(
n−1
k−1
)
.

16.3 Markov Chains

We begin this section with a motivational example. Consider the connected graph on
six vertices shown in ??. The first move is to choose a vertex at random and move there.
Afterwards, we follow the following recursive procedures. If after imoves, you are at a
vertex x and x has d neighbors, choose one of the neighbors at random, with each having
probability 1/d and move there. We then attempt to answer questions of the following
flavor:

cbna 291

Chapter 16 The Many Faces of Combinatorics

1. For each vertex x, let px,m denote the probability that you are at vertex x after m
moves. Does limm→∞ px,m exist and if so, how fast does the sequence converge to
this limit?

2. How many moves must I make in order that the probability that I have walked on
every edge in the graph is at least 0.999?

This example illustrates the characteristics of an important class of computational and
combinatorial problems, which are collectively referred to as Markov Chains:

1. There is a finite set of states S1, S2, . . . , Sn, and at time i, you are in one of these
states.

2. If you are in stateSj at time i, then for each k = 1, 2, . . . , n, there is a fixedprobabilty
p(j, k) (which does not depend on i) that you will be in state Sk at time i+ 1.

The n× nmatrix P whose j, k entry is the probability p(j, k) of moving from state Sj
to state Sk is called the transition matrix of the Markov chain. Note that P is a stochastic
matrix, i.e., all entries are non-negative and all row sums are 1. Conversely, each square
stochastic matrix can be considered as the transition matrix of a Markov chain.
For example, here is the transition matrix for the graph shown in ??.

P =

0 1/4 1/4 1/4 1/4 0

1/2 0 0 1/2 0 0
1/3 0 0 1/3 0 1/3
1/3 1/3 1/3 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

 (16.1)

A transition matrix P is regular if there is some integer m for which the matrix Pm has
only positive entries. Here is a fundamental result from this subject, one that is easy to
understand but a bit too complex to prove given our space constraints.

Theorem 16.8. Let P be a regular n × n transition matrix. Then there is a row vector W =
(w1, w2, . . . , wn) of positive real numbers summing to 1 so that asm tends to infinity, each row
of Pm tends to W . Furthermore, WP = W , and for each i = 1, 2, . . . , n, the value wi is the
limiting probability of being in state Si.

Given the statement of Theorem 16.8, the computation of the row vector W can be
carried out by eigenvalue techniques that are part of a standard undergraduate linear
algebra course. For example, the transition matrix P displayed in Equation 16.1 is reg-
ular since all entries of P 3 are positive. Furthermore, for this matrix, the row vector
W = (5/13, 3/13, 2/13, 2/13, 1/13, 1/13). However, the question involving how fast the
convergence of Pm is to this limiting vector is more subtle, as is the question as to how
long it takes for us to be relatively certain we have made every possible transition.

292 cbna

16.4 Miscellaneous Gems

16.3.1 Absorbing Markov Chains

A state Si in a Markov chain with transition matrix P is absorbing if pi,i = 1 and pi,j = 0
for all j 6= i, i.e., like the infamous Hotel California, once you are in state Si, “you can
never leave.”
Example 16.9. We modify the transition matrix from Equation 16.1 by making states 4
and 5 absorbing. The revised transition matrix is now:

P =

0 1/4 1/4 1/4 1/4 0

1/2 0 0 1/2 0 0
1/3 0 0 1/3 0 1/3
1/3 1/3 1/3 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (16.2)

Nowwemight consider the following game. Start at one of the four vertices in {1, 2, 3, 4}
and proceed as before, makingmoves by choosing a neighbor at random. Vertex 4 might
be considered as an “escape” point, a safe harbor that once reached is never left. On the
other hand, vertex 5 might be somewhere one meets a hungry tiger and be absorbed in
a way not to be detailed here.
We say the Markov chain is absorbing if there is at least one absorbing state and for

each state Sj that is not absorbing, it is possible to reach an absorbing state—although it
may take many steps to do so. Now the kinds of questions we would like to answer are:

1. If we start in non-absorbing state Si, what is the probability of reaching absorbing
state Sj (and then being absorbed in that state, a question which takes on genuine
unpleasantness relative to tigers)?

2. If we are absorbed in state Sj , what is the probability that we started in non-
absorbing state Si?

3. If we start in non-absorbing state Si, what is the expected length of time before we
will be absorbed?

16.4 Miscellaneous Gems

16.4.1 The Stable Matching Theorem

First, a light hearted optimization problem with a quite clever solution, called the Sta-
ble Matching Theorem. There are n eligble males b1, b2, . . . , bn and n eligible females g1,
g2, . . . , gn. We will arrange n marriages, each involving one male and one female. In
the process, we will try to make everyone happy—or at least we will try to keep things
stable.

cbna 293

Chapter 16 The Many Faces of Combinatorics

Each female linearly orders the males in the order of her preference, i.e., for each i =
1, 2, . . . , n, there is a permutation σi of [n] so that if gi prefers bj to bk, then σi(j) >
σi(k). Different females may have quite different preference orders. Also, each male
linearly orders the females in order of his preference, i.e., for each i = 1, 2, . . . , n, there
is a permutation τi of [n] so that if bi prefers gj to gk, then τi(j) > τ(k).

A 1–1matching of the nmales to the n females is stable if there does not exist twomales
b and b′ and two females g and g′ so that (1) b is matched to g; (2) b prefers g′ to g; and
(3) g prefers b′ to b. The idea is that given these preferences, b and g may be mutually
inclined to dissolve their relationship and initiate daliances with other partners.
So the question is whether, regardless of their respective preferences, we can always

generate a stable matching. The answer is yes and there is a quite clever argument, one
that yields a quite efficient algorithm. At Stage 1, all males go knock on the front door
of the female which is tops on their list. It may happen that some females have more
than one caller while others have none. However, if a female has one or more males at
her door, she reaches out and grabs the one among the group which she prefers most by
the collar and tells the others, if there are any, to go away. Any male rejected at this step
proceeds to the front door of the female who is second on their list. Again, a female with
one or more suitors at her door chooses the best among then and sends the others away.
This process continues until eventually, each female is holding onto exactly one male.
It is interesting to note that each female’s prospects improve over time, i.e., once she

has a suitor, things only get better. Conversely, each male’s prospects deteriorate over
time. Regardless, we assert that the resulting matching is stable. To see this, suppose
that it is unstable and choose males b and b′, females g and g′ so that b is matched to g,
but b prefers g′ to g while g prefers b′ to b. The algorithm requires that male b start at the
top of his list and work his way down. Since he eventually lands on g’s door step, and
he prefers g′ to g, it implies that once upon a time, he was actually at g′’s door, and she
sent him away. This means that at that exact moment, she had a male in hand that she
prefers to b. Since her holdings only improvewith time, it means thatwhen thematching
is finalized, female g has a mate b that she prefers to b′.

16.5 Zero–One Matrices

Matrices with all entries 0 and 1 arise in many combinatorial settings, and here we
present a classic result, called the Gale/Ryzer theorem. It deals with zero–one matri-
ces with specified row and column sum strings. WhenM is anm× n zero–one matrix,
the string R = (r1, r2, . . . , rm), where ri =

∑
1≤j≤nmi,j , is called the row sum string of

M . The column sum string C = (c1, c2, . . . , cn) is defined analogously. Conversely, let m
and n be positive integers, and letR = (r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) be strings
of non-negative integers. The question is whether there exists anm×n zero–one matrix
M with row sum string R and column sum string C.

To attack this problem, we pause briefly to develop some additional background ma-

294 cbna

16.5 Zero–One Matrices

terial. Note that wemay assumewithout loss of generality that there is a positive integer
t so that

∑m
i=1 ri =

∑n
j=1 cj = t, else there is certainly no zero–one matrix with row sum

string R and column sum string C. Furthermore, we may assume that both R and C are
non-increasing strings, i.e., r1 ≥ r2 ≥ · · · ≥ rm and c1 ≥ c2 ≥ · · · ≥ cn.
To see this note thatwheneverwe exchange two rows in a zero–onematrix, the column

sum string is unchanged. Accordingly after a suitable permutation of the rows, we may
assume that R is non-increasing. Then the process is repeated for the columns.

Finally, it is easy to see that we may assume that all entries in R and C are positive
integers, since zeroes in these strings correspond to rows of zeroes or columns of zeroes
in the matrix. Accordingly, the row sum string R and the colum sum string C can be
viewed as partitions of the integer t, a topic we first introduced in chapter 8.
For the balance of this section, we let t be a positive integer and we let P(t) denote

the family of all partitions of the integer t. There is a natural partial order on P(t) de-
fined by setting V = (v1, v2, . . . , vm) ≥ W = (w1, w2, . . . , wn) if and only if m ≤ n and∑

1≤i≤j vj ≥
∑

1≤i≤j wj for each j = 1, 2, . . . ,m, i.e., the sequence of partial sums for
V is always at least as large, term by term, as the sequence of partial sums of W . For
example, we show in ?? the partial order P(7).

FIGURE HERE
In the proof of the Gale-Ryser theorem, it will be essential to fully understand when

one partition covers another. We state the following proposition for emphasis; the proof
consists of just considering the details of the definition of the partial order on partitions.

Proposition 16.10.] Let V = (v1, v2, . . . , vm) and W = (w1, w2, . . . , wn) be partitions of
an integer t, and suppose that V coversW in the poset P(t). Then n ≤ m + 1, and there exist
integers i and j with 1 ≤ i < j ≤ n so that:

1. vα = wα, when 1 ≤ α < i.

2. vβ = wβ , when j < β ≤ m.

3. vi = 1 + wi.

4. Either (a) j ≤ m and wj = 1 + vj , or (b) j = n = m+ 1 and wj = 1.

5. If j > i+ 1, then wγ = vγ = vi − 1 when i < γ < j.

To illustrate this concept, note that (6, 6, 4, 3, 3, 3, 1, 1, 1, 1,) covers (6, 6, 3, 3, 3, 3, 2, 1, 1, 1)
in P(29). Also, (5, 4, 3) covers (5, 3, 3, 1) in P(12).
With a partition V = (v1, v2, . . . , vm) from P(t), we associate a dual partition W =

(w1, w2, . . . , wn) defined as follows: (1) n = v1 and for each j = 1, . . . , n, wj is the
number of entries in V that are at least n + 1 − j. For example, the dual partition of
V = (8, 6, 6, 6, 5, 5, 3, 1, 1, 1) is (8, 7, 7, 6, 6, 4, 1, 1). Of course, they are both partitions of
42, which is the secret of the universe! In what follows, we denote the dual of the par-
tition V by V d. Note that if W = V d, then V = W d, i.e., the dual of the dual is the
original.

cbna 295

Chapter 16 The Many Faces of Combinatorics

16.5.1 The Obvious Necessary Condition

Now let M be a m × n zero–one matrix with row sum string R = (r1, r2, . . . , rm and
column sum string C = (c1, c2, . . . , cn). As noted before, we will assume that all entries
in R and C are positive. Next, we modify M to form a new matrix M ′ as follows: For
each i = 1, 2, . . . , t, we push the ri ones in row i as far to the left as possible, i.e.,m′i,j = 1
if and only if 1 ≤ j ≤ ri. Note that M and M ′ both have R for their row sum strings.
However, ifC ′ denotes the column sum string forM ′, thenC ′ is a non-decreasing string,
and the substring C ′′ of C ′ consisting of the positive entries is Rd, the dual partition of
R. Furthermore, for each j = 1, 2, . . . , r1, we have the inequality

∑1≤i≤j
c′′i ≤

∑1≤i≤j
ci,

since the operation of shift ones to the left can only increase the partial sums. It follows
that Rd ≥ C in the poset P(t).
So here is the Gale-Ryser theorem.

Theorem 16.11. Let R and C be partitions of a positive integer t. Then there exists a zero–one
matrix with row sum stringR and column sum stringC if and only ifRd ≥ C in the poset P(t).

Proof. The necessity of the condition has been established. We prove sufficiency. The
proof is constructive. In the poset P(t, let W0 > W1 > · · · > Ws be a chain so that
(1) W0 = Rd, (2) Ws = C and (3) if 0 ≤ p < s, then Wp covers Wp+1. We start with a
zero one matrixM0 having row sum string R and column sum stringW0, as suggested
in ?? for the partition (8, 4, 3, 1, 1, 1). If s = 0, we are done, so we assume that for some p
with 0 ≤ p < s, we have a zero–one matrixMp with row sum string R and column sum
stringWp. Then let i and j be the integers from Proposition 16.10, which detail howWp

coversWp+1. Choose a row q so that the q, i entry ofMp is 1 while the q, j entry ofM is
0. Exchange these two entries to form the matrixMp+1. Note that the exchange may in
fact require adding a new column to the matrix.

16.6 Arithmetic Combinatorics

In recent years, a great deal of attention has been focused on topics in arithmetic combi-
natorics, with a number of deep and exciting discoveries in the offing. In some sense, this
area is closely aligned with ramsey theory and number theory, but recent work shows
connections with real and complex analysis, as well. Furthermore, the roots of arith-
metic combinatorics go back many years. In this section, we present a brief overview of
this rich and rapidly changing area.
Recall that an increasing sequence a1 < a2 < a3 < · · · < at) of integers is called an

arithmetic progression when there exists a positive integer d for which ai+1 − ai = d, for
all i = 1, 2, . . . , t− 1. The integer t is called the length of the arithmetic progression.

Theorem 16.12. For pair r, t of positive integers, there exists an integer n0, so that if n ≥ n0
and φ : {1, 2, . . . , n} → {1, 2, . . . , r} is any function, then there exists a t-term arithmetic

296 cbna

16.7 The Lovasz Local Lemma

progression 1 ≤ a1 < a2 < · · · < at ≤ n and an element α ∈ {1, 2, . . . , r} so that φ(ai) = α,
for each i = 1, 2, . . . , t.

Material will be added here.

16.7 The Lovasz Local Lemma

Even though humans seem to have great difficulty in providing expicit constructions for
expontially large graphs which do not have complete subgraphs or independent sets of
size n, such graphs exist with great abundance. Just take one at random and you are
almost certain to get one. And as a general rule, probabilistic techniques often provide
a method for finding something that readily exists, but is hard to find.
Similarly, in the probabilistic proof that there exist graphs with large girth and large

chromatic number, we actually showed that almost all graphs have modest sized inde-
pendence number and relatively few small cycles, provided that the edge probability is
chosen appropriately. The small cycles can be destroyed without significantly changing
the size of the graph.
By way of contrast, probabilistic techniques can, in certain circumstances, be used to

find somethingwhich is exceedingly rare. We next present an elegant but elementary re-
sult, knownas the Lovász Local Lemma,which has proved to be very, very powerful. The
treatment is simplified by the following natural notation. When E is an event in a prob-
ability space, we let E denote the complement of E. Also, when F = {E1, E2, . . . , Ek}
we let ∏

E∈F
E =

k∏
i=1

Ei = E1E2E3 . . . Ek

denote the event E1 ∩ E2 ∩ · · · ∩ Ek, i.e., concatenation is short hand for intersection.
These notations can be mixed, so E1E2E3 represents E1 ∩E2 ∩E3. Now let F be a finite
family of events, let E ∈ F and letN be a subfamily of F − {E}. In the statement of the
lemma below, we will say that E is independent of any event not in N when

P (E|
∏
F∈G

F = P (E)

provided G ∩ N = ∅.
We first state and prove the lemma in asymmetric form. Later, we will give a simpler

version which is called the symmetric version.

Lemma 16.13 (Lovász Local Lemma). Let F be a finite family of events in a probability space
and for each event E ∈ F , let N (E) denote a subfamily of events from F − {E} so that E is
independent of any event not inN (E). Suppose that for each eventE ∈ F , there is a real number

cbna 297

Chapter 16 The Many Faces of Combinatorics

x(E) with 0 < x(E) < 1 such that

P (E) ≤ x(E)
∏

F∈N (E)

(1− x(F)).

Then for every non-empty subfamily G ⊆ F ,

P (
∏
E∈G

E) ≥
∏
E∈G

(1− x(E)).

In particular, the probability that all events in F fail is positive.

Proof. We proceed by induction on G. If |G| = 1 and G = {E}, we are simply asserting
that P (E) ≥ 1− x(E), which is true since P (E) ≤ x(E). Now suppose that |G| = k ≥ 2
and that the lemma holds whenever 1 ≤ |G| < k. Let G = {E1, E2, . . . , Ek}. Then

P (
k∏
i≥1

Ei) = P (E1|
k∏
i=2

Ei)P (E2|
k∏
i=3

Ei)P (E3|
k∏
i=4

Ei) . . .

Now each term in the product on the right has the following form:

P (E|
∏
F∈FE

F)

where |FE | < k.
So, we done if we can show that

P (E|
∏
F∈FE

F) ≥ 1− x(E)

This is equivalent to showing that

P (E|
∏
F∈FE

F) ≤ x(E)

Suppose first that FE ∩N (E) = ∅. Then

P (E|
∏
F∈FE

F) = P (E) ≤ x(E).

So we may assume that FE ∩N (E) 6= ∅. Let FE = {F1, F2, Fr, Fr+1, Fr+2, . . . , Ft}, with
Fi ∈ NE if and only if r + 1 ≤ i ≤ t. Then

PE|
∏
F∈FE

F) =
P (E

∏
F∈FE∩N (E) F |

∏
F∈FE−N (E) F)

P (
∏
F∈FE∩N (E) F)

298 cbna

16.7 The Lovasz Local Lemma

Consider first the numerator in this last expression. Note that

P (E
∏

F∈FE∩N (E)

F |
∏

F∈FE−N (E)

F) ≤ P (E|
∏

F∈FE∩N (E)

F) ≤ x(E)
∏

F∈FE∩N (E)

(1− x(F))

Next, consider the denominator. By the inductive hypothesis, we have

P (
∏
F

∈ FE ∩N (E)F ≥
∏

F∈FE∩N (E)

(1− x(F)).

Combining these last two inequalities, we have

P (E|
∏
F∈FE

F) ≤ x(E)
∏

N (E)−FE

(1− x(F)) ≤ x(E),

and the proof is complete.

Now here is the symmetric version.

Lemma 16.14 (Lovász Local Lemma). Let p and d be numbers with 0 < p < 1 and d ≥ 1.
Also, let F be a finite family of events in a probability space and for each event E ∈ F , letN (E)
denote the subfamily of events from F −{E} so thatE is independent of any event not inN (E).
Suppose that P (E) ≤ p, |N (E)| ≤ d for every event E ∈ F and that ep(d + 1) < 1, where
e = 2.71828 . . . is the base for natural logarithms. Then Then

P (
∏
E∈F

E) ≥
∏
E∈G

(1− x(E)),

i.e., the probability that all events in F is positive.

Proof. Set x(E) = 1/(d+ 1) for every event E ∈ F . Then

P (E) ≤ p ≤ 1

e(d+ 1)
≤ x(E)

∏
(F ∈ N (E)(1− 1

d+ 1
).

Anumber of applications of the symmetric form of the Lovász Local Lemma are stated
in terms of the condition that 4pd < 1. The proof of this alternate form is just a trivial
modification of the argument we have presented here.

cbna 299

Chapter 16 The Many Faces of Combinatorics

16.8 Applying the Local Lemma

The list of applications of the Local Lemma has been growing steadily, as has the inter-
est in how the lemma can be applied algorithmically, i.e., in a constructive setting. But
here we present one of the early applications to Ramsey theory—estimating the Ramsey
number (R, 3, n). Recall that we have the basic inequality R(3, n) ≤

(
n+1
3

)
from The-

orem 11.2, and it is natural to turn to the probabilistic method to look for good lower
bounds. But a few minutes thought shows that there are challenges to this approach.
First, let’s try a direct computation. Suppose we try a random graph on t vertices with

edge probability p. Sowewouldwant no triangles, and that would saywe need t3p3 = 1,
i.e., p = 1/t. Then we would want no independent sets of size n, which would require
nte−pn

2

= 1, i.e., t lnn = pn2, so we can’t even make t larger than n. That’s not helpful.
We can do a bit better by by allowing some triangles and then removing one point from

each, aswas done in the proof for Theorem11.5. Along these lines, wewould set t3p3 = t,
i.e., p = t−2/3. And the calculation now yields the lower boundR(3, n) ≥ n6/5/ ln−3/5 n,
so even the exponent of n is different from the upper bound.

So which one is right, or is the answer somewhere in between? In a classic 1961 paper,
Erdős used a very clever application of the probabilistic method to show the existence
of a graph from which a good lower bound could be extracted. His technique yielded
the lower bound R(3, n) ≥ n2/ ln2 n, so the two on the exponent of n is correct.

Here we will use the Lovász Local Lemma to obtain this same lower bound in a much
more direct manner. We consider a random graph on t vertices with edge probability p.
For each 3-element subset S, we have the eventES which is truewhen S forms a triangle.
For each n-element set T , we have the event ET which is true when T is an independent
set. In the discussion to follow, we abuse notation slightly and refer to eventsES andET
as just S and T , respectively. Note that the probability of S is p3 for each 3-element set
S, while the probability of T is q = (1− p)C(n,2) ∼ e−pn2/2 for each n-element set T .

When we apply the Local Lemma, we will set x = x(S) to be e2p3, for each 3-element
set S. And we will set y = Y (T) = q1/2 ∼ e−pn

2/4. It will be clear in a moment where
we got those values.
Furthermore, the neighborhood of an event consists of all sets in the familywhich have

two or more elements in common. So the neighborhood of a 3-element set S consists of
3(t−3) other 3-element sets and C(t−3, n−3)+3C(t−3, n−2) sets of size n. Similarly,
the neighborhood of an n-element set T consists of C(n, 3) + (t− n)C(n, 2) sets of size 3

and
∑n−1
i=2 C(n, i)C(t− n, n− i) other sets of size n. So the basic inequalities we need to

satisfy are:

p3 ≤x(1− x)3(t−3)(1− y)C(t−3,n−3)+3C(t−n,n−2)

q ≤y(1− x)C(n,3)+(t−n)C(n,2)(1− y)C(t−3,n−3)+3C(t−n,n−2)

300 cbna

16.8 Applying the Local Lemma

Next, we assume that n3/2 < t < n2 and then make the usual approximations, ignor-
ing smaller order terms and multiplicative constants, to see that these inequalities can
be considered in the following simplified form:

p3 ≤x(1− x)t(1− y)t
n

q ≤y(1− x)tn
2

(1− y)t
n

Amoments reflection makes it clear that we want to keep the terms involving (1− y)
relatively large, i.e., at least 1/e. This will certainly be true if we keep tn ≤ 1/y. This is
equivalent to n ln t ≤ pn2, or ln t ≤ pn.

Similarly, we want to keep the term (1 − x)t relatively large, so we keep t ≤ 1/x, i.e.,
t ≤ 1/p3. On the other hand, we want only to keep the term (1− x)tn

2 ∼ e−xtn
2 at least

as large as y. This is equivalent to keeping p ≤ xt, and since x ∼ p3, this can be rewritten
as p−1 ≤ t1/2.
Now we have our marching orders. We just set ln t = pn and p−1 = t1/2. After

substituting, we get t = n2/ ln2 t and since ln t = lnn (at least within the kind of approx-
imations we are using), we get the desired result t = n2/ ln2 n.

cbna 301

Epilogue
Here is a progress report on our cast of charaters, some five years after graduation1.

Alice and Bob got married, moved to Austin, Texas, and started a high tech firm using
venture capital provided by a successful Georgia Tech grad. Alice is CEO and the pattern
ofmaking quick decisions, most ofwhich are right, continues to this day. Bob is CFO and
the financial health of the firm is guaranteed. The first year though was pretty tough,
but after that, their reputation got established and contracts began to walk through the
door. There’s even talk about an IPO in the near future. Alice and Bob don’t have much
time to decide whether they are happy with the way their lives are going—but we’re
pretty sure they are.

Carlos switched from Physics to math for graduate school and won an NSF graduate
fellowship which he took at MIT. After receiving his Ph.D., he took a postdoctoral po-
sition at the American Institute for the Mathematical Sciences (AIMS). He also won an
NSF Career grant. Carlos is a rapidly emerging star in the academic world. He has uni-
versities lining up to offer him tenure-track positions and he had already been invited
to lecture in England, France, Germany, Hungary and Poland. He’ll make a good living,
not a huge salary, but the quality of life will rank with the best. He is very happy.

Dave surprised a lot of people. Somewhere along the way, he got just a bit more orga-
nized without losing that off-the-wall uniqueness that made him special. He took a job
on Wall Street with a firm that just wanted really very smart people. He’s making more
money than any other member of the group, by far. But it comes at some cost. Long
hours and lots of stress. On the occasional free Sunday (there aren’t many), he wonders
how much longer he can keep this up.

Xing took a job with Macrofirm in Bluemon. His group is developing new operating
systems and attendant software that run on computing devices of all sizes, from smart
phones through super computers. Lots of interesting challenges, for example, just in
deciding how input should be done when there’s no keyboard and the device screen
is very small. Xing is enjoying life and feels his Georgia Tech experiences were great
preparation.

Yolanda used her chemistry background to go to medical school at Emory University,
where she received both an M.D. and a Ph.D. Afterwards, she accepted a position at the
1Georgia Tech students do not speak of graduating. Instead, using the same phrase applied to incarceration,
they talk about getting out.

303

Chapter 16 The Many Faces of Combinatorics

Center for Disease Control (CDC), which is also located here in Atlanta and has a bunch
of scientists with the same kind of background training. Zori quickly became the go to
person for analyzing strange viruses which no one else was able to identify. She is part
of a very important safety net which is essental to the nation’s security and well-being.
She is very happy with her life.

Zori didn’t go down the pathway through life she once envisioned. Her first job was
with a family owned company making candy bars. In that position, she helped them
to make wise decisions on massive sugar purchases made on a world-wide basis. She
got bored with this job, and left to accept a position with a support group for an airline
company. Her group did optimization work, figuring out how best to position aircraft
and crews to handle scheduling irregularities. Two years later, she moved to a position
with a major chip maker where she helped optimize the movement of cutting heads in
the manufacturing process, where incremental improvements could mean for hundreds
of millions of dollars in savings. Zori has made lots of money, but she remains vaguely
dissatisfied with life and is still looking for the right environment.

304 cbna

APPENDIX A
Background Material for

Combinatorics
This appendix treats background material essential to the study of combinatorial math-
ematics. Many students will find that most—and perhaps all—of this material has been
covered somewhere in their prior course work, and we expect that very few instructors
will include this appendix in the syllabus. Nevertheless, students may find it convenient
to consult this appendix from time to time, and we suspect that many instructors will
encourage students to read this material to refresh their memories of key concepts.

A.1 Introduction

Set theory is concerned with elements, certain collections of elements called sets and a
concept of membership. For each element x and each set X , exactly one of the following
two statements holds:

1. x is a member of X .

2. x is not a member of X .

It is important to note that membership cannot be ambiguous.
When x is an element and X is a set, we write x ∈ X when x is a member of X .

Also, the statement x belongs toX means exactly the same thing as x is a member ofX .
Similarly, when x is not a member ofX , we write x /∈ X and say x does not belong toX .
Certain sets will be defined explicitly by listing the elements. For example, let X =

{a, b, d, g,m}. Then b ∈ X and h /∈ X . The order of elements in such a listing is irrelevant,
so we could also write X = {g, d, b,m, a}. In other situations, sets will be defined by
giving a rule for membership. As examples, let N denote the set of positive integers.
Then let X = {n ∈ N : 5 ≤ n ≤ 9}. Note that 6, 8 ∈ X while 4, 10, 238 /∈ X .

Given an element x and a set X , it may at times be tedious and perhaps very difficult
to determine which of the statements x ∈ X and x /∈ X holds. But if we are discussing
sets, it must be the case that exactly one is true.

305

Appendix A Background Material for Combinatorics

Example A.1. Let X be the set consisting of the following 12 positive integers:

13232112332

13332112332

13231112132

13331112132

13232112112

13231112212

13331112212

13232112331

13231112131

13331112131

13331112132

13332112111

13231112131

Note that one number is listed twice. Which one is it? Also, does 13232112132 belong
to X? Note that the apparent difficulty of answering these questions stems from (1) the
size of the set X ; and (2) the size of the integers that belong to X . Can you think of
circumtances in which it is difficult to answer whether x is a member ofX even when it
is known that X contains exactly one element?
ExampleA.2. Let P denote the set of primes. Then 35 /∈ P since 35 = 5×7. Also, 19 ∈ P .
Now consider the number

n = 77788467064627123923601532364763319082817131766346039653933

Does n belong to P ? Alice says yes while Bob says no. How could Alice justify her
affirmative answer? How could Bob justify his negative stance? In this specific case, I
know that Alice is right. Can you explain why?

A.2 Intersections and Unions

When X and Y are sets, the intersection of X and Y , denoted X ∩ Y , is defined by

X ∩ Y = {x : x ∈ X,x ∈ Y }

Note that this notation uses the convention followed by many programming languages.
Namely, the “comma” in the definitionmeans that both requirements for membership be
satisfied. For example, if X = {b, c, e, g,m} and Y = {a, c, d, h,m, n, p}, then X ∩ Y =
{c,m}.

306 cbna

A.2 Intersections and Unions

A.2.1 The Meaning of 2-Letter Words

In the not too distant past, there was considerable discussion in the popular press on the
meaning of the 2-letter word is. For mathematicians and computer scientists, it would
have been far more significant to have a discussion of the 2-letter word or. The problem
is that the English language uses or in two fundamentally different ways. Consider the
following sentences:

1. A nearby restaurant has a dinner special featuring two choices for dessert: flan de
casa or tirami-su.

2. A state university accepts all studentswhohave graduated from in-state high schools
and have SAT scores above 1000 or have grade point averages above 3.0.

3. A local newpaper offers customers the option of paying their for their newspaper
bills on a monthly or semi-annual basis.

In the first and third statement, it is clear that there are two options but that only one
of them is allowed. However, in the second statement, the interpretation is that admis-
sion will be granted to students who satisfy at least one of the two requirements. These
interpretations are called respectively the exclusive and inclusive versions of or. In this
class, we will assume that whenever the word “or” is used, the inclusive interpretation
is intended—unless otherwise stated.
For example, whenX and Y are sets, the union ofX and Y , denotedX ∪Y , is defined

by
X ∪ Y = {x : x ∈ x or x ∈ Y }.

membership be satisfied. For example, if X = {b, c, e, g,m} and Y = {a, c, d, h,m, n, p},
then X ∪ Y = {a, b, c, d, e, g, h,m, n, p}.

Note that ∩ and ∪ are commutative and associative binary operations, as is the case with
addition and multiplication for the set N of positive integers, i.e., ifX , Y and Z are sets,
then

X ∩ Y = Y ∩X and X ∪ Y = Y ∪X.
Also,

X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z and X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z.
Also, note that each of ∩ and ∪ distributes over the other, i.e.,

X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z) and X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)

On the other hand, in N, multiplication distributes over addition but not vice-versa.

A.2.2 The Empty Set: Much To Do About Nothing

The empty set, denoted ∅ is the set forwhich x /∈ ∅ for every element x. Note thatX∩∅ = ∅
and X ∪ ∅ = X , for every set X .

The empty set is unique in the sense that if x /∈ X for every element x, then X = ∅.

cbna 307

Appendix A Background Material for Combinatorics

A.2.3 The First So Many Positive Integers

In our course, we will use the symbols N, Z, Q and R to denote respectively the set of
positive integers, the set of all integers (positive, negative and zero), the set of rational
numbers (fractions) and the set of real numbers (rationals and irrationals). On occasion,
wewill discuss the setN0 of non-negative integers. Whenn is a positive integer, wewill use
the abbreviation [n] for the set {1, 2, . . . , n} of the first n positive integers. For example,
[5] = {1, 2, 3, 4, 5}. For reasons that may not be clear at the moment but hopefully will
be transparent later in the semester, we use the notation n to denote the n-element set
{0, 1, 2, . . . , n − 1}. Of course, n is just the set of the first n non-negative integers. For
example, 5 = {0, 1, 2, 3, 4}.

A.2.4 Subsets, Proper Subsets and Equal Sets

WhenX and Y are sets, we sayX is a subset of Y andwriteX ⊆ Y when x ∈ Y for every
x ∈ X . WhenX is a subset of Y and there exists at least one element y ∈ Y with y /∈ X ,
we say X is a proper subset of Y and write X (Y . For example, the P of primes is a
proper subset of the set N of positive integers.
Surprisingly often, we will encounter a situation where sets X and Y have different

rules for membership yet both are in fact the same set. For example, let X = {0, 2} and
Y = {z ∈ Z : z + z = z × z}. Then X = Y . For this reason, it is useful to have a test
when sets are equal. If X and Y are sets, then

X = Y if and only if X ⊆ Y and Y ⊆ X.

A.3 Cartesian Products

When X and Y are sets, the cartesian product of X and Y , denoted X × Y , is defined by

X × Y = {(x, y) : x ∈ X and y ∈ Y }

For example, ifX = {a, b} andY = [3], thenX×Y = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}.
Elements of X × Y are called ordered pairs. When p = (x, y) is an ordered pair, the ele-
ment x is referred to as the first coordinate of p while y is the second coordinate of p. Note
that if either X or Y is the empty set, then X × Y = ∅.
Example A.3. LetX = {∅, (1, 0), {∅}} and Y = {(∅, 0)}. Is ((1, 0), ∅) a member ofX × Y ?
Cartesian products can be defined for more than two factors. When n ≥ 2 is a positive

integer and X1, X2, . . . , Xn are non-empty sets, their cartesian product is defined by

X1 ×X2 × · · · ×Xn = {(x1, x2, . . . , xn) : xi ∈ Xi for i = 1, 2, . . . , n}

308 cbna

A.4 Binary Relations and Functions

A.4 Binary Relations and Functions

A subsetR ⊆ X×Y is called a binary relation onX×Y , and a binary relationR onX×Y
is called a function from X to Y when the following condition is satisfied:

C: For every x ∈ X , there is exactly one element y ∈ Y for which (x, y) ∈ R.

Many authors prefer to write Condition C in two parts:

C1: For every x ∈ X , there is some element y ∈ Y for which (x, y) ∈ R.

C2: For every x ∈ X , there is at most one element y ∈ Y for which (x, y) ∈ R.

And this last condition is often stated in the following alternative form:

C ′2: If x ∈ X , y1, y2 ∈ Y and (x, y1), (x, y2) ∈ R, then y1 = y2.
Example A.4. For example, let X = [4] and Y = [5]. Then let
R1 = {(2, 1), (4, 2), (1, 1), (3, 1)},
R2 = {(4, 2), (1, 5), (3, 2)}, and
R3 = {(3, 2), (1, 4), (2, 2), (1, 1), (4, 5)}.

Then only R1 is a function from X to Y .
In many settings (like calculus), it is customary to use letters like f , g and h to denote

functions. So let f be a function from a setX to a set Y . In view of the defining properties
of functions, for each x ∈ X , there is a unique element y ∈ Y with (x, y) ∈ f . And in
this case, the convention is to write y = f(x). For example, if f = R1 is the function in
Example A.4, then 2 = f(4) and f(3) = 1.
The shorthand notation f : X → Y is used to indicate that f is a function from the set

X to the set Y .
In calculus, we study functions defined by algebraic rules. For example, consider the

function f whose rule is f(x) = 5x3 − 8x + 7. This short hand notation means that
X = Y = R and that

f = {(x, 5x3 − 8x+ 7) : x ∈ R}

In combinatorics, we sometimes study functions defined algebraically, just like in calcu-
lus, but we will frequently describe functions by other kinds of rules. For example, let
f : N→ N be defined by f(n) = |n/2| if n is even and f(n) = 3|n|+ 1 when n is odd.

A function f : X → Y is called an injection from X to Y when

I : For every y ∈ Y , there is at most one element x ∈ X with y = f(x).

When the meaning of X and Y is clear, we just say f is an injection. An injection is
also called a 1–1 function (read this as “one to one”) and this is sometimes denoted as
f : X

1–1−−→ Y .
A function f : X → Y is called a surjection from X to Y when:

S: For every y ∈ Y , there is at least one x ∈ X with y = f(x).

cbna 309

Appendix A Background Material for Combinatorics

Again, when themeaning ofX and Y is clear, we just say f is an surjection. A surjection
is also called an onto function and this is sometimes denoted as
f : X −−→

onto
Y .

A function f fromX to Y which is both an injection and a surjection is called a bijection.
Alternatively, a bijection is referred to as a 1–1, onto function, and this is sometimes
denoted as f : X

1–1−−→
onto

Y . A bijection is also called a 1–1-correspondence.

Example A.5. Let X = Y = R. Then let f , g and h be the functions defined by

1. f(x) = 3x− 7.

2. g(x) = 3(x− 2)(x+ 5)(x− 7).

3. h(x) = 6x2 − 5x+ 13.

Then f is a bijection; g is a surjection but not an injection (Why?); and h is neither an
injection nor a surjection (Why?).

Proposition A.6. LetX and Y be sets. Then there is a bijection fromX to Y if and only if there
is a bijection from Y to X .

A.5 Finite Sets

A set X is said to be finite when either (1) X = ∅; or (2) there exists positive integer n
and a bijection f : [n]

1–1−−→
onto

X . When X is not finite, it is called infinite. For example,
{a, ∅, (3, 2),N} is a finite set as is N×∅. On the other hand, N×{∅} is infinite. Of course,
[n] and n are finite sets for every n ∈ N.

Proposition A.7. LetX be a non-empty finite set. Then there is a unique positive integer n for
which there is a bijection f : [n]

1–1−−→
onto

X .

In some cases, it may take some effort to determine whether a set is finite or infinite.
Here is a truly classic result.

Proposition A.8. The set P of primes is infinite.

Proof. Suppose that the set P of primes is finite. It is non-empty since 2 ∈ P . Let n be
the unique positive integer for which there exists a bijection f : [n]→ P . Then let

p = 1 + f(1)× f(2)× f(3)× · · · × f(n)

Then p is prime (Why?) yet larger than any element of P . The contradiction completes
the proof.

310 cbna

A.5 Finite Sets

Here’s a famous example of a set where no one knows if the set is finite or not.

Conjecture A.9. It is conjectured that the following set is infinite:

T = {n ∈ N : n and n+ 2 are both primes }.

This conjecture is known as the Twin Primes Conjecture. Guaranteed A + + for any
student who can settle it!

Proposition A.10. LetX and Y be finite sets. If there exists an injection f : X
1–1−−→ Y and an

injection g : Y
1–1−−→ X , then there exists a bijection h : X

1–1−−→
onto

Y .

WhenX is a finite non-empty set, the cardinality ofX , denoted |X| is the unique pos-
itive integer n for which there is a bijection f : [n]

1–1−−→
onto

X . Intuitively, |X| is the number
of elements in X . For example,

|{(6, 2), (8, (4, ∅)), {3, {5}}}| = 3.

By convention, the cardinality of the empty set is taken to be zero, and we write |∅| = 0.

Proposition A.11. If X and Y are finite non-empty sets, then |X × Y | = |X| × |Y |.

Remark A.12. The statement in the last exercise is an example of “operator overloading”,
a technique featured in several programming languages. Specifically, the times sign ×
is used twice but has different meanings. As part of X × Y , it denotes the cartesian
product, while as part of |X|× |Y |, it means ordinary multiplication of positive integers.
Programming languages can keep track of the data types of variables and apply the
correct interpretation of an operator like × depending on the variables to which it is
applied.

We also have the following general form of Proposition A.11:

|X1 ×X2 × · · · ×Xn| = |X1| × |X2| × · · · × |Xn|

Theorem A.13.

1. There is a bijection between any two of the following infinite sets N, Z and Q.

2. There is an injection from Q to R.

3. There is no surjection from Q to R.

cbna 311

Appendix A Background Material for Combinatorics

A.6 Notation from Set Theory and Logic

In set theory, it is common to deal with statements involving one or more elements from
the universe as variables. Here are some examples:

1. For n ∈ N, n2 − 6n+ 8 = 0.

2. For A ⊆ [100], {2, 8, 25, 58, 99} ⊆ A.

3. For n ∈ Z, |n| is even.

4. For x ∈ R, 1 + 1 = 2.

5. Form,n ∈ N,m(m+ 1) + 2n is even.

6. For n ∈ N, 2n+ 1 is even.

7. For n ∈ N and x ∈ R, n+ x is irrational.

These statements may be true for some values of the variables and false for others. The
fourth and fifth statements are true for all values of the variables, while the sixth is false
for all values.
Implications are frequently abbreviated using with a double arrow =⇒; the quantifier

∀ means “for all” (or “for every”); and the quantifier ∃ means “there exists” (or “there
is”). Some writers use ∧ and ∨ for logical “and” and “or”, respectively. For example,

∀A,B ⊆ [4]
(
(1, 2 ∈ A) ∧ |B| ≥ 3)

)
=⇒

(
(A ⊆ B) ∨ (∃n ∈ A ∪B,n2 = 16)

)
The double arrow ⇐⇒ is used to denote logical equivalence of statements (also “if and
only if”). For example

∀A ⊆ [7] A ∩ {1, 3, 6} 6= ∅ ⇐⇒ A * {2, 4, 5, 7}

We will use these notational shortcuts except for the use of ∧ and ∨, as we will use these
two symbols in another context: binary operators in lattices.

A.7 Formal Development of Number Systems

Up to this point, we have been discussing number systems in an entirely informal man-
ner, assuming everyone knew all that needed to be known. Now let’s pause and put
things on a more firm foundation. So for the time being, do a memory dump and for-
get everything you have ever learned about numbers and arithmetic. The set of natural
numbers has just been delivered on our door step in a big box with a warning label say-
ing “Assembly Required.” We open the box and find a single piece of paper onwhich the
following “instructions” are printed. These defining properties of the natural numbers
are known as the Peano Postulates.

312 cbna

A.7 Formal Development of Number Systems

(i). There is a non-empty set of elements called natural numbers. There is natural num-
ber called zerowhich is denoted 0. The set of all natural numbers is denoted N0

(ii). There is a one-to-one function s : N0
1–1−−→ N0 called the successor function. For each

n ∈ N0, s(n) is called the successor of n.

(iii). There is no natural number n for which 0 = s(n).

(iv). LetM ⊆ N0. ThenM = N0 if and only if
(a). 0 ∈M; and
(b). ∀k ∈ N0 (k ∈M) =⇒ (s(k) ∈M).

Property (iv) in the list of Peano Postulates is called the Principle of Mathematical Induc-
tion, or just the Principle of Induction. As a first application of the Principle of Induction,
we prove the following basic property of the natural numbers.

Proposition A.14. Let n be a natural number with n 6= 0. Then there is a natural number m
so that n = s(m).

Proof. Let S = {n ∈ N0 : ∃m ∈ N0, n = s(m)}. Then set M = {0} ∪ S. We show that
M = N0. First, note that 0 ∈ M. Next, we will show that for all k ∈ N0, if k ∈ M, then
s(k) ∈ M. However, this is trivial since for all k ∈ N0, we have s(k) ∈ S ⊆ M. We
conclude thatM = N0.

A.7.1 Addition as a Binary Operation

Recall that a binary operator ∗ on set X is just a function ∗ : X × X → X . So the image
of the ordered pair (x, y) would normally be denoted ∗((x, y)). However, this is usually
abbreviated as ∗(x, y) or even more compactly as x ∗ y. With this convention, we now
define a binary operation + on the the set N0 of natural numbers. This operation is
defined by:
For every natural number n ∈ N0:

(i). n+ 0 = n.

(ii). For all k ∈ N0, n+ s(k) = s(n+ k).

We pause to make it clear why the preceding two statements define +. Let n be an
arbitrary natural number. Then letM denote the set of all natural numbersm for which
n + m is defined. Note that 0 ∈ M by part (i). Also note that for all k ∈ N0, s(k) ∈ M
whenever k ∈M by part (ii). This shows thatM = N0. Since nwas arbitrary, this allows
us to conclude that n+m is defined for all n,m ∈ N0.

We read n+m as n plusm. The operation + is also called addition.
Among the natural numbers, the successor of zero plays a very important role, so

important that it deserves its own special symbol. Here we follow tradition and call the

cbna 313

Appendix A Background Material for Combinatorics

natural number s(0) one and denote it by 1. Note that for every natural number n, we
have n+ 1 = n+ s(0) = s(n). In particular, 0 + 1 = 1.

With this notation, the Principle of Induction can be restated in the following form,
which many of you may already have seen.

The Principle of Induction. LetM ⊆ N0. ThenM = N0 if and only if

(a). 0 ∈M; and

(b). ∀k ∈ N0 (k ∈M) =⇒ (k + 1 ∈M).

Theorem A.15. [Associative Property of Addition]
m+ (n+ p) = (m+ n) + p, for allm,n, p ∈ N0.

Proof. Let m,n ∈ N0. Then let M denote the set of all natural numbers p for which
m+ (n+ p) = (m+ n) + p. We show thatM = N0.
Note that

m+ (n+ 0) = m+ n = (m+ n) + 0

which shows that 0 ∈M.
Now assume that k ∈M, i.e.,m+ (n+ k) = (m+ n) + k. Then

m+[n+(k+1)] = m+[(n+k)+1] = [m+(n+k)]+1 = [(m+n)+k]+1 = (m+n)+(k+1).

Notice here that the first, second, and fourth equalities follow from the second part of the
definition of addition while the third uses our inductive assumption thatm+ (n+ k) =
(m + n) + k). This shows that k + 1 ∈ M. Therefore, M = N0. Since m and n were
arbitrary elements of N0, the theorem follows.

In proofs to follow, we will trim out some of the wording and leave only the essential
mathematical steps intact. In particular, we will (i) omit reference to the set M, and
(ii) drop the phrase “For all k ∈ N0” For example, to define addition, we will just write
(i) n+ 0 = n, and (ii) n+ (k + 1) = (n+ k) + 1.

Lemma A.16. m+ (n+ 1) = (m+ 1) + n, for allm,n ∈ N0.

Proof. Fixm ∈ N0. Then

m+ (0 + 1) = m+ 1 = (m+ 0) + 1.

Now assume thatm+ (k + 1) = (m+ 1) + k. Then

m+ [(k + 1) + 1] = [m+ (k + 1)] + 1 = [(m+ 1) + k] + 1 = (m+ 1) + (k + 1).

We next prove the commutative property, a task that takes two steps. First, we prove
the following special case.

314 cbna

A.8 Multiplication as a Binary Operation

Lemma A.17. n+ 0 = 0 + n = n, for all n ∈ N0.

Proof. The statement is trivially true when n = 0. Now suppose that k + 0 = 0 + k = k
for some k ∈ N0. Then

(k + 1) + 0 = k + 1 = (0 + k) + 1 = 0 + (k + 1).

Theorem A.18. [Commutative Law of Addition]
m+ n = n+m for allm,n ∈ N0.

Proof. Letm ∈ N0. Thenm+0 = 0+m from the preceding lemma. Assumem+k = k+m.
Then

m+ (k + 1) = (m+ k) + 1 = (k +m) + 1 = k + (m+ 1) = (k + 1) +m.

Lemma A.19. Ifm,n ∈ N0 andm+ n = 0, thenm = n = 0.

Proof. Suppose that either of m and n is not zero. Since addition is commutative, we
may assume without loss of generality that n 6= 0. Then there exists a natural number p
so that n = s(p). This implies thatm+n = m+s(p) = s(m+p) = 0, which is impossible
since 0 is not the successor of any natural number.

Theorem A.20. [Cancellation Law of Addition]
Ifm,n, p ∈ N0 andm+ p = n+ p, thenm = n.

Proof. Let m,n ∈ N0. Suppose that m + 0 = n + 0. Then m = n. Now suppose that
m = nwheneverm+ k = n+ k. Ifm+ (k + 1) = n+ (k + 1), then

s(m+ k) = (m+ k) + 1 = m+ (k + 1) = n+ (k + 1) = (n+ k) + 1 = s(n+ k).

Since s is an injection, this impliesm+ k = n+ k. Thusm = n.

A.8 Multiplication as a Binary Operation

We define a binary operation ×, called multiplication, on the set of natural numbers.
When m and n are natural numbers, m × n is also called the product of m and n, and
it sometimes denotedm ∗ n and even more compactly asmn. We will use this last con-
vention in the material to follow. Let n ∈ N0.

Then define:

(i). n0 = 0, and

cbna 315

Appendix A Background Material for Combinatorics

(ii). n(k + 1) = nk + n.

Note that 10 = 0 and 01 = 00 + 0 = 0. Also, note that 11 = 10 + 1 = 0 + 1 = 1. More
generally, from (ii) and Lemma A.19, we conclude that ifm,n 6= 0, thenmn 6= 0.

Theorem A.21. [Left Distributive Law]
m(n+ p) = mn+mp, for allm,n, p ∈ N0.

Proof. Letm,n ∈ N0. Then

m(n+ 0) = mn = mn+ 0 = mn+m0.

Now assumem(n+ k) = mn+mk. Then

m[n+ (k + 1)] = m[(n+ k) + 1] = m(n+ k) +m

= (mn+mk) +m = mn+ (mk +m) = mn+m(k + 1).

Theorem A.22. [Right Distributive Law]
(m+ n)p = mp+ np, for allm,n, p ∈ N0.

Proof. Letm,n ∈ N0. Then

(m+ n)0 = 0 = 0 + 0 = m0 + n0.

Now assume (m+ n)k = mk + nk. Then

(m+ n)(k + 1) = (m+ n)k + (m+ n) = (mk + nk) + (m+ n)

= (mk +m) + (nk + n) = m(k + 1) + n(k + 1).

Theorem A.23. [Associative Law of Multiplication]
m(np) = (mn)p, for allm,n, p ∈ N0.

Proof. Letm,n ∈ N0. Then

m(n0) = m0 = 0 = (mn)0.

Now assume thatm(nk) = (mn)k. Then

m[n(k + 1)] = m(nk + n) = m(nk) +mn = (mn)k +mn = (mn)(k + 1).

The commutative law requires some preliminary work.

316 cbna

A.9 Exponentiation

Lemma A.24. n0 = 0n = 0, for all n ∈ N0.
Proof. The lemma holds trivially when n = 0. Assume k0 = 0k = 0. Then

(k + 1)0 = 0 = 0 + 0 = 0k + 0 = 0(k + 1).

Lemma A.25. n1 = 1n = n, for every n ∈ N0.
Proof. 01 = 00 + 0 = 0 = 10. Assume k1 = 1k = k. Then

(k + 1)1 = k1 + 11 = 1k + 1 = 1(k + 1).

Theorem A.26. [Commutative Law of Multiplication]
mn = nm, for allm,n ∈ N0.
Proof. Letm ∈ N0. Thenm0 = 0m. Assumemk = km. Then

m(k + 1) = mk +m = km+m = km+ 1m = (k + 1)m.

A.9 Exponentiation

We now define a binary operation called exponentiation which is defined only on those
ordered pairs (m,n) of natural numbers where not both are zero. The notation for expo-
nentiation is non-standard. In books, it is writtenmn while the notationsm ∗ ∗n,m ∧ n
and exp(m,n) are used in-line. We will use themn notation for the most part.

When m = 0, we set 0n = 0 for all n ∈ N0 with n 6= 0. Now let m 6= 0. We define mn

by (i)m0 = 1 and (ii)mk+1 = mmk.
Theorem A.27. For allm,n, p ∈ N0 withm 6= 0,mn+p = mnmp.
Proof. Let m,n ∈ N0 with m 6= 0. Then mn+0 = mn = mn 1 = mnm0. Now suppose
thatmn+k = mnmk. Then

mn+(k+1) = m(n+k)+1 = mmn+k = m(mnmk) = mn(mmk) = mnmk+1.

Theorem A.28. For allm,n, p ∈ N0 withm 6= 0, (mn)p = mnp.
Proof. Let m,n ∈ N0 with m 6= 0. Then (mn)0 = 1 = m0 = mn0. Now suppose that
(mn)k = mnk. Then

(mn)k+1 = mn(mn)k = mn(mnk) = mn+nk = mn(k+1).

cbna 317

Appendix A Background Material for Combinatorics

A.10 Partial Orders and Total Orders

A binary relation R on a setX is just a subset of the cartesian productX ×X . In discus-
sions of binary relations, the notation (x, y) ∈ R is sometimes written as xRy.
A binary relation R is:

(i). reflexive if (x, x) ∈ R for all x ∈ X .

(ii). antisymmetric if x = y whenever (x, y) ∈ R and (y, x) ∈ R, for all x, y ∈ X .

(iii). transitive if (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R, for all x, y, z ∈ X .

A binary relation R on a set X is called a partial order on X when it is reflexive, anti-
symmetric and transitive. Traditionally, symbols like≤ and⊆ are used to denote partial
orders. As an example, recall that if X is a family of sets, we write A ⊆ B when A is a
subset of B.
When using the ordered pair notation for binary relations, to indicate that a pair (x, y)

is not in the relation, we simply write (x, y) /∈ R. When using the alternate notation, this
is usually denoted by using the negation symbol from logic and writing ¬(xRy). Most
of the special symbols used to denote partial orders come with negative versions, e.g.,
x 6≤ y, x * y.

A partial order is called a total order onX when for all x, y ∈ X , (x, y) ∈ R or (y, x) ∈ R.
For example, if

X = {∅, {∅}, {∅, {∅}}}
then ⊆ is a total order on X .

When ≤ is a partial order on a set X , we write x < y when x ≤ y and x 6= y.

A.11 A Total Order on Natural Numbers

Let m,n ∈ N0. Define a binary relation ≤ on N0 by setting m ≤ n if and only if there
exists a natural number p so thatm+ p = n.

Proposition A.29. ≤ is a total order on N0.

Proof. ≤ is reflexive since n+ 0 = n and therefore n ≤ n, for all n ∈ N0. Next, we show
that ≤ is antisymmetric. Letm,n ∈ N0 and suppose thatm ≤ n and n ≤ m. Then there
exist natural numbers p and q so thatm+ p = n and n+ q = m. It follows that

m+ (p+ q) = (m+ p) + q = n+ q = m = m+ 0

Therefore p+ q = 0, which implies that p = q = 0. Thusm+ p = m+ 0 = m = n.
Next, we show that ≤ is transitive. Suppose thatm,n, p ∈ N0,m ≤ n and n ≤ p. Then

there exist natural numbers q and r so thatm+ q = n and n+ r = p. Then

m+ (q + r) = (m+ q) + r = n+ r = p.

318 cbna

A.12 Notation for Natural Numbers

Thusm ≤ p, and we have now shown that ≤ is a partial order on N0.
Finally, we show that ≤ is a total order. To accomplish this, we choose an arbitrary

element m ∈ N0 and show that for every n ∈ N0, either m ≤ n or n ≤ m. We do this
by induction on n. Suppose first that n = 0. Since 0 +m = m, we conclude that 0 ≤ m.
Now suppose that for some k ∈ N0, we havem ≤ k. Then there is a natural number p so
thatm+ p = k. Thenm+ (p+ 1) = (m+ p) + 1 = k + 1, som ≤ k + 1.
On the other hand, suppose that for some k ∈ N0, we have k ≤ m. If k = m, then

m ≤ k andm ≤ k+ 1 as above. Now suppose that k ≤ m and k 6= m. Since k ≤ m, there
exists a natural number p so that k + p = m. Since k 6= m, we know p 6= 0. Therefore,
there is a natural number q so that p = q+ 1. Thenm = k+ p = k+ (q+ 1) = (k+ 1) + q
which shows that k + 1 ≤ m.

Note that if m,n ∈ N0, then m < n if and only if there exists a natural number p 6= 0
so thatm+ p = n.

Theorem A.30. [Monotonic Law for Addition]
Letm,n, p ∈ N0. Ifm ≤ n, thenm+ p ≤ n+ p. Furthermore, ifm < n, thenm+ p < n+ p.

Proof. It suffices to prove that if m,n ∈ N0 with m < n, then m + p < n + p for every
p ∈ N0. Let q 6= 0 be the natural number so that m + q = n. Now let p ∈ N0. Then
(m+ p) + q = (m+ q) + p = n+ p, som+ p < n+ p.

Lemma A.31. Ifm,n ∈ N0,m 6= 0 and n 6= 0, thenmn 6= 0.

Proof. Assume to the contrary, that m,n ∈ N0, m 6= 0, n 6= 0 and mn = 0. Let n = s(p).
Then 0 = mn = ms(p) +mwhich requiresm = 0. This is a contradiction.

Theorem A.32. [Monotonic Law for Multiplication]
Letm,n, p ∈ N0. Ifm ≤ n, thenmp ≤ np. Furthermore, ifm < n and p 6= 0, thenmp < np.

Proof. Only the last statement requires proof. Letm,n ∈ N0 withm < n. Thenm+q = n
for some q 6= 0. Then np = (m+ q)p = mp+ pq. Since pq 6= 0, we concludemp < np.

Corollary A.33. [Cancellation Law of Multiplication]
Ifm,n, p ∈ N0,mp = np, and p 6= 0, thenm = n.

Proof. Ifm < n, thenmp < np, and ifn < m, thennp < mp. We conclude thatm = n.

A.12 Notation for Natural Numbers

In some sense, we already have a workable notation for natural numbers. In fact, we
really didn’t need a special symbol for s(0). The natural number 0 and the sucessor
function s are enough. For example, the positive integer associated with the number of

cbna 319

Appendix A Background Material for Combinatorics

fingers (including the thumb) on one hand is s(s(s(s(s(0))))), our net worth is 0, and the
age of Professor Trotter’s son in years when these notes were first prepared was

s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))))).

Admittedly, this is not very practical, especially if some day we win the lottery or want
to discuss the federal deficit. So it is natural (ugh!) to consider alternative notations.
Here is one such scheme. First, let’s decide on a natural b > s(0) as base. We will

then develop a notation which is called the base b notation. We already have a special
symbol for zero, namely 0, but we need additional symbols for each natural number
n with 0 < n < b. These symbols are called digits. For example, the positive integer
b = s(s(s(s(s(s(s(s(0)))))))) is called eight, and it makes a popular choice as a base. Here
are the symbols (digits) customarily chosen for this base: 1 = s(0), 2 = s(1); 3 = s(2);
4 = s(3); 5 = s(4); 6 = s(5); and 7 = s(6). Technically speaking, it is not necessary to
have a separate symbol for b, but it might be handy regardless. In this case, most people
prefer the symbol 8. We like this symbol, unless and until it gets lazy and lays down
sideways.
So the first 8 natural numbers are then 0, 1, 2, 3, 4, 5, 6 and 7. To continue with our

representation, we want to use the following basic theorem.

Theorem A.34. Let n, d ∈ N0 with d > 0. Then there exist unique natural numbers q and r so
that n = qd+ r and 0 ≤ r < d.

Proof. Let d ∈ N0 with d > 0. We first show that for each n ∈ N0, there exists q, r ∈ N0

so that n = qd + r and 0 ≤ r < d. If n = 0, we can take q = 0 and r = 0. Now suppose
that k = qd+ r and 0 ≤ r < m for some k ∈ N0.
Note that r < d implies r+ 1 ≤ d. If r+ 1 < d, then k+ 1 = qd+ (r+ 1). On the other

hand, if r + 1 = d, then k + 1 = (q + 1)d+ 0.
Now that existence has been settled, we note that the uniqueness of q and r follow

immediately from the cancellation properties.

Now suppose that for some k ∈ N0, with k ≥ 7, we have defined a base eight no-
tation for the representation of k, for all n with 0 ≤ n ≤ k, and that in each case,
this representation consists of a string of digits, written left to right, and selected from
{0, 1, 2, 3, 4, 5, 6, 7}. Write k + 1 = qb + r where 0 ≤ r < b. Note that q ≤ k, so that
we already have a representation for q. To obtain a representation of k + 1, we simply
append r at the (right) end.
For example, consider the age of Professor Trotter’s son. It is then written as 22. And

to emphasize the base eight notation, most people would say 22, base 8 and write (22)8.
Among the more popular bases are base 2, where only the digits 0 and 1 are used, and

base sixteen, where sixteen is the popular word for (20)8. Here the digit symbols are

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F

320 cbna

A.13 Equivalence Relations

Another popualar choice, in fact the one in most widespread use in banks, shopping
centers and movie theatres, is base ten. Ten is the natural number A, base sixteen. Also,
ten is (12)8. Most folks use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for base ten notation. And
when no other designation ismade, then it is assumed that the natural number is written
base ten. So of course, Professor Trotter’s son is 18 and is a freshman at Georgia Tech.
Which explains why his hair is as white as it is.
For any base b > 1, caution must be exercised when discussing multiplication, since

writing the productm×n in the abbreviated formmn causes us some grief. For example,
if b = 8, then writing the product 372 × 4885 as 3724885 is ambiguous. For this reason,
when using base b notation, the product symbol × (or some variation of ×) is always
used.

A.12.1 Alternate Versions of Induction

Many authors prefer to start the development of number systems with the set of positive
integers and defer the introduction of the concept of zero. In this setting, you have a non-
empty setN, a one-to-one successor function s : N 1–1−−→ N and a positive integer called one
and denoted 1 that is not the successor of any positive integer. The Principle of Induction
then becomes: IfM ⊆ N, thenM = N if and only if

(a). 1 ∈M; and

(b). ∀k ∈ N0 (k ∈M) =⇒ (s(k) ∈M).

More generally, to show that a setM contains all integers greater than or equal to an
integer n, it is sufficient to show that (i) n ∈M, and (ii) For all k ∈ Z, (k ∈M =⇒ (k+1 ∈
M).
Here is another version of induction, one that is particularly useful in combinatorial

arguments.

Theorem A.35. LetM ⊆ N. IfM 6= N, then there is a unique least positive integer n that does
not belong toM.

A.13 Equivalence Relations

A binary relation R is:

(iv). symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X .

A binary relation R on a set X is called an equivalence relation when it is reflexive,
symmetric and transitive. Typically, symbols like, =, ∼=, ≡ and ∼ are used to denote
equivalence relations. An equivalence relation, say ∼=, defines a partition on the set X
by setting

〈x〉 = {y ∈ X : x ∼= y}

cbna 321

Appendix A Background Material for Combinatorics

Note that if x, y ∈ X and 〈x〉∩〈y〉 6= ∅, then 〈x〉 = 〈y〉. The sets in this partition are called
equivalence classes.

When using the ordered pair notation for binary relations, to indicate that a pair (x, y)
is not in the relation, we simply write (x, y) /∈ R. When using the alternate notation, this
is usually denoted by using the negation symbol from logic and writing ¬(xRy). Many
of the special symbols used to denote equivalence relations comewith negative versions:
x 6= y, x � y, x � y, etc.

A.14 The Integers as Equivalence Classes of Ordered Pairs

Define a binary relation ∼= on the set Z = N0 × N0 by

(a, b) ∼= (c, d) iff a+ d = b+ c.

Lemma A.36. ∼= is reflexive.

Proof. Let (a, b) ∈ Z. Then a+ b = b+ a, so (a, b) ∼= (b, a).

Lemma A.37. ∼= is symmetric.

Proof. Let (a, b), (c, d) ∈ Z and suppose that (a, b) ∼= (c, d). Then a + d = b + c, so that
c+ b = d+ a. Thus (c, d) ∼= (a, b).

Lemma A.38. ∼= is transitive.

Proof. Let (a, b), (c, d), (e, f) ∈ Z. Suppose that

(a, b) ∼= (c, d) and (c, d) ∼= (e, f).

Then a+ d = b+ c and c+ f = d+ e. Therefore,

(a+ d) + (c+ f) = (b+ c) + (d+ e).

It follows that
(a+ f) + (c+ d) = (b+ e) + (c+ d).

Thus a+ f = b+ e so that (a, b) ∼= (e, f).

Now that we know that ∼= is an equivalence relation on Z, we know that ∼= partitions
Z into equivalence classes. For an element (a, b) ∈ Z, we denote the equivalence class of
(a, b) by 〈(a, b)〉.
Let Z denote the set of all equivalence classes of Z determined by the equivalence

relation ∼=. The elements of Z are called integers.

322 cbna

A.15 Properties of the Integers

A.15 Properties of the Integers

For the remainder of this chapter, most statements will be givenwithout proof. Students
are encouraged to fill in the details.
We define a binary operation + on Z by the following rule:

〈(a, b)〉+ 〈(c, d)〉 = 〈(a+ c, b+ d)〉.

Note that the definition of addition is made in terms of representatives of the class,
so we must pause to make sure that + is well defined, i.e., independent of the particular
representatives.

LemmaA.39. If 〈(a, b)〉 = 〈(c, d)〉 and 〈(e, f)〉 = 〈(g, h)〉, then 〈(a, b)〉+〈(e, f)〉 = 〈(c, d)〉+
〈(g, h)〉.

Proof. Since (a, b) ∼= (c, d), we know a + d = b + c. Since (e, f) ∼= (g, h), we know
e+h = f + g. It follows that (a+d) + (e+h) = (b+ c) + (f + g). Thus (a+ e) + (d+h) =
(b+ f) + (c+ g), which implies that 〈(a, b)〉+ 〈(e, f)〉 = 〈(c, d)〉+ 〈(g, h)〉.

In what follows, we use a single symbol, like x, y or z to denote an integer, but remem-
ber that each integer is in fact an entire equivalence class whose elements are ordered
pairs of natural numbers.

Theorem A.40. For all x, y, z ∈ Z,

1. x+ y = y + x;

2. x+ (y + z) = (x+ y) + z; and

3. x+ y = x+ z implies y = z.

Next, we define a second binary operation called multiplication, and denoted x × y,
x ∗ y or just xy. When x = 〈(a, b)〉 and y = 〈(c, d)〉, we define:

xy = 〈(a, b)〉〈(c, d)〉 = 〈(ac+ bd, ad+ bc)〉.

Theorem A.41. Multiplication is well defined. Furthermore,

1. xy = yx, for every x, y ∈ Z.

2. x(yz) = (xy)z, for every x, y, z ∈ Z.

3. x(y + z) = xy + xz, for every x, y, z ∈ Z.

cbna 323

Appendix A Background Material for Combinatorics

The integer 〈(0, 0)〉 has a number of special properties. Note that for all x ∈ Z, x +
〈(0, 0)〉 = x and x〈(0, 0)〉 = 〈(0, 0)〉. So most folks call 〈(0, 0)〉 zero and denote it by 0.
This is a terrible abuse of notation, since we have already used the word zero and the
symbol 0 to denote a particular natural number.
But mathematicians, computer scientists and even real people do this all the time.

We use the same word and even the same phrase in many different settings expecting
that the listener will make the correct interpretation. For example, how many different
meanings do you know for You’re so bad?

If x = 〈(a, b)〉 is an integer and y = 〈(b, a)〉, then x + y = 〈(a + b, a + b)〉 = 0. The
integer y is then called the additive inverse of x and is denoted −x. The additive inverse
of x is also called minus x. The basic property is that x+ (−x) = 0, for every x ∈ Z.

We can now define a new binary operation, called subtraction and denoted −, on Z by
setting x− y = x+ (−y). In general, subtraction is neither commutative nor associative.
However, we do have the following basic properties.

Theorem A.42. For all x, y, z ∈ Z,

1. x(−y) = −xy;

2. x(y − z) = xy − xz; and

3. −(x− y) = y − x.

Next, we define a total order on Z by setting x ≤ y in Z when x = 〈(a, b)〉, y = 〈(c, d)〉
and a+ d ≤ b+ c in N0.

TheoremA.43 (Monotonic Law for Addition). Let x, y, z ∈ Z. If x ≤ y, then x+z ≤ y+z.
Furthermore, if x < y, then x+ z < y + z.

For multiplication, the situation is more complicated.

Theorem A.44 (Monotonic Law for Multiplication). Let x, y, z ∈ Z. If x < y, then

1. xz < yz, if z > 0,

2. xz = yz = 0, if z = 0, and

3. xz > yz, if z < 0.

Now consider the function f : N0 −→ Z defined by f(n) = 〈(n, 0)〉. It is easy to
show that f is an injection. Furthermore, it respects addition and multiplication, i.e.,
f(n + m) = f(n) + f(m) and f(nm) = f(n)f(m). Also, note that if x ∈ Z, then x > 0
if and only if x = f(n) for some n ∈ N0. So, it is customary to abuse notation slightly
and say that N0 is a “subset” of Z. Similarly, we can either consider the set N of positive
integers as the set of natural numbers that are successors, or as the set of integers that
are greater than 0.

When n is a positive integer and 0 is the zero in Z, we define 0n = 0. When x ∈ Z,
x 6= 0 and n ∈ N0, we define xn inductively by (i) x0 = 1 and xk+1 = xxk.

324 cbna

A.16 Obtaining the Rationals from the Integers

Theorem A.45. If x ∈ Z, x 6= 0, andm,n ∈ N0, then xmxn = xm+m and (xm)n = xmn.

A.16 Obtaining the Rationals from the Integers

We consider the setQ of all ordered pairs inZ×Z of the form (x, y) with y 6= 0. Elements
of Q are called rational numbers, or fractions. Define an equivalence relation, denoted =,
on Z by setting (x, y) = (z, w) if and only if xw = yz. Here we should point out that
the symbol = can be used (and often is) to denote an equivalence relation. It is not
constrained to mean “identically the same.”
When q = (x, y) is a fraction, x is called the numerator and y is called the denominator

of q. Remember that the denominator of a fraction is never zero.
Addition of fractions is defined by

(a, b) + (c, d) = (ad+ bc, bd)

while multiplication is defined by

(a, b)(c, d) = (ac, bd).

As was the case with integers, it is important to pause and prove that both operations
are well defined.

Theorem A.46. Let x, y, z, w ∈ Q. If x = y and z = w, then x+ z = y + w and xz = yw.

Addition and multiplication are both associative and commutative. Also, we have the
distributive property.

Theorem A.47. Let x, y, z ∈ Q. Then

1. x+ y = y + x and xy = yx.

2. x+ (y + z) = (x+ y) + z and x(yz) = (xy)z.

3. x(y + z) = xy + xz.

The additive inverse of a fraction (a, b) is just (−a, b). Using this, we define subtraction
for fractions: (a, b)− (c, d) = (a, b) + (−c, d).
When (a, b) is a fraction, and a 6= 0, the fraction (b, a) is the reciprocal of (a, b). The

reciprocal is also called the multiplicative inverse, and the reciprocal of x is denoted x−1.
When y 6= 0, we can then define division by setting x/y = xy−1, i.e., (a, b)/(c, d) =
(ad, bc). Of course, division by zero is not defined, a fact that you probably already
knew!
As was the case for both N0 and Z, when n is a positive integer, and 0 is the zero in

Q, we define 0n = 0. When x = (a, b) is a fraction with x 6= 0 and n is a non-negative
integer, we define xn inductively by (i) x0 = 1 and (ii) xn+1 = xxn.

cbna 325

Appendix A Background Material for Combinatorics

Theorem A.48. If x ∈ Q, x 6= 0, andm,n ∈ Z, then xmxn = xm+m and (xm)n = xmn.

Many folks prefer an alternate notation for fractions in which the numerator is written
directly over the denominator with a horizontal line between them, so (2, 5) can also be
written as 2

5 .
Via the map g(x) = (x, 1) = x

1 , we again say that the integers are a “subset” of the
rationals. As before, note that g(x + y) = g(x) + g(y), g(x − y) = g(x) − g(y) and
g(xy) = g(x)g(y).
In the third grade, you were probably told that 5 = 5

1 , but by now you are realizing
that this is not exactly true. Similarly, if you had told your teacher that 3

4 and 6
8 weren’t

really the same and were only “equal” in the broader sense of an equivalence relation
defined on a subset of the cartesian product of the integers, you probably would have
been sent to the Principal’s office.
Try to imagine the trouble you would have gotten into had you insisted that the real

meaning of 1
2 was

1

2
= 〈(〈(s(s(0)), s(0))〉, 〈(s(s(0)), 0)〉)〉

We can also define a total order onQ. To do this, we assume that (a, b), (c, d) ∈ Q have
b, d > 0. (If b < 0, for example, we would replace it by (a′, b′) = (−a,−b), which is in the
same equivalence class as (a, b) and has b′ > 0.) Then we set (a, b) ≤ (c, d) inQ if ad ≤ bc
in Z.

A.16.1 Integer Exponents

When n is a positive integer and 0 is the zero inQ, we define 0n = 0. When x ∈ Q, x 6= 0
and n ∈ N0, we define xn inductively by (i) x0 = 1 and xk+1 = xxk. When n ∈ Z and
n < 0, we set xn = 1/x−n.

Theorem A.49. If x ∈ Q, x 6= 0, andm,n ∈ Z, then xmxn = xm+m and (xm)n = xmn.

A.17 Obtaining the Reals from the Rationals

A full discussion of this would take us far away from a discrete math class, but let’s at
least provide the basic definitions. A subset S ⊂ Q of the rationals is called a cut (also, a
Dedekind cut), if it satisfies the following properties:

1. ∅ 6= S 6= Q, i.e, S is a proper non-empty subset of Q.

2. x ∈ S and y < x in Q implies y ∈ S, for all x, y ∈ Q.

3. For every x ∈ S, there exists y ∈ S with x < y, i.e., S has no greatest element.

326 cbna

A.18 Obtaining the Complex Numbers from the Reals

Cuts are also called real numbers, so a real number is a particular kind of set of rational
numbers. For every rational number q, the set q̄ = {p ∈ Q : p < q} is a cut. Such cuts
are called rational cuts. Inside the reals, the rational cuts behave just like the rational
numbers and via the map h(q) = q̄, we abuse notation again (we are getting used to this)
and say that the rational numbers are a subset of the real numbers.
But there are cuts which are not rational. Here is one: {p ∈ Q : p ≤ 0} ∪ {p ∈ Q : p2 <

2}. The fact that this cut is not rational depends on the familiar proof that there is no
rational q for which q2 = 2.
The operation of addition on cuts is defined in the natural way. If S and T are cuts, set

S + T = {s+ t : s ∈ S, t ∈ T}. Order on cuts is defined in terms of inclusion, i.e., S < T
if and only if S (T . A cut is positive if it is greater than 0̄. When S and T are positive
cuts, the product ST is defined by

ST = 0̄ ∪ {st : s ∈ S, t ∈ T, s ≥ 0, t ≥ 0}.

One can easily show that there is a real number r so that r2 = 2̄. Youmay be surprised,
but perhaps not, to learn that this real number is denoted

√
2.

There are many other wonders to this story, but enough for one day.

A.18 Obtaining the Complex Numbers from the Reals

By now, the following discussion should be transparent. The complex number system
C is just the cartesian product R× Rwith

1. (a, b) = (c, d) in C if and only if a = c and b = d in R.

2. (a, b) + (c, d) = (a+ c, b+ d).

3. (a, b)(c, d) = (ac− bd, ad+ bc).

Now the complex numbers of the form (a, 0) behave just like real numbers, so is natural
to say that the complex number system contains the real number system. Also, note that
(0, 1)2 = (0, 1)(0, 1) = (−1, 0), i.e., the complex number (0, 1) has the property that its
square is the complex number behaving like the real number −1. So it is convenient to
use a special symbol like i for this very special complex number and note that i2 = −1.
With this beginning, it is straightforward to develop all the familiar properties of the

complex number system.

A.18.1 Decimal Representation of Real Numbers

Every real number has a decimal expansion—although the number of digits after the
decimal point may be infinite. A rational number q = m/m from Q has an expansion in

cbna 327

Appendix A Background Material for Combinatorics

which a certain block of digits repeats indefinitely. For example,

2859

35
= 81.6857142857142857142857142857142857142857142 . . .

In this case, the block 857142 of size 6 is repeated forever.
Certain rational numbers have terminating decimal expansions. For example 385/8 =

48.125. If we chose to do so, we could write this instead as an infinite decimal by ap-
pending trailing 0’s, as a repeating block of size 1:

385

8
= 48.1250000000000000000000000000000000 . . .

On the other hand, we can also write the decimal expansion of 385/8 as:

385

8
= 48.12499999999999999999999999999999999 . . .

Here, we intend that the digit 9, a block of size 1, be repeated forever. Apart from this
anomaly, the decimal expansion of real numbers is unique.
On the other hand, irrational numbers have non-repeatingdecimal expansions inwhich

there is no block of repeating digits that repeats forever.
You all know that

√
2 is irrational. Here is the first part of its decimal expansion:

√
2 = 1.41421356237309504880168872420969807856967187537694807317667973 . . .

An irrational number is said to be algebraic if it is the root of polynomial with integer
coeffcients; else it is said to be transcendental. For example,

√
2 is algebraic since it is the

root of the polynomial x2 − 2.
Two other famous examples of irrational numbers are π and e. Here are their decimal

expansions:

π = 3.14159265358979323846264338327950288419716939937510582097494459 . . .

and

e = 2.7182818284590452353602874713526624977572470936999595749669676277 . . .

Both π and e are transcendental.
Example A.50. Amanda and Bilal, both students at a nearby university, have been study-
ing rational numbers that have large blocks of repeating digits in their decimal expan-
sions. Amanda reports that she has found two positive integers m and n with n < 500
for which the decimal expansion of the rational number m/n has a block of 1961 digits
which repeats indefinitely. Not to be outdone, Bilal brags that he has found such a pair
s and t of positive integers with t < 300 for which the decimal expansion of s/t has a

328 cbna

A.19 The Zermelo-Fraenkel Axioms of Set Theory

block of 7643 digits which repeats indefinitely. Bilal should be (politely) told to do his
arithmetic more carefully, as there is no such pair of positive integers (Why?). On the
other hand, Amanda may in fact be correct—although, if she has done her work with
more attention to detail, she would have reported that the decimal expansion of m/n
has a smaller block of repeating digits (Why?).

Proposition A.51. There is no surjection from N to the set X = {x ∈ R : 0 < x < 1}.

Proof. Let f be a function fromN toX . For each n ∈ N, consider the decimal expanion(s)
of the real number f(n). Then choose a positive integer an so that (1) an ≤ 8, and (2) an
is not the nth digit after the decimal point in any decimal expansion of f(n). Then the
real number xwhose decimal expansion is x = .a1a2a3a4a5 . . . is an element ofX which
is distinct from f(n), for every n ∈ N. This shows that f is not a surjection.

A.19 The Zermelo-Fraenkel Axioms of Set Theory

In the first part of this appendix, we put number systems on a firm foundation, but in
the process, we used an intuitive understanding of sets. Not surprisingly, this approach
is fraught with danger. As was first discovered more than 100 years ago, there are major
conceptual hurdles in formulating consistent systems of axioms for set theory. And it is
very easy to make statements that sound “obvious” but are not.
Here is one very famous example. LetX and Y be sets and consider the following two

statements:

1. There exists an injection f : X → Y .

2. There exists a surjection g : Y → X .

If X and Y are finite sets, these statements are equivalent, and it is perhaps natural to
surmise that the same is true when X and Y are infinite. But that is not the case.

Agood source of additional (free) information on set theory is the collection ofWikipedia
articles. Do a web search and look up the following topics and people:

1. Zermelo Frankel set theory.

2. Axiom of Choice.

3. Peano postulates.

4. Georg Cantor, Augustus De Morgan, George Boole, Bertrand Russell and Kurt
Gödel.

Here is the system of axioms popularly known as ZFC, which is an abbreviation for
Zermelo-Frankel plus the Axiom of Choice. In this system, the notion of set and the

cbna 329

Appendix A Background Material for Combinatorics

membership operator ∈ are undefined. However, if A and B are sets, then exactly one
of the following statements is true: (i) A ∈ B is true; (ii) A ∈ B is false. When A ∈ B is
false, we write A /∈ B. Also, there is an equivalence relation = defined on sets.

Axiomof extensionality: Two sets are equal if and only if they have the same elements.

Axiom of empty set: There is a set ∅with no elements.

Axiom of pairing: If x and y are sets, then there exists a set containing x and y as its
only elements, which we denote by {x, y}. Note: If x = y, then we write only {x}.

Axiom of union: For any set x, there is a set y such that the elements of y are precisely
the elements of the elements of x.

Axiom of infinity: There exists a set x such that ∅ ∈ x and whenever y ∈ x, so is
{y, {y}}.

Axiom of power set Every set has a power set. That is, for any set x, there exists a set
y, such that the elements of y are precisely the subsets of x.

Axiom of regularity: Every non-empty set x contains some element y such that x and
y are disjoint sets.

Axiom of separation (or subset axiom): Given any set and any proposition P (x), there
is a subset of the original set containing precisely those elements x for which P (x) holds.

Axiom of replacement: Given any set and any mapping, formally defined as a propo-
sition P (x, y) where P (x, y1) and P (x, y2) implies y1 = y2, there is a set containing pre-
cisely the images of the original set’s elements.

Axiom of choice: Given any set of mutually exclusive non-empty sets, there exists at
least one set that contains exactly one element in common with each of the non-empty
sets.

330 cbna

	Preface
	Prologue
	An Introduction to Combinatorics
	Introduction
	Enumeration
	Combinatorics and Graph Theory
	Combinatorics and Number Theory
	Combinatorics and Geometry
	Combinatorics and Optimization
	Sudoku Puzzles
	Discussion

	Strings, Sets, and Binomial Coefficients
	Strings: A First Look
	Permutations
	Combinations
	Combinatorial Proofs
	The Ubiquitous Nature of Binomial Coefficients
	The Binomial Theorem
	Multinomial Coefficients
	Discussion
	Exercises

	Induction
	Introduction
	The Positive Integers are Well Ordered
	The Meaning of Statements
	Binomial Coefficients Revisited
	Solving Combinatorial Problems Recursively
	Finding Greatest Common Divisors
	Sorting

	Mathematical Induction
	Inductive Definitions
	Proofs by Induction
	Strong Induction
	Discussion
	Exercises

	Combinatorial Basics
	The Pigeon Hole Principle
	An Introduction to Complexity Theory
	Three Questions
	Certificates
	Operations
	Input Size

	The Big ``Oh'' and Little ``Oh'' Notations
	Exact Versus Approximate
	Approximate and Assymptotic Solutions
	Polynomial Time Algorithms
	P=NP?

	Discussion
	Exercises

	Graph Theory
	Basic Notation and Terminology for Graphs
	Multigraphs: Loops and Multiple Edges
	Eulerian and Hamiltonian Graphs
	Graph Coloring
	Bipartite Graphs
	Cliques and Chromatic Number
	Can We Determine Chromatic Number?

	Planar Graphs
	Counting Labeled Trees
	A Digression into Complexity Theory
	Discussion
	Exercises

	Partially Ordered Sets
	Basic Notation and Terminology
	Additional Concepts for Posets
	Dilworth's Chain Covering Theorem and its Dual
	Proof of Dilworth's Theorem

	Linear Extensions of Partially Ordered Sets
	The Subset Lattice
	Sperner's Theorem

	Interval Orders
	Finding a Representation of an Interval Order
	Dilworth's Theorem for Interval Orders
	Discussion
	Exercises

	Inclusion-Exclusion
	Introduction
	The Inclusion-Exclusion Formula
	Enumerating Surjections
	Derangements
	The Euler Function
	Discussion
	Exercises

	Generating Functions
	Basic Notation and Terminology
	Another look at distributing apples or folders
	Newton's Binomial Theorem
	An Application of the Binomial Theorem
	Partitions of an Integer
	Exponential generating functions
	Discussion
	Exercises

	Recurrence Equations
	Introduction
	Fibonacci numbers
	Recurrences for strings
	Lines and regions in the plane

	Linear Recurrence Equations
	Advancement Operators
	Constant Coefficient Equations
	Roots and Factors
	What's Special About Zero?

	Solving advancement operator equations
	Homogeneous equations
	Nonhomogeneous equations

	Formalizing our approach to recurrence equations
	The Principal Theorem
	The Starting Case
	Repeated Roots
	The General Case

	Using generating functions to solve recurrences
	Solving a nonlinear recurrence
	Discussion
	Exercises

	Probability
	An Introduction to Probability
	Conditional Probability and Independent Events
	Independent Events

	Bernoulli Trials
	Discrete Random Variables
	The Linearity of Expectation
	Implications for Bernoulli Trials

	Central Tendency
	Variance and Standard Deviation

	Probability Spaces with Infinitely Many Outcomes
	Discussion
	Exercises

	Applying Probability to Combinatorics
	The Pigeon Hole Principle Revisited
	A First Taste of Ramsey Theory

	Small Ramsey Numbers
	Estimating Ramsey Numbers
	Applying Probability to Ramsey Theory
	Ramsey's Theorem
	The Probabilistic Method
	Gaining Intuition with the Probabilistic Method

	Discussion
	Exercises

	Graph Algorithms
	Minimum Weight Spanning Trees
	Preliminaries

	Discussion
	Kruskal's Algorithm
	Prim's Algorithm
	Comments on Efficiency

	Digraphs
	Dijkstra's Algorithm for Shortest Paths
	Description of the Algorithm
	Example
	The Correctness of Dijkstra's Algorithm

	Historical Notes
	Exercises

	Network Flows
	Basic Notation and Terminology
	Flows and Cuts
	Augmenting Paths
	Caution on Augmenting Paths

	The Ford-Fulkerson Labeling Algorithm
	A Concrete Example
	How the Labeling Algorithm Halts

	Integer Solutions of Linear Programming Problems
	Exercises

	Combinatorial Applications of Network Flows
	Introduction
	Matchings in Bipartite Graphs
	Chain partitioning
	Exercises

	Pólya's Enumeration Theorem
	Coloring the Vertices of a Square
	Permutation Groups
	Representing permutations
	Multiplying permutations

	Burnside's Lemma
	Pólya's Theorem
	The cycle index
	The full enumeration formula

	Applications of Pólya's Enumeration Formula
	Counting musical scales
	Enumerating isomers
	Counting nonisomorphic graphs

	Exercises

	The Many Faces of Combinatorics
	On-line algorithms
	Doing Relatively Well in an On-Line Setting

	Extremal Set Theory
	Markov Chains
	Absorbing Markov Chains

	Miscellaneous Gems
	The Stable Matching Theorem

	Zero–One Matrices
	The Obvious Necessary Condition

	Arithmetic Combinatorics
	The Lovasz Local Lemma
	Applying the Local Lemma

	Epilogue
	Background Material for Combinatorics
	Introduction
	Intersections and Unions
	The Meaning of 2-Letter Words
	The Empty Set: Much To Do About Nothing
	The First So Many Positive Integers
	Subsets, Proper Subsets and Equal Sets

	Cartesian Products
	Binary Relations and Functions
	Finite Sets
	Notation from Set Theory and Logic
	Formal Development of Number Systems
	Addition as a Binary Operation

	Multiplication as a Binary Operation
	Exponentiation
	Partial Orders and Total Orders
	A Total Order on Natural Numbers
	Notation for Natural Numbers
	Alternate Versions of Induction

	Equivalence Relations
	The Integers as Equivalence Classes of Ordered Pairs
	Properties of the Integers
	Obtaining the Rationals from the Integers
	Integer Exponents

	Obtaining the Reals from the Rationals
	Obtaining the Complex Numbers from the Reals
	Decimal Representation of Real Numbers

	The Zermelo-Fraenkel Axioms of Set Theory

