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GRAPHS AND PARTIALLY ORDERED SETS:
RECENT RESULTS AND NEW DIRECTIONS

WILLIAM T. TROTTER

ABSTRACT. We survey some recent research progress on topics linking graphs and
finite partially ordered sets. Among these topics are planar graphs, hamiltonian
cycles and paths, graph and hypergraph coloring, on-line algorithms, intersection
graphs, inclusion orders, random methods and ramsey theory. In each case, we
discuss open problems and future research directions.

1. INTRODUCTION

In recent years, there has been rapid growth in research activity centered on com-
binatorial problems for partially ordered sets, evidenced in part by the new AMS
subject classification 06A07: Combinatorics of Partially Ordered Sets. In this article,
we explore problems which relate graphs and partially ordered sets, summarizing re-
cent results and indicating directions which look particularly promising for the future.
The selection of topics must necessarily reflect the author’s own perspectives; yet the
goal is to highlight work which will be of wide interest to researchers and students
from both areas.

We consider only finite simple graphs, i.e., graphs without loops or multiple edges.
Also, we consider a partially ordered set (or poset) P = (X, P) as a structure consist-
ing of a set X and a reflexive, antisymmetric and transitive binary relation P on X.
We call X the ground set of the poset P, and we refer to P as a partial order on X.
In the remainder of this article, we will assume that the reader is familiar with the
basic concepts for partially ordered sets, including maximal and minimal elements,
chains and antichains, sums and cartesian products, comparability graphs and Hasse
diagrams.

Although we are concerned primarily with finite posets, i.e., those posets with
finite ground sets, we find it convenient to use the familiar notation R, Q, Z and N to
denote respectively the reals, rationals, integers and positive integers equipped with
the usual orders. Note that these four infinite posets are total orders; in each case,
any two distinct points are comparable. Total orders are also called linear orders, or
chains.

When P = (X, P) is a poset, a linear order L on X is called a linear extension of
Pwhenz <yinLforallz,y € X with z < y in P. A set R of linear extensions of P
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is called a realizer of P when P = MR, ie,forallz,yin X, 2 <yin Pif

‘ R and only i
§.< yin L, for every.L € R. The. minimum cardinality of a realizer of P is calli :ii%i
tmension of P and is denoted dim(P). Dimension for partially ordered scts plays as

role which in many instances is analogous to chromatic number for graphs
analogy will be prominent in this article. i

F?r additional background information on posets, the reader is referred.to the i
thor’s mon7ograph (109], the survey article [55] on dimension by Kelly and Trot l‘<-| ,:n;i
the author_ s survey articles [106] and [111]. The articles [104], [108] and [110] ;; I’m :t'v:k
cuss combinatorial problems for posets. The recent survey article by Brightwolrlll [”“"*&
another excellent source for background material. For other perspectives on ;‘nn«l i ‘H;
ordered sets, the reader is encouraged to consult the volumes edited by I. Rilvl;‘ul |S I {
[82] anfi [83]. Also, the journal Order [84] is an excellent source for research 'u“l i‘{!w:
on a wide range of topics on partially ordered sets. T

, el e

2. THREE EXAMPLES OF POSETS WITH LARGE DiMENSsION

. In tl}js section, we briefly discuss three well known examples of posets with
dimension. These examples will help readers who are new to the subject of part
ordereq sets with concepts discussed in subsequent sections. "

For integers n > 3, k > 0, let Sk denote the height 2 poset with n -+ & mininl
glements 41,42, -+ -, Gnik, N+ k maximal elements biybay ... buyk and a; < b, fin
J=t1+k+1,04+k+2,...,1~1. In this definition, we interpret subscript; CyCI.il;',u‘”v
so that n + 1 =n,n +2 =2, etc. These posets are called crowns, and the followin
formula for their dimension is derived in [98]. , '

larpe
ally

Theorem 2.1. (Trotter) Let n >3 and k > 0 be wntegers. Then

(1) dim(S*) = [Q(kL:Qﬁ]

(N

than k = 0, the crown S (also denoted S,), is called the standard ezample of
an nidxmensmnzﬂ poset. To see that dim(S,) < n, foreachi =1.2.... n takep[: a
any Ilpear extension of‘Sn with a; > b; in L;. It follows easily tha;t {)Ll; )Lz’ .. LJl} 1(
?ié?llger. Czn\‘:::gsely, 1f};tlim(5n) =t and {Ll,{Lz, -+, Li} 1s a realizer, th’en fér Zm‘lu
— D&eeos T, WeInay choose an integer j; € {1,2...,t} so that a; > b; in L;,. Now
:uzpljzse that 1 < ¢ < k < n. Then ar < b; < a; < by in L;, so that Ji ¥ Jk. Thuu
The standard examples play a prominent role in many characterization problem
for posets (see [5], [6], [98], [99] and [102], for example). Loosely speaking stand;u'(ll
examples play somewhat the same role in dimension theory for posets that’ the com
plete graphs play for graphs when discussing chromatic number. The presence of :
large standard example as a subposet is enough to force ‘ , s
but a poset may have large dimension without containin,
as a subposet.

. {N]OL; that S, is isomorphic to the set of I-element and
of {1,

the dimension to be large,
g a large standard example

: ‘ (n — 1)-element subsets
,---,n} ordered by inclusion. More generally, for integers k, r and n, with
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1 <k<r<n-—1,let P(k,r;n) denote the poset consisting of all k-element and -
element subsets of {1,2,...,n } ordered by inclusion. Also, let dim(k,r;n) denote the
dimension of P(k, ;7). So S, is isomorphic to P(1,n—1;n) and dim(1,n~1;n) = n.

Our second example of a family of posets of large dimension is {P(1,2;n) : » > 3}.
To see that lim,_ dim(1,2;n) = oo, suppose to the contrary that there exists a
positive integer t so that dim(1,2;n) < t, for every n > 3. We obtain a contradiction
when n is sufficiently large. Let R = {Ly, Ly, ..., L¢} be a realizer of P(1,2;n). For
each 3-element subset {i,7,k} C {1,2,...,n} with 1 <4 < j < k < n, note that
{i}I{s, k}, so we may choose an integer o € {1,2,...,t} so that {j} > {¢,k} in La.
Then we have a coloring of the 3-element subsets of {1,2,...,n} with ¢ colors. If n
is sufficiently large, then (by Ramsey’s theorem) there exists a 4-element subset S =
{i<j<k<l}C{1,2,...,n} and an integer « € {1,2,...,t} so that all 3-element
subsets of S are mapped to a. This means that {;} > {i,k} > {k} > {j,{} > {j} in
L, which is a contradiction.

Note that each of the first two examples is a height 2 poset. So posets of bounded
height can have arbitrarily large dimension. Our third example is quite different.
In this family, large height is required for large dimension. For each n > 3, let
I(n) = (I,., P,) denote the poset defined by setting I, to be the family of all 2-element
subsets of {1,2,...,n} with {i,5} < {k,{} in P, when 1 <i<j <k <l<n. We
next show that lim,—yeo dim(l,,, P,) = co. The argument is similar to the one used
for the second example. Suppose to the contrary that dim(I,, P,) < t, for all n > 3.
We obtain a contradiction when n is large.

Let 4, j, and k be distinct integers with 1 < ¢ < j < k < n. Then {i,5}||{j, k} in
P,,soif R = {Ly1, Ly, ..., L} is a realizer of P,, then we may choose a € {1,2,..., t}
so that {i,7} > {j,k} in La. As before this is a coloring of the 3-element subsets of
{1,2,...,n} with ¢ colors. If n is sufficiently large, there exists a 4-element subset
s={i <j <k <[} and an integer @ € {1,2,...,¢} so that all 3-element subsets of
S are mapped to o. This implies that {i,j} > {7,k} > {k,{} > {i,j} in Lo, which is
a contradiction. '

Posets in the family {I, : n > 3} are called canonical interval orders, and we
will discuss the general class of interval orders in further detail in Section 4. Also,
in Section 10, we will discuss some surprisingly accurate estimates on the dimension
of the posets in the second and third examples. For now, we are content with the
knowledge that posets in these families may have large dimension.

3. PLANAR GRAPHS AND POSET DIMENSION

Perhaps the single most striking result relating graphs to posets in the past 10 years
is W. Schnyder’s characterization [91] of planar graphs in terms of poset dimension.
With a graph G = (V, E), we associate an incidence poset P = (X, P) with X =
VUE. The height of P is two, with all elements of V being minimal and all elements
of E being maximal. Furthermore, = < e in P if and only if vertex z is an endpoint
of edge ¢, for all z € X and all e € E. The incidence poset of a graph G is also called
the vertez-edge poset of G. For example, the poset P(1,2;n) defined in Section 2 is
just the incidence poset of the complete graph K, on n vertices.

With this background, here is Schnyder’s theorem.
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Theorem 3.1. (Schnyder) A graph G is planar if and only if the dimension of ils
incidence poset is at most 3. (]

Yannakakis [115] showed that testing dim(P) < ¢ is NP-complete, for every fixc
t > 3. Curiously, Schnyder’s theorem then seems at first glance to equate a problem
(planarity testing) for which there exist linear time agorithms with an NP-complete
problem. The rub is that we are testing dimension in a very special class ‘of posels,
namely height two posets in which each maximal element is comparable with exacily
two minimal elements.

Moreover, Schnyder’s theorem has a beautiful proof and requires a number of
interesting lemmas which are of independent interest. Interestingly, the easy part of
the theorem is to show that if the dimension of the incidence poset of a graph is al
most 3, then the graph is planar. In fact, this part of Schnyder’s theorem appears in
a earlier paper [4] by Babai and Duffus. The challenging part of Schnyder’s theorem
is to prove that the incidence poset of a planar graph has dimension at most 3.

Given a planar graph G and a plane drawing D of G without edge crossings, il,
is natural to consider the poset of vertices, edges and faces determined by D. Here
we intend that an edge e is less than a face F' if and only if e is one of the edges
which form the boundary of F. We call this poset, the vertez-edge-face poset of D).

Brightwell and Trotter [16] then prove the following upper bound on the dimension
of this poset.

Theorem 3.2. (Brightwell and Trotter) Let D be a plane drawing of a planar graph
G = (V,E), and let P be the vertez-edge-face poset of D. Then dim(P) < 4. (]

Although we are limiting our attention to simple graphs in this article, the pre-
ceding theorem also applies to planar multi-graphs—with loops and multiple edges
allowed. The proof of the preceding theorem is inductive and the following theorem
of Brightwell and Trotter [14] is required as the base step. Of course, this theorem
was proved before Theorem 3.2.

Theorem 3.3. (Brightwell and Trotter) Let D be a drawing of a 3-connected planar
graph G, and let P “be the vertez-edge-face poset of D. Then dim(P) = 4. Further-
more, deleting any vertez or any face from P leaves a 3-dimensional subposet. 0

This second theorem includes the difficult part of Schnyder’s theorem as a special
case. To see this, observe that it is enough to prove that if G is a maximal planar
graph, then its vertex-edge poset has dimension at most 3. By inspection, this is
true if G has at most 3 vertices." However, if G has 4 or more vertices, then it is
3-connected, and in this case, we conclude that its vertex-edge-face poset has dimen-
sion 4. However, the removal of a single face from this poset leaves a 3-dimensional
subposet. In particular, the vertex-edge poset of G has dimension at most 3.

Recall that Steinitz’ theorem [96] characterizes graphs which arise from convex
polytopes in R3. These are exactly the 3-connected planar graphs. So Theorem 3.3
can be reformulated in terms of convex polytopes.

Theorem 3.4. (Brightwell and Trotter) Let M be a convex polytope in R3, and let
P be the vertez-edge-face poset of M. Then dim(P) = 4. Furthermore, deleting any
verter or any face from P leaves a 3-dimensional subposet. O
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A poset P = (X, P) is called t-irreducible if dim(X, P) = ¢, and removing any
element from X leaves a ¢ — 1-dimensional subposet. Theorem 3.4 then provides
an unexpected strategy for constructing 4-irreducible height two posets. Just take a
convex polytope M in R® and consider the poset Q of formed by the vertices and
faces of M ordered by inclusion.

There are several interesting open problems emerging from this work.

Problem 3.5. Let n be a positive integer and let G = (V, E) be a graph of genus n.
Then let D be an embedding of G on a sphere with n handles, and let P = (X, P) be
the set of all vertices, edges and faces of D ordered by inclusion. Find the mazimum
value d(n) of the dimension of P. a

Problem 3.6. Let k and n be fized positive integers. Is it NP-complete to answer
whether dim(P) < k if P is a height 2 poset with every mazimal element comparable
to at most n minimal elements? O

Problem 3.7. Yannakakis’ NP-completeness argument for dimension shows that test-
ing dim(P) <t is NP-complete, for every fized t > 4 even when P is re.stricted to be
a height 2 poset. Is it NP-complete to test dim(P) < 3, when P has height 2% 0

Finally, although I am not ready to formulate it as a precise conjecture, it seems
clear that there should be some way to extend Schnyder’s theorem to higher dimen-
sions. It is not just in terms of convex polytopes. As pointed out in [14], for every
k > 3, there is a convex polytope in R* containing a set S of k vertices each pair
of which is an edge of the polytope. For this reason there is no upper bound on the
dimension of incidence posets of polytopes in R?, for any d > 4. N

Nevertheless; there is an appropriate generalization of Schnyder’s theorem waiting
to be found. '

4. CHROMATIC NUMBER AND HAMILTONIAN PATHS

In 1959, P. Erdds [25] used probabilistic methods to show that for every pair g,
r of positive integers, there exists a graph G with the girth (?f G at lezx:st 9 and
x(G) > r. An elegant constructive proof of this result was p.rov1decl by Nesetfil and
Rédl [76], while polished probabilistic proofs have been provided by several authors.
For example, see the arguments presented in [3] and [7].

But if we just want triangle-free graphs with large chromatic number, there are
many easy constructions. Here is one such. YFor an integer n > 3, let G, de‘note‘t}}e
graph whose vertex set consists of all 2-element subsets of {.].,2, ..o,nlt, w1th.{z, 7t
adjacent to {j,k} in G, whenever 1 <7 < j < k <n. This trlanglejfree graph is also
known as the shift graph, and the formula for its chromatic number is a folklore result
of graph theory: x(G.) = [lgn]. Amusingly, several researchers in graph ‘th.eory have
told me that this result is due to Andras Hajnal, but Andras says that it is not. In
any case, it is an easy exercise. ' .

Because the topic will be addressed in several sections in this article, we pause
to introduce a natural generalization of a shift graph. Fix integers n and k with
0 <k <n-—1 Wecall an ordered pair (A, B) of (k + 1)-element sets a (k,n)-shift
paz_'r if there exists a (k+2)-element subset C' = {i; <1y < --- < tp42} € {1,2,...,n}
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sothat A = {i},75,...,454;} and B = {i2,%3,...,%k42}. We then define the (k,n)-shift
graph S(k,n) as the graph whose vertex set consists of all (k4 1)-element subsets of
{1,2,...,n} with a (k+1)-element set A adjacent to a (k+ 1)-element set B exactly
when (A, B) is a (k,n)-shift pair. Note that the (0,m)-shift graph is just a complete
graph on n vertices. For historical reasons, it is customary to call a (1,n)-shift graph
just a shift graph; similarly, a (2, n)-shift graph is called a double shift graph.

If P = (X, P) is a poset, a subset D C X is called a down set, or an order ideal, if
z<yin P and y € D always imply that z € P. The following result appears in [41]
but may have been known to other researchers in the area.

Theorem 4.1. Let n > 4. Then the chromatic number of the double shift graph
S(2,n) is the least t so that there are at least n down sets in the Boolean lattice
2. a

As is well known, the problem of counting the number of down sets in the Boolean
lattice 2* is a classic problem and is traditionally called Dedekind’s problem. Although
no closed form expression is known, relatively tight asymptotic formulas have been
given. For our purposes, the estimate provided by Kleitman and Markovsky [69]
suffices. Theorem 4.1, coupled with the estimates from [69] permit the following

surptisingly accurate estimate on the chromatic number x(8(2,n)) of the double shift
graph [41].

(2) x(8(2,n)) =lglgn + (1/2 + o(1)) lglglgn.

In Section 2, we gave two examples of families of posets with large dimension, but
now that we have introduced the double shift graph, the following observation can be
made [41].

Pi‘oposition 4.2. For eachn >3,
dim(1,2;7) > x(S(2,n)), and dim(L,) > x{(8(2,n)).
O

In [41], Fiiredi, Hajnal, R6dl and Trotter show that the same asymptotic formula
holds for dim(1,2;n) and for dim(I,,) as does for x(S(2,n)).

Theorem 4.3. ;
(3) dim(1,2;n) = lglgn + (1/2 + o(1))Iglglgn , and
(4) dim(L,) = lglgn + (1/2 + o(1)) Iglglg n.

O

:Ve will comment more about the estimates in the preceding theorem in Sections 9
and 10.

For k& > 1, there is an interesting interpretation of the chromatic number of the
(k,n)-shift graph, although it does not yet seem to yield a clean asymptotic formula.
For a positive integer ¢, let [t] denote a t-element antichain. Then for for each k& > 0,
we define an operator D* as follows. For a poset P, D°(P) = P, and for k Z_ 0,
D*1(P) = 2°"(®) Then Felsner [28] showed that:
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Theorem 4.4. For each integer k > 1, the chromatic number x(S(k,n)) of the (k, n)—
shift graph is the least t > 1 for which there are n antichains in D*~1([t]). [

It is relatively easy to see that for each k > 1, there exist positive constants ¢ and
¢ so that )
3

(5) cxlog®n < x(S(k,n)) < clog®n, foralln>k+1.

Quite likely, for each k > 3, there exists a positive constant ¢} so that
(k)

6 lim " _

(6) ;

n=eo x(G(k,n))
A graph is called a cover graph if it can be oriented so as to form the Hasse diagram of
a poset. The problem of determining whether a graph is a cover graph is now known
to be NP-complete, but this recognition problem has an interesting history. It is a
subtle affair, and the original NP-completeness proof of Nesetfil and Rédl was flawed.
Jens Thostrup spotted the problem, which was corrected by Nesetiil and Rédl in [77];
meanwhile, Brightwell [9] gave an elegant argument for this result.

In another direction, Pretzel and Youngs [79] developed methods for generating
graphs which are not cover graphs in terms of flow differences for orientations. Ad-
ditional details on this concept are given in Pretzel’s survey article [80], and a brief
summary appears in [10].

A cover graph is always a triangle-free graph, so we may ask whether there are
cover graphs with large chromatic number. However, this question is trivial to answer,
as the graphs constructed by Nesetiil and Rodl in [76] are cover graphs. Moreover, as
pointed out in [76], the cover graph G of a poset P of height h has chromatic number
at most A, and this bound is best possible, for all A > 1.

On the other hand, shift graphs are cover graphs of a special kind of poset known
as an interval order. A poset P = (X, P) is called an énterval order if there is a
function £ assigning to each element = € X a connected subset F(z) of the real line
R so that forall z, y € X, 2 < yin P if and only if u < v in R, for every u € F(z) and
v € F(y). The fact that the posets in the family {I, = (I,,, P,) : n > 3} introduced in
Section 2 are interval orders is evidenced by the obvious assignment: F({z,5}) = [, j].

Fishburn [32] showed that a finite poset P = (X, Y') is an interval order if and only
if X does not contain a 4-element subset {z,y,z,w}sothat ¢ <y, z < w, z £ w and
z £ y. In other words, a poset is an interval order if and only if it does not contain
two 2-element chains with both points in one chain incomparable with both points
in the other. This forbidden subposet which characterizes interval orders is denoted
2+2. The concepts of interval graphs and interval orders are quite natural, and there
has been an enormous amount of research on them. We refer the reader to Fishburn’s
monograph [33] for a sampling of this research and for an extensive bibliography of
work in this area. Another source of information on interval graphs, interval orders
and their generalizations is the author’s survey article [107].

In [31], Felsner and Trotter investigated the following extremal problem: What
is the maximum chromatic number f(n) of the cover graph of an interval order of
height n. The shift graph shows that {lgn] < f(r), and this lower bound is improved
in'[31] to {1 +1gn] < f(n). From above, the trivial bound f(n) < nis far from best
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possible, and it is shown in [31] that f(r) < [2 + lgn]. Tt is still not known which
of the two bounds is the right answer. However, the research to produce the upper
bound led quite naturally to a new problem which is perhaps more interesting than
the original one. The new problem can be formulated as an extremal problem for
families of subsets. Call a sequence Sy, Ss,...,S; of sets an a—sequence if:

1. 5, € 5 and

2. Forall¢, gwithl1 <i<j—1<t, 8¢5 USi,.

Problem 4.5. (Felsner and Trotter) Given a positive integer n, determine the largest
integer ¢ = afn) for which there exzists an a-sequence Si,Sy,...,5; of subsets of
{1,2,...,n}. [l

For example, o(3) = 6, and this is witnessed by the family {0, {1}, {2}, {3},{1,3},
{1,2,3}}. Felsner and Trotter [31] show that
(M 27 <afn) < 2 4 ()
and they conjecture that the upper bound in this inequality is tight. If this conjecture
is valid, then the corresponding a-sequence must satisfy a number of special proper-
ties, and these properties in turn lead to an tantalizing hamiltonian path problem for
cubes. When first posed, I thought this problem would be relatively easy, but it now
seems that this initial assessment was premature.

Let n be a positive integer. Call a listing Ay, Ag, ..., Agn of all the subsets of
{1,2,...,n} an order preserving hamiltonian path in the n-cube if:

1. A1 = @,

2. For all ¢ with 1 <4 < 2", JA;AA;4| = 1; and

3. Forall ¢, j with 1 <¢<j<2" if A; C A;, then j =i+ 1.

Problem 4.6. (Felsner and Trotter) Does the n-cube always admit an order preserv-
ing hamiltonian path? |

Strictly speaking, the “order preserving” condition in this problem means to the
extent possible, i.e., before visiting a particular set, all subsets—with at most one
exception—must first be visited. And if there is an exception, then this set must be
visited next. For example, when n = 3 the sequence

(®) 0,{1}.{1,2},{2},{2,3}, {3}, {1,2,3},{1,3}
is an order preserving hamiltonian path in the 3-cube.

Up to relabeling the elements in the ground set, there is a unique order preserving
hamiltonian path in the n-cube, when n < 4. There are 10 order preserving hamil-
tonian paths in the 5-cube and 123 in the 6-cube. For n = 7 and n = &, there is al
least one such path.

Efforts to resolve this conjecture have produced significant results on one of the
oldest problems linking graphs and posets, determining whether there is a hamiltonian
cycle between the middle two levels of a Boolean lattice 22¢+1,

Problem 4.7. (The middle two levels problem) Let k be a positive inleger and let
n =2k +1. Then let G, denote the cover graph of the poset formed by all k-element
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and k + 1-element subsets of {1,2,...,n} ordered by inclusion. Does G, have a
hamiltonian cycle? O

The origins of this problem are somewhat unclear, but it was first communicated
to me by 1. Havel [50].

Research on the middle two levels problem has been concentrated in two directions.
First, researchers have produced families of perfect matchings in the bipartite graph
G, in the hopes that two of these matchings could be combined to form a hamiltonian
cycle (see [22], [65] and [19], for example). A second approach has been to attempt
to prove the existence of “long” cycles in G,. In {31}, Felsner and Trotter use their
results on a-sequences to show that G, contains a cycle passing through more than
N/4 vertices, where N denotes the total number of vertices of G,. Subsequently,
Savage and Winkler [86] have extended this by showing that G, contains cycles with
more than 8N/10 vertices. Unfortunately, this approach does not seem capable of
settling the middle two levels problem, but with some additional work, it may yield
an argument which shows that G, contains cycles with (1 — o(1))N vertices.

5. GRAPH COLORING AND TREES

Now we know that a graph need not contain a large complete subgraph in order
to have large chromatic number, but it is still tempting to try to say something
about what must be contained in graphs of large chromatic number. Here are two
elementary results of this flavor; note the role played by “induced” in the statements
of these results. The first result is a trivial consequence of Ramsey’s theorem. The
second takes a little argument and is credited to L. Lovidsz.

Proposition 5.1. For every pair of positive integers k and d, there exists an integer
r = r(k,d) so that if G is any graph with x(G) > r, then either G contains a complete
subgraph on k vertices or G contains an induced star Sq with d endpoints. (]

Proposition 5.2. For every pair of positive integers k and n, there exists an integer
v = r'(k,n) so that if G is any graph with x(G) > 1/, then either G contains a
complete subgraph on k vertices or G contains an induced path P, on n vertices. [

A. Gyérfas [44] and D. P. Sumner [97] made the following beautiful conjecture,
which has resisted all attempts to resolve it for more than 15 years.

Conjecture 5.3. (Gyarfds and Sumner) For every positive integer k and every tree
T, there exists an integer r = r(k,T) so that if G is any graph with x(G) > r, then
either G contains a complete subgraph on k vertices or G contains an induced copy

of T. O

The conjecture is trivially true when & = 1 and k£ = 2, but for k¥ > 3, progress
has been painstakingly slow. Gyéarfas, Szemerédi and Tuza [47] proved the existence
of 7(3,T) when T is a radius 2 tree. Kierstead and Penrice [61] extended this result
by proving the existence of r(k,T), for all k£ > 3, when T is a radius 2 tree. Quite
recently, A. Scott [93] has proven a topological version of the conjecture:

Theorem 5.4. (Scott) For every tree T, there ezist a positive integer t = t(T) so
that for every positive integer k, there exists an integer r = r(k,T) so that if G is
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any graph with x{G) > r, then either G contains o complete subgraph on k vertices
or G contains an induced subgraph T’ which is a homeomorph of T with each edge
subdivided at most t times. |

Scott’s theorem settles the Gyérfis/Sumner conjecture for certain trees with radius
larger than 2. For example, the conjecture holds for arbitrary subdivisions of a star.
However, the general conjecture remains open—even for radius 3 trees.

Recently, N. Sauer [85] has advanced a particularly attractive conjecture, which is
weaker than the Gyarfds/Sumner conjecture. To state Sauer’s conjecture requires the
following definition. A class G of graphs is vertez-ramsey if for every graph G € G,
there exists a graph ¥ € G so that whenever the vertices of H are 2-colored, there
exists a monochromatic induced subgraph which is isomorphic to G.

Conjecture 5.5. (Sauer) For each integer k > 2 and each tree T, the class of graphs
which exclude T and a complete graph on k vertices as induced subgraphs is not vertex
ramsey. Cl

1t takes just a little thought to be convinced that if the Gyéarfas /Sumner conjecture
holds, then so does the Sauer conjecture. In [58], Kierstead proves Sauer’s conjecture
for a class of trees obtained by attaching additional leaves to subdivisions of stars.
In [67], Kierstead and Zhu prove Sauer’s conjecture for a very special class of radius 3
trees. These results are quite technical, and I am tempted to speculate that the
Gydrfds/Sumner conjecture is false. If that turns out to be the case, I do hope that
the Sauer conjecture is still true.

Now we may ask: Is there an analogue of the Gyérfds/Sumner conjecture for
posets? Here, we will replace chromatic number by dimension and ask the somewhat,
more general question: What must be contained in a poset P of large dimension? Now
the notion of containment is itself just a partial order, so the following abstraction
makes good sense. Let P denote the set of all finite posets, and let f be a function
which assigns to each P € P a non-negative integer f(P). Then let C be a binary
relation on P satisfying the usual requirements of an inclusion relation, i.e., the re-
flexive, antisymmetric and transitive properties. Suppose further that f is monotonic
with respect to C, i.e., if P C Q, then f(P) < f(Q). We then say that a poset P
is f-unavoidable for C if there exists an integer ¢ = t(P) so that if Q is any poset
with f(Q) > ¢, then P C Q. We denote the family of f-unavoidable posets for C by
U(f,C). Note that, if Q € U(f,C) and P C Q, then P ¢ Uf, Q).

The problem is then to determine 2(dim, C) for various natural containment re-
lations C. One way to interpret C is to say that P C Q when Q contains a subposet
which is isomorphic to P. But this is not a particularly interesting interpretation of
C. Here’s why. First, posets of height two can have arbitrarily large dimension, so
no poset in ¢(dim, C) can have height greater than two. Second, it is easy to modify
the Nesetfil/Rédl construction in [76] to produce posets with large dimension whose
comparability graphs have large girth. This shows that no poset whose comparability
graph contains a cycle can belong to U(dim, C).

Considering the family {P(1,2;n) : n > 3}, we see that a poset P = (X, P)
may have large dimension without containing any point z with |D(z)| > 2, where
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Diz)={ye P y < z in P}. Dually, P may have large dimension without containing
a point z with |U(z)| > 2, where U(z) ={y € P :y > = in P}.

A poset is called a fence if its comparability graph is a path. Our preceding
remarks show that if P € ¢/(dim, C)), then every component of P is a fence. On the
other hand, an interval order can have large dimension, but an interval order does
not contain a fence of 5 or more points as a subposet. Also, an interval order does
not contain 2 + 2 as a subposet.

Now let N denote the four element fence whose comparability graph is a path on
4 vertices. As noted by Brightwell and Trotter in [15], it follows that P € U(dim, <)
consists of all finite posets P which satisfy the following two conditions:

1. Any component of P is a subposet of N; and
2. P has at most one non-trivial component.

The same conclusion holds if we weaken the definition of C by saying that P C Q
when either Q or the dual of Q contains a subposet isomorphic to P. So in order to
get a more interesting problem, we need a less restrictive notion of containment.

Here is one natural way to do just that. First, we say that a poset Q = (¥,Q)
contains the poset P = (X, P) as a suborder if there exists an injection f: X — Y so
that for all z;, 2, € X, if ; < z2in P, then f(z1) < f(z2) in Q. Under this definition,
an n-element chain contains any other n-element poset as a suborder. Now let P C Q
mean that either Q or the dual of Q contains P as a suborder. N

We call a poset T a tree if its cover graph is a tree. Note that the com[.)arablhty
graph of a tree need not be a tree, e.g., a chain is a tree, its cover graph is a path
and its comparability graph is a complete graph. However, the cover graph and.the
comparability graph of a tree of height at most two are identical. Furthermore, if T
is a graph tree, then its incidence poset is a poset tree of heigh? 2. Furtl.lerm(?re.ln
this poset tree, every maximal point e has exactly two points (its endpoints) in its
down set. The following result is proved in [15].

Theorem 5.6. (Brightwell and Trotter) For each positive integer n, there exists an
integer t = t(n) so that if T is a graph tree on n nodes, T’ is the incidence poset ofT,
and P is any poset with dim(P) > t, then T' C P, i.e., either P or its dual contains
T as a suborder. O

From this result, it follows immediately that ¢/(dim, C) consists of those posets P
for which there is a graph forest F so that either P or its dual is the incidence poset
of F. Brightwell and Trotter [15] actually show that t(n) = O(cn®). From below,
the results of Erdos, Kierstead and Trotter [26] on the dimension of random posets
of height two imply that t(n) = Q(nlogn). We will say more about this work in
Section 9.

6. ON-LINE COLORING AND PARTITIONING PROBLEMS

It is natural to consider an on-line optimization problem, such as on-line graph
coloring, as a two-person game involving a Builder and a Colorer. The game is
played in in a series of rounds with the players alternating turns. Each instance of
on-line graph coloring also involves two parameters: an integer ¢ and a graph G. If
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G has n vertices, the game lasts at most n rounds. In Round 1, where 1 < ¢ < n,
Builder presents the vertex v; of G and describes all edges joining v; with vertices in
{vj 11 <j <1}, This information is complete and correct. In particular, if the game
lasts all n rounds, then Builder must have correctly specified the entire graph.

After receiving the information for the new vertex v;, Colorer must then assign to
v; a color from the set {1,2,...,¢} so that this color is distinct from those previously
assigned to neighbors of v;. These assignments are permanent.

The (t,G) game ends at Round 7 and Builder is the winner if Colorer has no
legitimate choice of a color for the new vertex v;. If on the other hand, Colorer is
able to respond with a legitimate color for each of the n vertices of G, then Colorer
is the winner. The on-line chromatic number of a graph G is then the least ¢ for
which Colorer has a winning strategy for the (¢, G) game—regardless of the strategy
employed by Builder.

As an example, the on-line chromatic number of P4 (a path on 4 vertices) is 3, even
though Py is bipartite. Graphs which do not include P4 as an induced subgraph are
perfect. Furthermore, they are optimally colored by the Greedy (First Fit) algorithm,
regardless of the order in which the vertices are presented. On the other hand, Gy4rfs
and Lehel [46] showed that for every r, there exists a bipartite graph G, which does
not contain Pg as an induced subgraph and has on-line chromatic number at least
r. For graphs which exclude Ps as an induced subgraph, the coloring problems are
particularly interesting.

Problem 6.1. For each positive integer k, let r(k) and (k) denote respectively the
mazimum chromatic number and the mazimum on-line chromatic number of a graph
which does not contain a complete subgraph on k + 1 vertices and does not contain
Ps as an induced subgraph.

This is a case where there is a surprisingly small gap between the off-line and
on-line versions. The best known bounds are:

(9) Q(lokgzk) <r(k)<2F and
(10) r(k) <r'(k) < (4" - 1)/3.

The upper bound on r(k) is due to Gydrfas and Lehel [46], and the lower bound
is an easy colorollary to Kim’s new lower bound [68] on the ramsey number R(3, k).
The upper bound on r'(k) is due to Kierstead, Penrice and Trotter [63].

Kierstead, Penrice and Trotter {62] then proceeded to prove the following theorem,
which in my opinion is one of the deepest results in the subject of on-line graph
coloring.

Theorem 6.2. (Kierstead, Penrice and Trotter) For each positive integer k and each
radius 2 tree T, there exist an integer r = r(k, T) so that if G is any graph which docs
not contain a complete subgraph on k vertices and does not contain T as an induced
subgraph, then the on-line chromatic number of G is at most r. N

As just one illustration of the power of this theorem, it provides as an easy corollary
the solution to a long standing on-line partitioning problem. Recall that the well
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known theorem of Dilworth [18] asserts that a poset of width n can be partitioned
into n chains. The graph version of this result is that a comparability graph is
perfect, i.e., if the independence number is n, then the graph can be partitioned into
n complete subgraphs (see [48], for example).

We now consider the on-line versions of these problems, beginning with the on-line
chain partitioning problem. Here we are presented with a poset one point.at a time
and asked to partition it (on-line) into chains. In [56], Kierstead showed that there
is an on-line algorithm which will partition a poset of width n into (5" —1)/4 chains.
However, it is not known whether there is some polynomial p(n) so that a poset of
width n can be on-line chain partitioned into p(n) chains. Quite recently, Felsner [29]
showed that a‘width 2 poset can be partitioned on-line into 5 chains. This result
seems to suggest some improvement in Kierstead’s bound is possible.

Now consider the problem of partitioning (on-line) a comparability graph into
complete subgraphs. J. Schmer! [90] conjectured that there exists a function f(n) so
that there exists an on-line algorithm which will partition a comparability graph with
independence number n into f(n) complete subgraphs—regardless of the number of
vertices. The problem is that Kierstead’s on-line algorithm [56] for partitioning a
poset into chains makes specific use of the partial order—not just the comparability
graph. This is also true of Felsner’s algorithm [29] for partitioning a width two poset
into 5 chains

Schmerl’s conjecture can be reformulated as follows: There a function g(k) so that
a co-comparability graph of maximum clique size k has on-line chromatic number at
most g(k). An affirmative answer to this conjecture follows easily from Theorem 6.2,
since a co-comparability graph cannot contain the subdivision of a K; 3 as an induced
subgraph. Of course, the subdivision of K, 3 is just a radius 2 tree.

. There are a host of other challenging problems in on-line graph coloring, but the one
which stands out in my mind as the most important is to provide tighter estimates on
the maximum on-line chromatic number c3(n) of a 3-colorable graph G on n vertices.
From below, Alon [1] and Vishwanathan [113] proved that cz(n) = Q(log®n). From
above, Lovasz, Saks.and Trotter proved that

log log 1
(11) es(n) = o(’f:fw)7

log logn
and Kierstead [59] removed the logloglogn term from the numerator of this expres-
sion. Quite recently, Kierstead [59] has shown that there exist a constant ¢ so that
c3(n) < n?log®n, and this result may represent a real breakthrough in on-line col-
oring.

7. HYPERGRAPHS AND FIBERS

Let P = (X, P) be a poset. Chains and antichains which contain two or more
points are called non-trivial. Lonc and Rival [72] called a subset A C X a co-fiber if
it intersects every non-trivial maximal chain in P. Let a(P) denote the least ¢ so that
P has a co-fiber of cardinality ¢. Then let a(n) denote the maximum value of a(P)
taken over all n-element posets. In any poset, the set A; consisting of all maximal
elements which are not minimal elements and the set A, of all minimal elements which
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are not maximal are both co-fibers. As A; N A; = 0, it follows that a(n) < [n/2].
On the other hand, the fact that a(n) > [n/2] is evidenced by a height 2 poset with
[/2} minimal elements each of which is less than all [n/2] maximal elements. So
a(n) = [n/2] (this argument appears in [72]).

Dually, a subset B C X is called a fiber if it intersects every non-trivial maximal
antichain. Let 5(P) denote the least ¢ so that P has a fiber of cardinality £. Then let
b(n) denote the maximum value of b(P) taken over all n-element posets. Trivially,
b(n) > [n/2}, and Lonc and Rival asked whether equality holds.

In [21], Duffus, Sands, Sauer and Woodrow showed that if P = (X, P) is an n-
element poset, then there exists a set # C X which intersects every 2-element maximal
antichain so that |F| < [n/2]. However, Sands then constructed a 17-point poset
in which the smallest fiber contains 9 points. This construction was generalized by
R. Maltby [75] who proved that for every e > 0, there exist a ng so that for all n > ng
there exists an n-element poset in which the smallest fiber has at least (8/15 — ¢)n
points.

From above, the following theorem [20] shows that b(n) < 2n/3.

Theorem 7.1. (Duffus, Kierstead and Trotter) Let P = (X, P) be a poset and let H
be the hypergraph of non-trivial mazimal antichains of P. Then the chromatic number
of H is at most 3. O

The fact that b(n) < 2n/3 follows from the observation that if X = B; U B, U Bs is
a 3-coloring of #, then the union of any two of {By, By, Bs} is a fiber. Most recently,
Lonc [71] has obtained the following intersesting result which provides a better upper
bound for posets with small width.

Theorem 7.2. (Lonc) Let P = (X, P) be a poset of width 3 and let | X| = n. Then
P has a fiber of cardinality at most 11n/18. |

My guess is that lim,_e 8(n)/n = 2/3.

8. INTERSECTION GRAPHS, INCLUSION ORDERS, HYPERGRAPHS AND FIBERS

Intersection graphs are one of the most widely studied topics in graph theory,
and there are (at least) two common themes to this research. One theme is to to
study intersection graphs where the sets are restricted to come from some particular
class. As an example, interval graphs are just the intersection graphs of a family of
intervals of the real line. Other examples include intersection graphs of line segments
or disks in the plane. In such instances, we are restricting the set of graphs under
consideration.

A second theme is to consider classes of sets defined in terms of a parameter.
Usually, for each graph G, we obtain G as the intersection graph of one of the
families, provided the parameter is sufficiently large. For example, for each positive
integer n, consider the set G, of all graphs representable as the intersection graph of a
family of subsets of {1,2,...,n}. It is then natural to define the intersection number
of a graph G as the least n so that G € G,. Clearly, this concept is well defined.

Here’s another example. For a graph G = (V, E), define the interval number
of G as the least ¢ for which G is the intersection graph of a family of sets {S; :
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z € V} where each S, is the union of ¢ pairwise disjoint intervals of the real line
R. The concept of interval number has been studied extensively. In [49], Harary
and Trotter show that the interval number of the complete hipartite graph K, ,, is
[(mn+1)/(m +n)]. In [42], Griggs shows that the interval number of a graph on n
vertices never exceeds [(n+1)/4]. In [43], Griggs and West show that if the maximum
degree A(G) is d, then the interval number of P is at most [(d + 1)/2]; this bound
is tight whenever G is regular and triangle-free. And in [88], Scheinerman and West
show that the interval number of a planar graph is at most 3.

For posets, there are natural analogues for each of these problems, and we have
already seen an example of the first—the notion of an interval order. Alternatively,
we can consider another order associated with a set of intervals, namely the inclusion
order. As is well known, a finite poset is isomorphic to a collection of intervals of
the real line ordered by inclusion if and only if it has dimension at most two. This is
just one example of a geometric containment order, i.e., a poset obtained by partially
ordering some naturally occurring family of geometric objects by inclusion.

Here are two surprisingly difficult open problems in this area (there are many
more). A subset S C R* is called a d-sphere if there exists a point x = (zy,2s,...,
z4) € R? and a positive real number r so that S = {y = (y1,92,...,92) € R? :
S (2 —1:)? < r2}. A poset P = (X, P) is called a d-sphere order if there exists
a function F' assigning to each £ € X a d-sphere F(z) so that z < y in P if and
only if F(z) C F(y). For historical reasons, 2-sphere orders are called circle orders,
although it might have been more accurate to call them disk orders. The following
problem is due to Brightwell and Winkler [17].

Problem 8.1. Is it true that for every finite poset P, there exists o positive integer
d so that P is a d-sphere order, i.e., P is isomorphic to a family of d-spheres ordered
by inclusion? O

The use of the euclidean metric in defining a sphere is important in this problem.
If we use another metric, the question may be trivial to answer. For example, it is
an easy exercise to show that a n-dimensional poset is the inclusion order of a family
of cubes in R*"!. However, I would speculate that there exists a finite 3-dimensional
poset P which is not a d-sphere order for any d > 1. But this is a challenging problem,
and many people have misjudged its difficulty in the past—including this author.

Now, a finite poset P of dimension at most two can be represented as a family of
intervals of the real line ordered by inclusion. So a finite 2-dimensional poset P is
also a circle order, and in fact, we can require that the centers of all the circles used
in the representation lie on a straight line.

On the other hand, not all finite 4-dimensional posets are circle orders—in fact,
most of them are not. This statement is an immediate consequence of the work of
Alon and Scheinerman [2] on “degrees of freedom”.

The situation with finite 3-dimensional posets remains unsettled.

Problem 8.2. Let P be a finite poset with dim(P) < 3. Is P a circle order? O

This problem is particularly vexing because there are partial results which support
both positive and negative answers. On the positive side, it is an easy exercise to
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show that for each n > 3, a finite 3-dimensional poset P is isomorphic to a family
of regular convex n-gons in the plane ordered by inclusion. By keeping P fixed and
letting 7 tend to infinity, it seems reasonable that we are essentially representing P
by circles.

On the other hand, there are countably infinite 3-dimensional posets which are not
circle orders. Scheinerman and Weirman [88] gave the first such proof; they showed
that Z* was not a circle order. Subsequently, Hurlbert [53] gave a somewhat simpler
proof. In [38], Fon-der-Flaass proves that the carfesian product 2 x 3 x N is not a
d-sphere order, for any d > 1. But each of these arguments depends in a fundamental
way on the poset being infinite, and there is no notion of compactness waiting to
come to our rescue.

Here are some other results on circle orders and related topics. A region R of the
plane is called a angular region if it is bounded by two one-way infinite rays emanating
from a common point. The inclusion orders of a family of angular regions are called
angle orders. In [37], Fishburn and Trotter show that every interval order is an angle
order. In [34], Fishburn shows that every interval order is a circle order, and in [35]
Fishburn shows that there exist circle orders which are not are angle orders. In [87],
Scheinerman shows that a graph G is planar if and only if its incidence poset is a
circle order (note the connection with Schnyder’s theorem discussed in Section 3).
And in [13], Brightwell and Scheinerman show that the dual of a circle order need
not be a circle order. Of course, this last result concerns infinite posets, as the dual
of a finite circle order is obviously a circle order.

Several other inclusion orders involving families of sets and parameters have been
studied. For example, Madej and West [74] define the interval inclusion number of a,
poset P = (X, P), denoted i(P), as the least ¢ for which P s the inclusion order of a
family {S; : ¢ € V} where each Sz is the union of at most ¢ pairwise disjoint intervals
of R. Madej and West prove that i(P) < [dim(P)/2] and that this inequality is best
possible. On the other hand, they show that interval orders have interval inclusion
number at most two, even though they can have arbitrarily large dimension.

Given a finite poset P = (X, P), the least n for which P is the inclusion order
of a family of subsets of {1,2,... ,n} is called the 2-dimension of P, and is denoted
dim,(P). The reason for this notation is that dimy(P) is just the least n for which P
is isomorphic to a subposet of the cartesian product 2*. More generally, J. Novak [78]
defined dim;(P) as the least n so that P is isomorphic to a subposet of k®. For a
poset P = (X, P), Trotter proves the following bounds in [100] and [103]:

k]

(12) dimy (X, P) < |X|;
(13) dims(X, P) < [(|X])/2], for |X| > 6. and
(14) dims(X, P) < [|X|/2], for |X| > 7.

All three of these inequalities are best possible, and a full characterization of
posets P = (X, P) for which dimy(X, P) = |X[is given in [100]. The third inequality
is just a bit stronger than the well known inequality of Hiraguchi [51] (see also [52]):
dim(X, P) < ||X||, when [X] > 4.
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And on this note, we pause to remark that the concept of dimension was introdiced

more than 50 years ago in Dushnik and Miller’s classic paper [24], bul the study @fi
the combinatorial properties of dimension has its roots in three important papers, o
which Hiraguchi’s 1951 paper [51] is one. The other two are Dushnik’s | 950 paper |23

on sets of arrangements and Dilworth’s 1950 paper [18] on chain partitions. Dushniks
paper determines the dimension of P(1,r; n) (the set of all all l-element and all r-
element subsets of a n-element set ordered by inclusion) when r > 24/n. Dilworth's
paper shows that the dimension of the distributive lattice L — 2% the set of all down
sets of P ordered by inclusion, is just the width of P. It is interesting to note thal
Dilworth’s famous chain partitioning theorem began life as a lemma used to prove a
dimension theoretic result for distributive lattices!

In [101], Trotter generalizes Dilworth’s dimension formula for distributive lattices
by showing that if L = 2P, then dimi(L) is the minimum number of chains of cardi-
nality at most k — 1 required to cover X. In particular, dimy(2F) = | X].

Quite recently, Schumacher [92] has provided an improved bound on the 2-dimension
of crowns. This work concentrates on crowns whose comparability graphs are cycles
and improves on bounds obtained previously by Stahl [95]. Both papers correct the
author’s flawed formula for the 2-dimension of crowns given in {100].

Dushnik’s work on arrangements has been greatly extended with a flurry of work
on related problems. Recall that for integers &, r and n,withl <k<r<n-—1,
dim(k,r; n) denotes the dimension of the poset P(k,r;n). Spencer [94] gave asymp-
totic bounds for dim(1,r;n), for fixed r with n tending to infinity.

Theorem 8.3. (Spencer)
(15) lglgn < dim(1,2;7) <lglgn + (1/2 4 o(1))Iglglgn;
(16) dim(1,mn) <r2"lglgn  when 2 <r.
O

The upper bound on dim(1,2; n) given in the first inequality in Theorem 8.3 cou-
pled with the lower bound in Proposition 4.2 completes the proof of the estimate for
dim(1,2;n) given in Theorem 4.3.

A surprisingly large number of combinatorial problems have connections with com-
putations of d(k,r;n), especially for the case k = 1 and r = 2. In [105], Trotter
extended the range of values covered by Dushnik’s formula. This paper also shows
that d(1,2;13) = 5, but d(1,2;n) < 4 when n < 12. In [57], Kierstead uses some new
and quite clever techniques to prove the following lower bounds for the case k = 1.

Theorem 8.4. (Kierstead)

(17) 2 ?lglgn < dim(1,r;n),
if 2<r<lglgn~—lglglgn;

(r+2-lglgn+Iglglgn)®lgn

(18) 2lg(r+2—lglgn +1glglgn)

< dim(1,7r;n),
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if lglgn —lglglgn <r <217 g4

21 1 2] 27,2
(19) (r+ glgn +lglglgn)?lgn < dim(1,r;n) < 2k 1g n’
32lg(r +2 - lglgn + lglglgn) lg* k
if 28 < k<o /n—9 0

The first of Kierstead’s bounds is a surprisingly tight lower bound for dim(1,r;n),
when 7 is large compared to . Compare it with Spencer’s upper bound given by the
second inequality in Theorem 8.3. In Section 9, we will comment about one of the
consequences of the second inequality of Theorem 8.4, a painful lesson for the author.

In the past two years, There has been an interesting series of papers providing
estimates for dim(k,r;n) when k > 2. In [11], Brightwell, Kierstead, Kostochka and
Trotter show that:

(20) d(k,k + s;n) < dim(1,2s;n) + 18slogn  for all s > 0.

The proceeding formula shows that dim(k, k+1; 2k+1) = O(log k), but Kostochka [70]
has improved this to dim(k, k + 1;2k + 1) = O(log k/loglog k). Perhaps this is the
right answer, but from below, we know only that dim(k, & + 1; 2k + 1) = Q(log log k).
This is an easy corollary to Spencer’s lower bound on dim(1, 2;n).

In [54], Hurlbert, Kostochka and Talysheva show that dim(2,n — 2;n) is (n — 1)-
irreducible, and they determine the exact value of dim(2, r; n), for almost all values of
r, provided n is sufficiently large. Fiiredi [39] then shows that dim(k,n—k;n) = n—2,
whenever 3 < k < nl/3/6.

9. RANDOM GRAPHS AND RANDOM POSETS

The use of random methods has been one of the fastest growing areas of research
in combinatorics over the past 20 years or so. Researchers in posets have also taken
advantage of the power of these methods. Here are just a few examples.

Given a poset P = (X, P) and a point z € X, define the degree of z in P, denoted
degp(z), as the number of points in X which are comparable to z. This is just the
degree of the vertex z in the associated comparability graph. Then define A(P) as
the maximum degree of P. Finally, define D(k) as the maximum dimension of a poset
P with A(P) < k. R6d] and Trotter were the first to prove that D(k) is well defined.
Their argument showed that D(k) < 2k? + 2. Subsequently, Fiiredi and Kahn [40]
showed that D(k) = O(klog? k).

We pause to explain one key detail of Fiiredi and Kahn’s argument for an upper
bound on D(k). Using a clever application of the Lovész Local Lemma (27], they
show that

ko
(21) D(k) = o(@ dim(1, log k; & log k)).

Fiiredi and Kahn then used an elementary probabilistic argument to show that
dim(1,7;n) = O(r?logn), and thus dim(1, log k; k log k) = O(log® k). These results
then imply their upper bound on D(k). For several years, the best lower bound stood
at D(k) > k + 1. This bound comes from the standard examples.
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Then in 1991, Erdds, Kierstead and Trotter [26] investigated dimension for ran-
dom posets of height 2. The model was defined as follows. For a fixed positive
integer n, they considered a poset P, having n minimal elements ay,as, ..., a, and
n maximal elements by, by, ...,b,. The order relation was defined by selling a; = by
with probability p = p(n); also, events corresponding to distinct min-max pairs were
independent.

In this paper, estimates are given on the expected value of the dimension of the
resulting poset. The following theorem summarizes these lower bounds.

Theorem 9.1. (Erdds, Kierstead and Trotter)

1. For every € > 0, there exzists § > 0 so that if
14e¢ n
<p<

log

logn’
then
dim(P) > é pnlog pn, for almost all P.
2. For every € > 0, there exist §,c > 0 so that if

L <p<l-nTt*,
logn
then

dim(P) > max{én, n — i}, for almost all P.
plogn

Here is an easy corollary.

Corollary 9.2. (Erdds, Kierstead and Trotter) For every ¢ > 0, there exists § > 0
so that if
1

—1+€
n <p<
P logn’

then
dim(P) > SA(P)logn, for almost all P.

In particular, this corollary shows that
(22) Qklog k) = D(k) = O(klog? k).

So what is the correct answer for the power of the logk term in the formula for
D(k)? At one time, I suspected that the correct answer was the lower bound so that
D(k) = 6(klogk). I even went so far as to suggest that the way to prove this was
to improve the trivial estimate dim(1,log k; klogk) = O(log® k), As the only lower
bound I knew was dim(1,log k; klog k) = Q(log® k), I offered $100 for improving the

" exponent in this estimate. In hindsight, I should have been more careful.
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As a special case of Theorem 8.4, we note that
(23) dim(1, log &; k log k) = Q(log® k/ log log k).

Accordingly, Kierstead managed to collect the $100 prize without settling the under-
lying question. Of course, Kierstead’s result does tell us that a really new idea will
be necessary to improve the upper bound on D(k)—if this is at all possible.

However, I think it is much more likely that the lower bound can be improved.
To attempt this, another model for random posets should be investigated. In this
model, we take a set of k random matchings in a complete bipartite graph K, ,.
The techniques in [26] will not apply when £ is very small relative to n, say when
k = o(logn), but it is precisely in this range that the random poset may yield an
improvement for D(k).

Finally, we should mention that several other models of random posets have been

investigated, including: )

1. Random k-dimensional partial orders on n points—take k random linear orders
on {1,2,...,n} and let P be their intersection;

2. Transitive closures of random graphs on n vertices—take a random graph with
vertex set {1,2,...,n} and set ¢ < j in P when there exists an integer ¢ > 2
and a sequence ¢ = 1y,1q,...,4 = j, With ¢; < iy < --- < 2¢ in N with ¢;1;41 an
edge in the random graph, for every j = 1,2, ... ,t—1; and

3. Labelled partially ordered sets with ground set {1,2,...,n}—take all such
posets as equally likely.

We encourage the reader to consult the survey articles by Winkler [114] and
Brightwell [8] for additional details. Brightwell’s paper is more recent and provides a
good bibliography of papers in this area.

10. FRACTIONAL DIMENSION AND AN ANALOGUE TO BROOKS' THEOREM

Many researchers in combinatorics have investigated fractional versions of integer
valued parameters, and often the resulting LP relaxation sheds light on the original
problem. In [12], Brightwell and Scheinerman proposed to investigate fractional di-
mension for posets. This concept has already produced some interesting results, but
many appealing questions have been raised. Here’s a brief overview.

Let P = (X, P) be a poset and let F = {M,,... , M} be a multiset of linear
extensions of P. Brightwell and Scheinerman [12] call F a k—fold realizer of P if for
each incomparable pair (z, y), there are at least k linear extensions in F which reverse
the pair (z,y), i.e., {7 : 1 < i < t,2 > y in M;}| > k. The fractional dimension
of P, denoted by fdim(P), is then defined as the least real number g > 1 for which
there exists a k—fold realizer F = {Mj, ..., M,} of P so that k/t > 1/q (it is easily
verified that the least upper bound of such real numbers q i1s indeed attained). Using
this terminology, the dimension of P is just the least ¢ for which there exists a 1-fold

realizer of P. It follows immediately that fdim(P) < dim(P), for every poset P.

Brightwell and Scheinerman [12] proved that if P is a poset and AP) = &k,
then fdim(P) < k + 2. They conjectured that this inequality could be improved
to fdim(P) < k + 1. This was proved by Felsner and Trotter [30], and the argument
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yielded a much stronger conclusion, a result with much the same flavor ag Broaks’
theorem for graphs.

Theorem 10.1. (Felsner and Trotter) Let k be a positive integer, and lel ¥ be any
poset with A(P) = k. Then fdim(P) < k+ 1. Furthermore, if k > 2, then [dini(P) <
k+1 unless one of the components of P is isomorphic to Sgy1, the standard cvample
of a poset of dimension k + 1. [

Felsner and Trotter [30] derive several other inequalities for fractional dimension,
and these lead to some challenging problems as to the relative tightness of inequalitics
similar to the one given in the preceding theorem. However, there remains an cven
more appealing problem, one posed in [12].

Problem 10.2. What is the least positve real number d so that if P is an interval
order, then fdim(P) < d? o

Brightwell and Scheinerman [12] proved that d < 4, and they conjectured that
d = 4. We believe this conjecture is correct but confess that our intuition is not really
tested.

Now let us return for a moment to the problem of determining the dimension (not
the fractional dimension) of the canonical interval order I, consisting of all intervals
with integer endpoints from {1,2,...,n}. As commented on in Section 4, it was
known that that dim(L,) was at least as large as the chromatic number of the double
shift graph, and a relatively precise estimate was known for this parameter. However,
progress on upper bounds for dim(L,) was much slower.

At the risk of over simplifying matters, the problem reduced (more or less) to the
following technical question. What is the chromatic number of the graph OS, whose
vertex set consists of all 4-element subsets of {1,2,...,n} with {11, 2,13,5} adjacent
to {iz,14,15,%6}, whenever 1 < i; < iy < +-- < 25. We call OS,, the overlapping double
shift graph. It is easy to see that the dimension of the canonical interval order I, is
at least as large as the chromatic number of the overlapping double shift graph.

Fiiredi, Hajnal, Rodl and Trotter [41] were able to show that asymptotically, the
overlapping double shift graph has the same chromatic number as the double shift
graph. With some attention to technical details, they then showed that the asymp-
totic formula for dim(I,) was the same as the maximum value d(n) of the dimension
among all interval orders of height n, and these two estimates were the same as the
estimate for the chromatic number of the double shift graph.

Now perhaps the same kind of approach can be made to work for fractional di-
mension. So a natural starting point is to consider the fractional chromatic number’
of the double shift graph. However (and we consider this result surprising), it is an
easy exercise to show that the fractional chromatic number of the double shift graph
is at most 3. Again it is easy to see that the fractional dimension of the canonical
interval order I, is at least as large as the fractional chromatic number of the overlap-
ping double shift graph. However, we believe that the fractional chromatic number
of the overlapping double shift graph is 4. If this is correct, then there is indeed a
fundamental difference between the fractional problems for double shift graphs and
interval orders—while these two problems were ultimately shown to be equivalent in
the integer valued versions.
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Regrettably, we have not been able to make much pr 'mini
fracti9nal chromatic number of the overlapping doublepsﬁiggtesgsra();h dz:)elinml:ringffzh':
to build a body of techniques and insights, we began to attack a r,a,msey theoretﬁc
problem for probability spaces, a problem which we believe to be closely related. Fix
an m?eger k> 0,and let n > k+ 1. Now suppose that ) is a probability s ace
containing an event Es for every (k + 1)-element subset § {1,2,...,n}.. We aguse
terminology slightly and use the notation Prob(S) rather than 7Pr’ob(’ES)..

.Now let f(Q) denote the minimum value of Prob(AB), taken over all (k,n)-shift
pairs (A, B). Note that we are evaluating the probability that A is true z;nd B is
f.a,ls‘e. Then let f(n, k) denote the maximum value of f(Q) and let f(k) denote th
limit of f(n,k) as n tends to infinity. )

Even the case k = 0 is non-trivial, as it takes some work to show that f(0) = 1/4
However, there is a natural interpretation of this result. Given a sufficiently Ioné

sequence of events, it is inescapable that there are two events, A and B with A
occuring before B in the sequence, so that

Prob(AB) < 41_1 +e

The 41 term in this inequality represents coin flips. The ¢ is present because, for finite
n, we can always do slightly better than tossing a fair coin. \ ’
. For k = 1, Trotter and Winkler [112] show that f(1) = 1/3. Note that this is
just the fractional chromatic number of the double shift graph. This result is also
nat}lral and comes from taking a random linear order I on {1,2,...,n} and then
saying that a 2-element set {7, 5} is true if 5 < 7 in L. Trotter anci V’Vinlgler conjecture
:;)1;2’&. f(HZ) = 3/8,t f(?:i)ti 2/5, and are able to prove that limg_,., f(k) = 1/2. They
iginally conjectured that f(k) = (k i
opginally f(i) e {s( la)rger( t};};ﬂl})g2k +4), but they have since been able to
As an a(?ded bonus to this line of research, we are beginning to ask natural (and
perhaps quite important) questions about patterns appearing in probability spaces
I consider this a particularly fruitful area for future research. '
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