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yoxes UL, By, let r{(j) = (n1(j), - .,73(j)) € B; and define

=
>j;?CuAmv ﬁhcﬂmﬂm\fﬁm‘{vfﬁwvv A JN\DNJAMJN\T&J;%)\ Amv + Hj
>T\§JCVW&NG~\~JAMJmJ._ Qquv )

(When 7.,(j) = 0 then the expression in the brackets above should be
LDT(TR.,d,).) Then p; and, thus, ¢ := VL, p; are themselves first
es. Further, M[p] = UTL Mp;] = UL, By, ie. any disjoint union of
‘o] for some first order sentence . (We note that ¢ may have higher
sth than s.) By Remark 9 this completes the complete characterization
robabilities.

) denote the limit probability of ¢ as a function of the real number
of f,(c) is simple to describe if we relax the condition of a complete
ion. The basic sentence LDT(TR,,d.,,i) A—~LDT(TR,,d,, i+ 1) has
obability f of the form ge™*¢ e~ where ), q are positive rational
e sentence LDT(TR,,d,,s) will have an f of the form one minus a
such terms. To conclude this section, we summarize the results in the
orem.

n 22. Let k.l be integers such thatl > k~12> 0. Let 1 be any sentence
der language of graphs. Then, in general, the limiting probability fy(c)
of a finite sum and difference of rational numbers times finite products
he form above, i.e. a linear combination with rational coefficients of
form e where the A1, Ay are themselves rational numbers.
1 as the null product here.]

ular, fu(c) always exists and is always an infinitely differentiable func-
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RAMSEY THEORY AND PARTIALLY ORDERED SETS

William T. Trotter

ABSTRACT. Over the past 15 years, Ramsey theoretic techniques and con-
cepts have been applied with great success to partially ordered sets. In the
last year alone, four new applications of Ramsey theory to posets have pro-
duced solutions to some challenging combinatorial problems. First, Kierstead
and Trotter showed that dimension for interval orders can be characterized
by a single ramsey trail by proving that interval orders of sufficiently large
dimension contain all small interval orders as subposets. Second, Winkler and
Trotter introduced a notion of Ramsey theory for probability spaces and used
the resulting theroy to show that interval orders can have fractional dimen-
sion arbitrarily close to 4. Third, Felsner, Fishburn and Trotter developed an
extension of the product Ramsey theorem to show that there exists a finite
3-dimensional poset which is not a sphere order. Fourth, Agnarsson, Felsner
and Trotter combined Ramsey theoretic techniques with other combinatorial
tools to determine an asymtotic formula for the maximum number of edges
in a graph whose incidence poset has dimension at most 4. In this paper,
we outline how these applications were developed. Full details will appear in
individual journal articles. This article also includes a brief sketch of how the
applications of Ramsey theoretic techniques to posets have evolved.

1. Introduction

In recent years, there has been rapid growth in research activity centered on
combinatorial problems for partially ordered sets, evidenced in part by the new
AMS subject classification 06A07: Combinatorics of Partially Ordered Sets. In
this article, we explore connections between Ramsey theory and partially ordered
sets—especially with the poset parameter called dimension.

In this introductory section, we present only those concepts and notations es-
sential to the results discussed in this paper. For additional background material,
the reader is referred to the survey articles [33], {34], [35] [36], the recent article
by Brightwell [4] and the author’s monograph on posets [32].

We consider a partially ordered set (or poset) P = (X, P) as a structure con-
sisting of a set X and a reflexive, antisymmetric and transitive binary relation P on
X. We call X the ground set of the poset P, and we refer to P as a partial order on
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jons x <y in P,y >z in P and (z,y) € P are used interchangeably,
mce to the partial order P is often dropped when its definition is fixed
1e discussion. We write x < y in P and y > z in P when z < y in
. When z,y € X, (z,y) ¢ P and (y,z) ¢ P, we say = and y are
and write z|ly in P.

we are concerned primarily with finite posets, i.e., those posets with
sets, we find it convenient to use the familiar notation R, ), Z and N
pectively the reals, rationals, integers and positive integers equipped
\I orders. We also use Rg to denote the set of positive real numbers.
se infinite posets are total orders; in each case, any two distinct points
le. Total orders are also called linear orders, or chains. For a positive
let n denote the n-element chain 0 < 1 < --- < n—1, while [n] denotes
;set {1,2,...,n}.

= (X, P) is a poset, a linear order L on X is called a linear extension
<yin Lforallz,y € X withe < yin P. A set R of linear extensions
a realizer of P when P = NR, ie., forall z,y in X, z < y in P if and
in L, for every L € R. The minimum cardinality of a realizer of P is
nrension of P and is denoted dim(P).

soset P = (X, P), let inc(P) = {(z,y) € X x X : zlly in P}. Then
f linear extensions of P is a realizer of P if and only if for every
"), there exists L € R so that ¢ > y in L. Call a pair (x,y) € inc(P)
-if

in P implies © < y in P, and

in P implies v > z in P

X. Then let crit(P) denote the set of all critical pairs. It follows that
R of linear extensions of P is a realizer of P if and only if for every
%), there exists some L € R so that x >y in L.

hat a linear extension L reverses the incomparable pair (z,y) when
et S C inc(P). We say that L reverses S when z > y in L, for every
e say that a family R of linear extensions of P reverses S if for every
ere is some L € R so that £ > y in L. So the dimension of P is just
ter ¢ for which there exists a family R of linear extensions of P which

R).

Three examples of Posets with Large Dimension

wction, we briefly discuss three well known examples of posets with
on. These examples will help readers who are new to the subject of
red sets with concepts discussed in subsequent sections.

ers n > 3, k > 0, define the crown S as the height 2 poset with
\l elements a1, ag, ..., a0k, 7+ k maximal elements by, ba, ..., bk
for j=4+k+1,i+k+2,...,i~ 1. In this definition, we interpret
Jically so that n+k+1=1,n+k+2 = 2, etc. The following formula
sion of crowns is derived in {30].

12.1. Letn >3 and k > 0 be integers. Then
2(n + wj

. ky
95@37% -
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The critical pairs in the crown mw are just the incomparable pairs (a;, b;), where
a; is a minimal element and bj is a maximal element. In {30], Trotter proves that
no linear extension of SX can reverse more than (k+2)(k+1)/2 critical pairs. Since
there are (n + k)(k + 1) critical pairs altogether, the lower bound in Theorem 2.1
follows immediately. It takes a little more work to show that this bound is tight.

When k = 0, the crown 82 (also denoted S, ), is called the standard example of
an n-dimensional poset. To see that dim(S,) < n, observe that there are n critical
pairs, namely the pairs (a;,b;) for i = 1,2,...,n. Clearly, n linear extensions are
enough to reverse them. Conversely, it is easy to see that no linear extension of S,
can reverse two or more linear extensions, so that the dimension of S is at least n.

Note that S, is isomorphic to the set of 1-element and (n — 1)-element subsets
of n] ordered by inclusion. More generally, for integers k, r and n, with 1 < k <
r <n—1, let P(k,7;n) denote the poset consisting of all k-element and r-element
subsets of [n] ordered by inclusion. Also, let dim(k,7;n) denote the dimension of
P(k,m;n). So S, is isomorphic to P(1,n — 1;n) and dim(1,n — };n) = n.

Our second example of a family of posets of large dimension is {P(1,2;n)
n > 3}. In this case, there are n(n — 1)(n — 2)/2 incomparable pairs; however, an
easy exercise shows that a linear extension may reverse n(n — 1)(n — 2)/6 critical
pairs. So the “pigeon hole” argument used for the first example shows only that
dim(1,2;n) > 3. However, we claim that lim, . dim(1,2;n) = oo, although the
argument now requires some elementary Ramsey theory. Suppose to the contrary
that there exists a positive integer ¢ > 3 so that dim(1,2;n) < t, for every n > 3.
We obtain a contradiction when n is sufficiently large. Let R = {L1, Lo, ..., L} be
a realizer of P(1,2;n). For each 3-element subset {i < j < k} C [n], consider the
critical pair ({5}, {¢,k}), and choose an integer « € [t] so that L; reverses it, ie.,
{5} > {i,k} in Ls. Then we have a coloring of the 3-element subsets of [n] with ¢
colors. If n is sufficiently large, then (by Ramsey’s theorem) there exists a 4-element
subset H = {i < j < k < [} C [n] and an integer « € [t] so that all 3-element subsets
of H are mapped to o. This means that {j} > {4,k} > {k} > {j,1} > {i} in La,
which is a contradiction.

Each of the first two examples is a height 2 poset, so posets of bounded height
can have arbitrarily large dimension. Qur third example is different. In this family,
large height is required for large dimension. For each n > 3, let I(n) = (In, Pn)
denote the poset defined by setting I, to be the family of all 2-element subsets of
[n] with {i,j} < {k,{} in P, when 1 <i < j <k <! < n. Again, we claim that
limy—~ dim(Z,,, P,) = co. Suppose to the contrary that dim(I,, P,) < t, for all
n > 3. We obtain a contradiction when n is large.

For each 3-element subset {i < j < k} C [n}, ({1,7},{J, k}) is a critical pair,
so if R = {L1,La,..., Lt} is a realizer of P,, then we may choose a € [t] so that
({i,5},{j. k}) is reversed in L,. This is a coloring of the 3-element subsets of
[n] with ¢ colors, so that if n is sufficiently large, there exists a 4-element subset
H = {i < j <k <1} and an integer « € [t] so that all 3-element subsets of H are
mapped to . This implies that {¢,j} > {j,k} > {k,!} > {i,j} in Lq, which is a
contradiction.

This last example is drawn from the family of posets known as interval orders
and we will have more to say about them in Sections 5, 6 and 7.

o VU —————
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3. Early applications of Ramsey theory to posets

finite set S and an integer k with 0 < k < |S5|, we denote the set of all
ibsets of S by AU Given integers t and k and finite sets S1,.52,...,5,
of Ammv X @Vv X e X AM,V is called a grid (also, a k' grid ), and the sets
5y are called factor sets of the grid. Using the natural order, a set of n
ast an m-element chain, so considered as a poset, 51 X So X -+ x Sy is
ton; X ng X -+ X 0y, where n; = |S;] fori=1,2,...,¢.

owing theorem, called the Product Ramsey Theorem and stated here
1, has been applied in several different settings to posets. We refer the
4] for the proof.

M 3.1. Given positive integers m, k, r and t, there exists an integer
fn > ng and f is any map which assigns to each k' grid of n* a color
en there exists a subposet P isomorphic to m' and a color a € fr] so
a for every k! grid g from P. 0

h it was not originally stated in these terms, most likely the first ap-
the product Ramsey theorem to posets can be traced to the proof of
z theorem [31].

iM 3.2. Let P = (X, P) be a poset and let A C X be an antichain with
Then

dimP < 1+ 2width(X — A, P(X — A)).
m

juality in Theorem 3.2 is quite straightforward, but it takes a non-trivial
oretic argument to show that it is best possible. It is interesting to note
he proof of Theorem 3.2 was first published, the use of Ramsey theory
it the inequality is best possible was not the main point. Instead as
s the title of the paper, it was the ensuing corollary: irreducible posets
ht exist. Some years later, explicit constructions for irreducible posets
eight would be given by Trotter and Ross [37], [38] and by Kelly [186].
wnother application of Ramsey theory, one which deals with the concept
mctions as developed by Walker in [41]. For integers n and r, let L(n,r)
st of all r-term non-decreasing sequences from [n]. We then let L(n,r) =
1,7)) be the subposet of R" induced by L(n,r). We view the elements
5 possible results of a series of races among n competitors in which
ved. For example, the element (5,5,3,3,2,1) of L(10,6) represents an
a single competitor of two fifth place finishes, two third place finishes,
>lace finish, and one first place finish. Note that the notation does not
ndividual races in which these respective placings were achieved.
ypose prize money is assigned to the finishing positions so that smaller
sitions (corresponding to better achievement) receive higher monetary
en total prize money determines a ranking function among the com-
iin, ties are allowed). Walker [41] proposed to call a linear extension
consistent if there was a way to assign monetary awards so that if =
noney than y, then z > y in L. He then proved that L(n,r) is then
ion of all its consistent linear extensions. Furthermore, when r = 2,
'-dimensional poset and Walker showed that it is also the intersection of
linear extensions. Walker also showed that P(4, 3) is the intersection of
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3 consistent linear extensions and conjectured that L(n,r) is always the intersection
of r consistent linear extensions.

However, in [25], Rodl and Trotter used Ramsey theory to show that for every
t > 3, there exists an integer ng so that if n > ng, P(n,3) is not the intersection
of t or fewer consistent linear extensions—even though it is 3-dimensional and thus
the intersection of 3 linear extensions.

An interval in a poset P = (X, P) is just a subposet of the form [z,y] = {z €
X : 2 < z <y}, where x < y. In [26], Scheinerman defined the poset bozicity of a
graph G = (V, E) as the least ¢ for which G is the intersection graph of a family of
intervals in a t-dimensional poset. In [39], Trotter and West show that a graph on
n vertices has poset boxicity at most O(loglogn). They also use Ramsey theory to
show that there exist posets of arbitrarily large poset boxicity—although the lower
bound grows considerably more slowly than the upper bound.

4. Computational Aspects

Mirroring the general flavor of Ramsey theory, there are instances in which the
major emphasis is on whether a Ramsey theoretic result is true—and in such cases,
it is rarely possible to make precise estimates as to how large the parameters must
be. However, in other instances, the existence question is relatively straightforward,
so researchers try to make a precise determination for the parameters (or at least a
relatively accurate asymptotic estimate). Here are a few examples involving posets.

In [23], Nesetfil and Rad! show that for every positive integer h, if P = (X, P)
is a poset of height h, then there exists a poset Q = (Y, Q) of height 2k — 1 so
that if the points of Q are assigned to two colors (say by a mapping to [2]), then
there is a monochromatic subposet isomorphic to P. The value 2h—1 is clearly best
possible. This work is closely related to Nesetfil and Réd1l’s well known construction
of graphs (and hypergraphs) with large chromatic number and large girth [22].

In [18], Kierstead and Trotter study the dual problem. Given an integer w, find
the least integer f(w) so that if P = (X, P} is a poset of width w, then there exists
a poset Q = (Y, Q) of width f(w) so that if the points of Q are two colored, then
there exists a monochromatic subposet isomorphic to P. It is elementary to show
that 2w — 1 < f(w) < w?, but Kierstead and Trotter prove that f(w) > 2w — 1.
Subsequently, Kierstead [17] showed that f(w) > 5w/2, but it is still not known
whether f(w) = O(w).

Given a poset P = (X, P), a function f : X — X is called a regression if
f(z) <z forall x € X. A regression is called a choice function if f(z) is a minimal
element for all x € X. Given a regression f on a poset P = (X, P), a k-element
chain C = {z; < 22 < --- < xx} I8 f-monotone if f(z1) < f(zz) < -+ < flaw)
Note that if f is a choice function, then the statement that C' is a f-monotone chain
just means that f is constant on C.

For a positive integer n, let Bg(n) denote the poset consisting of all non-empty
subsets of [n]. In [24], Perry proved that for each k > 1, if n > 2%=1 then any
choice function f on By(n) is constant on a chain of cardinality k. Furthermore,
this result is best possible.

In [42], West, Trotter, Peck and Schor prove that if w and k are positive
integers, then any regression on a poset of width at most w having at least (w1)F-t
points has a f-monotone chain of cardinality k. Furthermore, this result is best
possible.
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itive integer n > 2, let P,, denote the set of closed intervals of R with
ints from [n], partially ordered by inclusion. Evidently, P, is a 2-
voset. In [3], Alon, Trotter and West study the problem of determining
teger f(n) for which every regression on P, has a monotone chain of
‘n). They show that

log"(n) — 2 < f(n) < log"(n).
5. Shift Graphs, Interval Orders and Layers

egers n and k with 1 < k < n, we call an ordered pair (A, B) of
s a (k,n)-shift pair if there exists a (k + 1)-element subset C' = {{; <
+wv C Ti so that A = A?Ts.m, .. .,;w and B = ,T.mhw, .. .u@irpw. We
1e (k,n)-shift graph S(k,n) as the graph whose vertex set consists of
subsets of [n] with a k-element set A adjacent to a k-element set B
(A, B) is a (k, n)-shift pair. It is customary to call a (2, n)-shift graph
-aph; similarly, a (3, n)-shift graph is called a double shift graph.

;a (1, n)-shift graph is just a complete graph on n vertices, but for k >
-langle-free. Now it is an immediate consequence of Ramsey's theorem
fixed k > 1, lim, .o x(S(k,n) — oco. However, as in the preceding
vely accurate estimates are known for how fast the chromatic number
zrowing. As mentioned previously, x{(S(1,n) = n, and for £ = 2, it
it x(S(2,n) = [lgn]. For k = 3, the chromatic number of 8(3,n) is
t for which there are n antichains in 2%, the lattice of all subsets of [t]
-lusion (see [32] for additional details and a discussion for larger values
, the problem of estimating the number of antichains in 2* is a classical
m as Dedekind’s problem. Although no closed form solution is known,
tively accurate estimates, e.g., see Kleitman and Markowsky {20], and
ugh to establish the following asymptotic formula:

x(S(3,n)) =lglgn + (1/2 + o(1)) lglglgn.

> = (X, P) is called an interval order if there exists a function " which
th element z € X a closed interval [I;, 7] of the real line R so that
and only if r; < I, in R. The poset I, introduced in Section 2 is called
interval order. Although posets of height 2 can have arbitrarily large
owns, for example), this is not true for interval orders. For a positive
d(n) denote the maximum dimension of an interval order of height n.
1i, Hajnal, Rédl and Trotter exploit the connection with double shift
w that:

d(n) =lglgn + (1/2 + o(1)) Iglglg n.

1g techniques from Spencer [29] with the estimate for the chromatic
uble shift graphs, Trotter [32] showed that the same estimate holds

1)
dim(1,2;n) = Iglgn + (1/2 + o(1)) Iglglgn.

6. Ramsey Trails in Interval Orders

f the next four sections, we outline a recent application of Ramsey
ats. Our first example involves the concept of Ramsey trails. Suppose
" finite structures with a well ammzmm notion of substructure, which is

RAMSEY THEORY AND POSETS 343

denoted C. Also suppose that f is a monotonic function mapping C to Ry, i.e., if
G C H, then f(G) < f(H). A sequence 7 = {G,, : n > 1} of structures is called a
Ramsey trail if

1. G, C Gy foralln>1, and

2. limy oo f(GR) = 0.

Now suppose that r is a positive integer and that 7; = {Gin : n > 1} is a
Ramsey trail for each 7 = 1,2,...,7. We say that this family characterizes f if for
every integer t, there exists an integer s, so that if G is any structure in C with
f(G) > s, then there is an integer 7 € [r] and an integer n > 1 so that G;,, C G and
f(G;n) > t. The least r for which such a family exists is then called the Ramsey
complezity of the function f. For example, consider the class of all graphs and the
function f which assigns to a graph G the number of vertices in the graph. Then
it follows that the Ramsey complexity of f is 2. This is evidenced by two ramsey
trails, the set of all independent graphs and the set of all complete graphs. On the
other hand, the existence of graphs with large girth and large chromatic number
is enough to show that chromatic number cannot be characterized by any finite
number of Ramsey trails. So the Ramsey complexity of the function y is infinite.

Nevertheless, it is an important topic in graph theory to identify classes of
discrete structures and monotonic functions defined on them for which the Ramsey
complexity is finite. It is of special interest to recognize when it is 1. For example,
a well studied problem in graph theory is to investigate classes of graphs for which
chromatic number can be bounded as a function of maximum clique size. Such
classes are said to be x-bounded. As just a single example, Gyarfds [15] has shown
that the set of circle graphs (intersection graphs of chords of a circle) is x-bounded.
To date the best result on this subject is due to Kostochka and Kratochvil [21]
who showed that a circle graph with maximum clique size w has chromatic number
o(2¥).

For posets in general, dimension cannot be characterized by any finite number
of interval orders, so dimension has infinite Ramsey complexity. But for many
years, it was believed that the Ramsey complexity of dimension is 1 for the class of
interval orders, and that dimension for interval orders could be characterized by a
single Ramsey trail, namely the family of canonical interval orders. This conjecture
has recently been settled in the affirmative by Kierstead and Trotter [19]. Since
every interval order is a subposet of a sufficiently large canonical interval order,
their theorem has the following attractive reformulation.

THEOREM 6.1. For every interval order P, there exists an integer t, so that if
Q is any interval order with dimension at least t, then P is isomorphic to a subposet

of Q. O
7. Fractional Dimension for Interval Orders

Let P = (X, P) be a poset and let F = {My,... , M;} be a multiset of linear
extensions of P. Brightwell and Scheinerman [5] call F a k—fold realizer of P if
for each incomparable pair (z,y), there are at least k linear extensions in F which
reverse the pair (z,y), i.e, [{i : 1 < i < t,z > y in M;}| > k. The fractional
dimension of P, denoted by fdim(P), is then defined as the least real number ¢ > 1
for which there exists a k—fold realizer F = {Mi,...,M;} of P so that k/t > 1/¢
(it is easily verified that the least upper bound of such real numbers ¢ is indeed
attained). Using this terminology, the dimension of P is just the least t for which

-
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a 1-fold realizer of P. It follows immediately that fdim(P) < dim(P),
set P.

wimum degree, denoted A(P), of a poset P = (X, P) is just the maxi-
e in the associated comparability graph, i.e., the maximum number of
>arable to any one point. The dimension of a poset is bounded in terms
aum degree. The following upper bound is due to Firedi and Kahn [13].

EM 7.1. If P = (X,P) is a poset and A(P) < k, then dim(P) <

O
st lower bound to date is due to Erdds, Kierstead and Trotter [7].

EM 7.2. There exists an absolute constant € > 0 so that for each k > 1,
a poset P with A(P) = k and dim(P) > eklogk. a

‘tional dimension, the corresponding problem is much cleaner. Brightwell
srman (5] proved that if P is a poset with A(P) = k, then fdim(P) <
" conjectured that this inequality could be improved to fdim(P) < k+1.
roved by Felsner and Trotter [9], and the argument yielded a much
nclusion, a result with much the same flavor as Brooks’ theorem for

EM 7.3. Let k be a positive integer, and let P be any poset with A(P) =
m(P) < k+ 1. Furthermore, if k > 2, then fdim(P) < k+ 1 unless one
wnents of P is isomorphic to Si41, the standard example of a poset of
E+1. O

and Trotter [9] derive several other inequalities for fractional dimen-
hese lead to some challenging problems as to the relative tightness of
similar to the one given in the preceding theorem.

nal dimension is also relatively well behaved on the class of interval
5], Brightwell and Scheinerman proved that the fractional dimension of
order was less than 4, and they conjectured that this result was best
. [40], Trotter and Winkler settled this conjecture in the positive.

EM 7.4, For everye > 0, there exists an interval order P with fdim(P) >
O

chniques and concepts introduced by Trotter and Winkler in [40] are
» more important than the theorem which motivated the work in the
Specifically, they ask what common patterns must appear in arbitrary
spaces, provided that the space contain events corresponding to subsets
ntly large finite set. This question must first be discretized, and this is
2d by considering approximations.

8. Circle Orders and Sphere Orders

1 partially ordered set (poset) P = (X, P), a function F which assigns
€ X a set F(x) is called an inclusion representation of P if x < y
L only if F(z) € F(y). Every poset has such a representation. For
1st take F(z) = {y € X : y < z in P}. We refer the reader to the
1 by Fishburn and Trotter [11] for additional background material on
nclusion representations and an extensive bibliographic listing.
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As is well known, the finite posets of dimension at most two are just those which
have inclusion representations using closed intervals of the real line R. Because a
closed interval of R can also be considered as a sphere in R, it is natural to ask
which posets have inclusion representations using disks (circles) in R2. For historical
reasons, these posets are called circle orders. Fishburn [10] showed that all interval
orders are circle orders. Also, the so called standard examples of n-dimensional
posets, the 1-element and (n — 1)-element subsets of {1,2,...,n}, ordered by in-
clusion, are circle orders. So among the circle orders are some posets of arbitrarily
large dimension.

Call a poset P a sphere order if there is some d > 1 for which it has an inclusion
representation using spheres in R%. Using the “degrees of freedom” theorem of Alon
and Scheinerman [2], it follows that not all posets of dimension d + 2 have inclusion
representations using spheres in R?. In particular, when d = 2, we conclude that
there are 4-dimensional posets which are not circle orders.

In [27], Scheinerman and Wierman used Ramsey theory to show that the count-
ably infinite 3-dimensional poset Z® is not a circle order.

These results leave open the following question:

QUESTION 8.1. Is every finite 3-dimensional poset a circle order? |
A somewhat more general question was posed by Brightwell and Winkler in [6].
QUESTION 8.2. Is every finite poset a sphere order? 0

Using Ramsey theoretic techniges which extend the product Ramsey theorem,
both Question 1 and Question 2 are settled by the following theorem of Felsner,
Fishburn and Trotter [8].

THEOREM 8.3. There exists an integer ng so that if n > ng, the finite 3-
dimensional poset n® is not a sphere order. O

The techniques developed in [8] are likely to have applications to other combi-
natorial problems, especially the use of ramsey theory to control error in approxi-
mations and the concept of uniform induced functions.

9. Extremal Problems for Posets

In (1], Agnarsson, Felsner and Trotter study a natural extremal problem for
posets, a problem which in fact was motivated by questions in ring theory. With
a finite graph G = (V, E), associate a partially ordered set P = (X, P) defined by
setting X = VUF and z < e in P if and only if z is an endpoint of e in G. This
poset is called the incidence poset of G, and the extremal problem investigated
in (1] is then to determine the maximum number M(p,d) of edges in a graph on p
nodes if its incidence poset has dimension at most d.

The starting point for this research is the following well known theorem of
W. Schnyder [28].

THEOREM 9.1. A graph G is planar if and only if the dimension of its incidence
poset is at most 3. O

As an immediate consequence of Schnyder’s theorem, M(p, 3) is just the max-
imum number of edges in a planar graph on p vertices, so M(p, 3) = 3p — 6 for all
p=>3
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1 also determine the exact value of M(p, 2), since the incidence poset of

s dimension at most 2 if and only if it is either a path or a subgraph of

follows that M(p,2) =p—1, for all p > 2.

> 4, it is likely to be very difficult to determine M(p, d) precisely, except
relatively small in comparison to d. For this reason, it seems more
to concentrate on asymptotic results for fixed d with p — co. Ford = 4,
Felsner and Trotter provide the following formula.

REM 9.2.
. M(p,4) 3
1 —_— =
tm‘wo Nvm 8

oof of this theorem requires several powerful combinatorial tools, includ-
sduct Ramsey theorem, Turdn’s theorem and the Erd&s/Stone theorem.
ae reader to (1] for the proof and additional details on the connections
heory.
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