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1. Introduction

We deal with vectors in Zw, which we call just vectors. The ith coordinate of a vector 
A ∈ Z

w is denoted by A[i], for 1 � i � w. The product ordering on Zw is defined by 
setting A � B for A, B ∈ Z

w whenever A[i] � B[i] for every coordinate i. When k � 1, 
we say that vectors A and B from Zw are k-crossing if there are coordinates i and j for 
which A[i] −B[i] � k and B[j] −A[j] � k. Thus A is an antichain in Zw if and only if any 
two distinct vectors from A are 1-crossing. A family of vectors in Zw is k-crossing-free
if it contains no two k-crossing vectors.

For positive integers k and w, let f(k, w) denote the maximum size of a subset of Zw

with any two vectors being 1-crossing but not k-crossing. In other words, f(k, w) is the 
maximum size of a k-crossing-free antichain in Zw. Note that an antichain of vectors 
in Zw with w � 2 without the restriction that no two vectors are k-crossing can have 
infinite size (e.g. {(k, −k): k ∈ Z} for w = 2). Similarly, there are infinite k-crossing-free 
families of vectors in Zw which are not antichains (e.g. {(k, k): k ∈ Z} for w = 2).

Determining the value of f(k, w) is the main focus of this paper. The following striking 
simple conjecture was formulated in 2010 and never published, so we state it here with 
the kind permission of its authors.

Conjecture 1 (Felsner, Krawczyk, Micek). For all k, w � 1, we have

f(k,w) = kw−1.

At first, it is even not clear whether f(k, w) is bounded for all k and w. We prove 
the conjecture for 1 � w � 3 and provide lower (matching the conjectured value) and 
upper bounds on f(k, w) for w � 4. Still, we are unable to resolve the conjecture in full 
generality.

Theorem 2. For 1 � w � 3 and k � 1, we have

f(k,w) = kw−1.

Theorem 3. For w � 4 and k � 1, we have

kw−1 � f(k,w) � min
{
kw − k2(k − 1)w−2,

⌈
w
3
⌉
kw−1}.

The remainder of this paper is organized as follows. We start, in the next section, 
by a brief discussion of problems in partially ordered sets that initiated this research. 
Section 3 is devoted to the proof of Theorem 3 and the lower bound of Theorem 2. The 
upper bound of Theorem 2 is proved in Section 4. In Section 5, we propose another 
conjecture, which is at first glance more general but in fact equivalent to Conjecture 1. 
Concluding in Section 6, we provide examples of families witnessing f(k, w) � kw−1 with 
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a discussion why the full resolution of the conjecture seems to be difficult. We also present 
a proof of the conjecture for families of vectors with a single coordinate differentiating 
all vectors in the family and another argument for ranked families of vectors, that is, 
families in which the coordinates of every vector sum up to the same value.

2. Background motivation

Let M(P ) denote the family of all maximum antichains (that is, antichains of maxi-
mum size) in a finite poset P . The family M(P ) is partially ordered by setting A � B

when for every a ∈ A there is b ∈ B with a � b in P , or equivalently, when for every 
b ∈ B there is a ∈ A with a � b in P . The family M(P ) equipped with this partial 
order forms a distributive lattice [3], and every finite distributive lattice is isomorphic to 
M(P ) for some poset P [8]. In the following, we are concerned with the order structure 
of M(P ), in particular its width.

For positive integers k1, . . . , kn, let k1 + · · · + kn denote the poset consisting of n
pairwise disjoint chains of sizes k1, . . . , kn with no comparabilities between points in 
distinct chains. For a positive integer k, let P(k) denote the class of posets containing 
no subposet isomorphic to k + k. The posets in P(1) are just the chains, while P(2) is 
exactly the class of interval orders [6,9]. For positive integers k and w, let P(k, w) denote 
the subclass of P(k) consisting of posets of width at most w.

Recently, several results in combinatorics of posets showed that problems that are 
difficult or even impossible to deal with for all posets of bounded width become much 
easier when only posets from P(k, w) are considered. This includes the on-line chain 
partitioning problem [1,4,7] and the on-line dimension problem [5].

It is easy to see that the width of M(k+k) is k, and it follows from Sperner’s theorem 
[10] that the width of M( 2 + · · · + 2︸ ︷︷ ︸

w

) is 
(

w
�w/2�

)
. However, it turns out that the width 

of M(P ) can be bounded by a constant when the width of P is bounded and the size of 
a k + k type structure in P is bounded as well.

Proposition 4. For k, w � 1 and P ∈ P(k+1, w), the width of M(P ) is at most f(k, w).

Proof. By Dilworth’s theorem [2], P can be covered with w chains C1, . . . , Cw. Each of 
them intersects each antichain A ∈ M(P ). Enumerate the elements of each chain Ci as 
ci,1, . . . , ci,|Ci| according to their order in the chain. For an antichain A ∈ M(P ), define 
a vector A′ ∈ Z

w so that A′[i] is the height in Ci of the element common to both A and 
Ci, that is, A ∩Ci = {ci,A′[i]} for 1 � i � w. Clearly, for every antichain A ⊂ M(P ), the 
family of vectors A′ = {A′: A ∈ A} is an antichain in Zw. Moreover, no two vectors in 
A′ are k-crossing: if A′[i] −B′[i] = k1 � k and B′[j] −A′[j] = k2 � k for some A, B ∈ A
and 1 � i, j � w, then the elements ci,B′[i], . . . , ci,A′[i] and cj,A′[j], . . . , cj,B′[j] induce a 
subposet of P isomorphic to (k1 +1) +(k2 +1), which contradicts the assumption that 
P ∈ P(k + 1, w). Therefore, we have |A| = |A′| � f(k, w). �
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Conjecture 5 (Felsner, Krawczyk, Micek). Let k and w be positive integers with k � 2. 
The maximum width of M(P ) for a poset P ∈ P(k, w) is (k − 1)w−1.

This conjecture was made prior to the formulation of Conjecture 1. It follows from 
Proposition 4 that Conjecture 1 implies Conjecture 5. In particular, in view of Theo-
rem 2, Conjecture 5 is true for w � 3. In the special case k = 2, since P(2, w) is the 
class of interval orders of width w, Conjecture 5 states the well-known fact that the 
maximum antichains in an interval order form a chain. Moreover, we are able to prove 
that Conjecture 5 for k = 3 and Conjecture 1 for k = 2 are equivalent.

3. General bounds

The purpose of this section is to give the proof of Theorem 3 and the lower bound of 
Theorem 2, namely, that we have

f(k,w) � kw−1 for k,w � 1,

f(k,w) � min
{
kw − k2(k − 1)w−2,

⌈
w
3
⌉
kw−1} for w � 4 and k � 1.

Note that f(k, 1) = k0 = 1 for every k � 1, as all antichains in Z1 are of size 1. Also, 
f(1, w) = 1w−1 = 1 for every w � 1, as in this case every pair of distinct vectors is 
required to be simultaneously 1-crossing and non-1-crossing.

For the lower bound, observe that the following family is a k-crossing-free antichain 
in Zw and has size kw−1:

{
A ∈ Z

w: 0 � A[i] � k − 1 for 1 � i � w − 1, and A[1] + · · · + A[w] = 0
}
.

For the upper bound, we start by an easy argument that yields the bound of kw. Let 
A be a k-crossing-free antichain in Zw. For each vector A ∈ A, let σ(A) be the vector 
from {0, . . . , k − 1}w such that A[i] ≡ σ(A)[i] (mod k) for 1 � i � w. If σ(A) = σ(B)
for distinct vectors A, B ∈ A, then any two coordinates i and j such that A[i] > B[i]
and B[j] > A[j] (which must exist, as A is an antichain) witness that A and B are 
k-crossing. It follows that σ is an injection. Since the size of the range of σ is kw, we 
have |A| � kw.

We obtain better upper bounds using the following recursive formula.

Claim 6. For w � 2 and k � 1, we have

f(k,w) � kw−vf(k, v) + kvf(k,w − v), for 1 � v < w,

f(k,w) � kw−1 + (k − 1)f(k,w − 1).

Proof. Let A be a k-crossing-free antichain in Zw. When A ∈ A and 1 � i � j � w, we 
will use A[i, . . . , j] as a convenient notation for the vector (A[i], . . . , A[j]) in Zj−i+1.
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Fix a residue class (r1, . . . , rw−v) ∈ {0, . . . , k − 1}w−v, and consider the family A′ of 
all vectors A ∈ A such that A[i] ≡ ri (mod k) for 1 � i � w− v. For any distinct vectors 
A, B ∈ A′, we have A[w − v + 1, . . . , w] �= B[w − v + 1, . . . , w], as otherwise A and B
would be k-crossing. Let A′′ = {A[w−v+1, . . . , w]: A ∈ A′}. The maximal vectors in A′′

form a k-crossing-free antichain, so there are at most f(k, v) of them. Color the vectors 
A ∈ A′ such that A[w − v + 1, . . . , w] is maximal in A′′ red and the remaining vectors 
in A′ blue. Hence there are at most f(k, v) red vectors A′ for the fixed residue class and 
at most kw−vf(k, v) red vectors in A altogether.

Now, fix a residue class (rw−v+1, . . . , rw) ∈ {0, . . . , k − 1}v, and consider the family 
A′ of all blue vectors A ∈ A such that A[i] ≡ ri (mod k) for w − v + 1 � i � w. For 
any distinct vectors A, B ∈ A′, we have A[1, . . . , w − v] �= B[1, . . . , w − v], as otherwise 
A and B would be k-crossing. Let A′′ = {A[1, . . . , w − v]: A ∈ A′}. We show that A′′

is an antichain. Suppose to the contrary that there are two vectors A, B ∈ A′ such that 
A[1, . . . , w−v] < B[1, . . . , w−v]. The vectors A[w−v+1, . . . , w] and B[w−v+1, . . . , w] are 
distinct, as otherwise we would have A < B, and comparable in Zv, as otherwise A and B
would be k-crossing. Hence we have A[w−v+1, . . . , w] > B[w−v+1, . . . , w]. In particular, 
there is a coordinate j ∈ {w − v + 1, . . . , w} such that A[j] > B[j], which implies 
A[j] −B[j] � k. By the definition of the coloring, there is a red vector A′ ∈ A such that

(i) A′[i] ≡ A[i] (mod k) for 1 � i � w − v, and
(ii) A′[w − v + 1, . . . , w] > A[w − v + 1, . . . , w].

There is a coordinate i ∈ {1, . . . , w − v} such that A′[i] < A[i], as otherwise we 
would have A′ > A. This implies A[i] − A′[i] � k. This is a contradiction: we have 
B[i] − A′[i] � A[i] − A′[i] � k and A′[j] − B[j] � A[j] − B[j] � k, so A′ and B are 
k-crossing. We have thus shown that A′′ is indeed an antichain. Since A′′ is k-crossing-
free, we have |A′′| � f(k, w − v). Hence |A′| � f(k, w − v) for the fixed residue class, 
and there are at most kvf(k, w − v) blue vectors in A altogether.

We conclude that the total number of red and blue vectors in A is at most 
kw−vf(k, v) + kvf(k, w − v), as is required for the first inequality. For the second one, 
if v = 1, then it is enough to consider residue classes of A[w] modulo k − 1 instead of k
in the second part of the argument. This is because A′[w] − B[w] � k will follow from 
A[w] −B[w] � k − 1 and the strict inequality A′[w] > A[w] (see (ii) above). �

From the second inequality of Claim 6 and the fact that f(k, 1) = 1, it follows that 
f(k, w) � kw − (k − 1)w. This bound is better than both kw and wkw−1. With the 
equality f(k, 3) = k2 of Theorem 2, we get an even better bound

f(k,w) � kw − k2(k − 1)w−2, for w � 2.

The first inequality of Claim 6 applied recursively with v = 3 and f(k, 3) = k2 give an 
upper bound

f(k,w) �
⌈
w
⌉
kw−1, for w � 3.
3
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4. The case w ��� 3

In this section, we prove Theorem 2, namely, that for 1 � w � 3 and k � 1 we have

f(k,w) = kw−1.

As explained at the beginning of the previous section, the equality holds for w = 1
or k = 1. Therefore, for the rest of this section, we assume that 2 � w � 3 and k � 2. 
We only need to show that f(k, w) � kw−1, as the converse inequality is proved in the 
previous section. We start by the following easy proposition, stated for emphasis.

Proposition 7. Let w � 2, and let A be an antichain in Zw. If S ⊂ {1, . . . , w}, |S| = w−2, 
and A[i] = B[i] for any A, B ∈ A and every i ∈ S, then the two remaining coordinates 
j, j′ ∈ {1, . . . , w} � S determine two linear orders on A, one dual to the other. That is, 
if we set n = |A|, then there is a labeling A1, . . . , An of the vectors in A such that

A1[j] < · · · < An[j] and A1
[
j′
]
> · · · > An

[
j′
]
.

In particular, A1 and An are (n − 1)-crossing.

It follows immediately from Proposition 7 that f(k, 2) � k. Therefore, for the remain-
der of the argument, we fix w = 3 and show that f(k, 3) � k2 for k � 2.

We say that a k-crossing-free antichain A in Zw is compressed on the ith coordinate 
when A[i] � 0 for all A ∈ A and the quantity 

∑
A∈A A[i] is minimized over all k-crossing-

free antichains of the same size. Let A be a k-crossing-free antichain in Z3 compressed 
on the third coordinate. It follows that Q3 = {A[3]: A ∈ A} is an interval of non-negative 
integers starting from 0. By Proposition 7, the subfamily of A consisting of all vectors 
A with A[3] = s has size at most k for any s � 0. We conclude that |A| � k2 if |Q3| � k. 
Thus, for the remainder of the argument, we assume |Q3| > k.

Now, we use coordinate 3 to define a directed graph D whose vertices are the vectors 
in A. The edges in D are of two types: short and long.

(i) D has a short edge from A to B when A[3] −B[3] = 1 and A[i] � B[i] for i ∈ {1, 2}.
(ii) D has a long edge from A to B when B[3] −A[3] = k − 1 and there is a coordinate 

i ∈ {1, 2} for which A[i] −B[i] � k.

Claim 8. For every A ∈ A, there is a path (A0, . . . , Ap) in D with A0 = A and Ap[3] = 0.

Proof. The statement is trivial for A ∈ A with A[3] = 0. Suppose the conclusion of the 
claim is false for some vector A ∈ A with A[3] > 0. Let B denote the subfamily of A
consisting of A and the vectors B in A for which there is a directed path from A to B
in D. Decrease coordinate 3 of each vector in B by 1, thus obtaining a family B′. The 
family A′ = (A �B) ∪B′ has the same size as A, is an antichain, contains no two k-crossing 
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vectors, uses only non-negative coordinates, and satisfies 
∑

A∈A′ A[i] <
∑

A∈A A[i]. This 
contradicts the choice of A and completes the proof of the claim. �
Claim 9. For every A ∈ A with A[3] � k, there is a path (U0, . . . , Uk) in D such that 
U0[3] = A[3] and (Um, Um+1) is a short edge in D for 0 � m � k − 1.

Proof. Fix A ∈ A with A[3] � k. For each U ∈ A with U [3] = A[3], consider the length of 
a shortest path P = (U0, . . . , Up) in D from U to a vertex Up with Up[3] = 0. Of all such 
U and Up, take those for which the length p of the path P is minimized. We show that 
the first k + 1 vectors on the chosen path satisfy the requirements of the claim. Suppose 
to the contrary that there is m with 0 � m � k − 1 for which the edge (Um, Um+1) is 
long. Then Um+1[3] � A[3], and it follows that there is an integer n with m + 1 � n < p

for which Un[3] = A[3]. This contradicts the choice of P and completes the proof of the 
claim. �

In view of Claim 9, it is natural to refer to a path P = (U0, . . . , Up) in D as a short 
path when all edges on P are short. Also, we say that the short edge (U, V ) from D is 
expanded in coordinate i when V [i] > U [i]. Clearly, if (U, V ) is a short edge in D, then 
it is expanded in one or both of coordinates 1 and 2 (as U and V are 1-crossing).

Let As = {A ∈ A: A[3] ≡ s (mod k)} for 0 � s � k − 1. To complete the proof, we 
show that |As| � k for 0 � s � k − 1. Thus, for the remainder of the argument, we fix 
an integer s with 0 � s � k − 1. Let r be the largest integer for which there is a vector 
A ∈ A with A[3] = s +(r−1)k, and let As = B1∪· · ·∪Br be the natural partition of As

such that A[3] = s + (j − 1)k for each A ∈ Bj . We can assume that r � 2, as otherwise 
the conclusion that |As| � k follows from Proposition 7.

For 1 � j � r, we refer to Bj as level j of As. Also, for 1 � j � r − 1, we apply 
Claim 9 and choose a short path Pj of k + 1 vectors starting at a vector Xj+1 ∈ Bj+1

and ending at a vector Yj ∈ Bj .

Claim 10. For 2 � j � r − 1, we have Xj �= Yj.

Proof. Suppose to the contrary that for some j with 2 � j � r − 1 we have Xj = Yj . 
The ending point of the short path Pj is the same as the starting point of the short 
path Pj−1. It follows that the union of these two paths is a short path of 2k + 1 vectors 
starting at the vector Xj+1 and ending at the vector Yj−1. Denote the vectors on this 
path by P = (U0, . . . , U2k), where U0 = Xj+1 and U2k = Yj−1. We have

U0[i] � · · · � U2k[i] for i ∈ {1, 2}.

Furthermore, for 0 � m � 2k − 1, the short edge (Um, Um+1) is expanded in some 
coordinate i ∈ {1, 2}. Since there are 2k short edges on P, at least k of them are expanded 
in some coordinate i ∈ {1, 2}. It follows that U2k[i] −U0[i] � k. Since U0[3] −U2k[3] = 2k, 
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we conclude that U0 and U2k are k-crossing. This contradiction completes the proof of 
the claim. �

Let j be an integer with 1 � j � r. Since A[3] = s + (j − 1)k for all A ∈ Bj , we know 
from Proposition 7 that (a) each of the first two coordinates determines a linear order 
on Bj , and (b) these two linear orders are dual. In particular, if 2 � j � r−1, then there 
is a unique i ∈ {1, 2} for which Xj [i] > Yj [i].

Now let i ∈ {1, 2}. An interval B = [p, t] of consecutive integers from [1, r−1] is called 
a block of type i when the following conditions are satisfied:

(i) p = 1 or Xp[i] < Yp[i];
(ii) Xj [i] > Yj [i] for all j ∈ (p, t];
(iii) t = r − 1 or Xt+1[i] < Yt+1[i].

The blocks of type i form a partition of the integer interval [1, r−1]. In particular, every 
j ∈ [1, r − 1] belongs to two blocks, one of each type. Moreover, for every j ∈ [1, r − 2], 
there is a unique i such that j and j+1 belong together to a block of type i. This implies 
that there are exactly r blocks altogether. When r = 2, the singleton set {1} is a block of 
both types, as the three conditions listed above are satisfied vacuously, and it is counted 
twice.

Choose j with 1 � j � r − 1. Let Pj = (U0, . . . , Uk). For i ∈ {1, 2}, let Bi be the 
block of type i containing j, that is, Bi = [pi, ti] with pi � j � ti. When a short edge 
(Um, Um+1) with 0 � m � k − 1 is expanded in coordinate i, we say that (Um, Um+1) is 
expanded in Bi. Each of the short edges (Um, Um+1), for 0 � m � k − 1, is expanded in 
at least one of B1 and B2.

Now, choose j with 1 � j � r. Let U and V be distinct vectors in Bj that occur 
consecutively in the two linear orders induced by coordinates 1 and 2. We say that the 
pair (U, V ) contributes a space to a block B = [p, t] of type i when one of the following 
three conditions is satisfied:

(i) j = p and U [i] > V [i] � Yj [i];
(ii) p + 1 � j � t and Xj [i] � U [i] > V [i] � Yj [i];
(iii) j = t + 1 and Xj [i] � U [i] > V [i].

Claim 11. Let j be an integer with 1 � j � r. If U, V ∈ Bj are consecutive in the linear 
orders on Bj determined by coordinates 1 and 2, then exactly one of (U, V ) and (V, U)
contributes a space to a block and that block is unique.

Proof. Assume without loss of generality that U [1] > V [1] and V [2] > U [2].
Suppose first that j = 1. If U [1] > V [1] � Y1[1], then (U, V ) contributes a space to 

the block of type 1 containing 1. Otherwise, we have V [2] > U [2] � Y1[2] and (V, U)
contributes a space to the block of type 2 containing 1.
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The proof for the case j = r is similar. If Xr[1] � U [1] > V [1], then (U, V ) contributes 
a space to the block of type 1 containing r− 1. Otherwise, (V, U) contributes a space to 
the block of type 2 containing r − 1.

Now, suppose 2 � j � r − 1. There is a unique block B containing both j − 1
and j. Assume without loss of generality that B is a block of type 1. If Xj [1] � U [1] >
V [1] � Yj [1], then (U, V ) contributes a space to B. If U [1] > V [1] � Xj [1], then (V, U)
contributes a space to the block of type 2 containing j−1. Finally, if Yj [1] � U [1] > V [1], 
then (V, U) contributes a space to the block of type 2 that contains j. �
Claim 12. For every block B, the total number of pairs that contribute a space to B and 
short edges that expand in B is at most k − 1.

Proof. Let B = [p, t] be a block of type i. For p � j � t + 1, let V 0
j , . . . , V

nj

j be the 
vectors V from Bj such that

(i) V [i] � Xj [i] when j � p + 1,
(ii) V [i] � Yj [i] when j � t.

Assume further that V 0
j , . . . , V

nj

j are ordered so that V 0
j [i] > · · · > V

nj

j [i]. Thus V nj

j =
Xj for p +1 � j � t +1, and V nj

j = Yj for p � j � t. Clearly, the pairs (V m
j , V m+1

j ) with 
p � j � t + 1 and 0 � m � nj − 1 are exactly the pairs that contribute a space to B.

For p � j � t, let Pj = (U0
j , . . . , U

k
j ). Thus U0

j = Xj+1, Uk
j = Yj , and Uk

j [i] �
· · · � U0

j [i]. Clearly, the short edges (Um
j , Um+1

j ) with p � j � t, 0 � m � k − 1, and 
Um+1
j [i] > Um

j [i] are exactly the short edges that expand in B.
To conclude, since we have

V 0
p [i] > · · · > V

np
p [i] = Yp[i] = Uk

p [i] � · · · � U0
p [i] = Xp+1[i]

= V 0
p+1[i] > · · · > V

np+1
p+1 [i] = Yp+1[i] = Uk

p+1[i] � . . .
� U0

t [i] = Xt+1[i]

= V 0
t+1[i] > · · · > V

nt+1
t+1 [i],

the total number of pairs that contribute a space to B and short edges that expand in B

is at most V 0
p [i] −V

nt+1
t+1 [i]. Since V nt+1

t+1 [3] −V 0
p [3] = (t −p +1)k, we have V 0

p [i] −V
nt+1
t+1 [i] �

k − 1, as otherwise V 0
p and V nt+1

t+1 would be k-crossing. �
We are now ready to assemble this series of claims and complete the proof that 

|As| � k. For 1 � j � r, let bj = |Bj |. Thus |As| = b1 + · · · + br. By Claim 11, there are 
bj − 1 ordered pairs of elements from Bj that occur consecutively in the linear orders on 
Bj induced by coordinates 1 and 2 and each contributes a space to one of the r blocks. 
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Also, each of the (r − 1)k short edges on the paths P1, . . . , Pr−1 is expanded in at least 
one block. Thus, by Claim 12, we have

r∑
j=1

(bj − 1) + (r − 1)k � r(k − 1).

On the other hand, we have

r∑
j=1

(bj − 1) = |As| − r.

Composing the two, we obtain |As| � k, which completes the proof of Theorem 2.

5. Generalization

For w � 1 and 1 � k1 � · · · � kw, we say that vectors A and B from Zw are 
(k1, . . . , kw)-crossing when there are two coordinates i and j for which A[i] −B[i] � ki and 
B[j] −A[j] � kj . Let f(k1, . . . , kw; w) denote the maximum size of a (k1, . . . , kw)-crossing-
free antichain of vectors in Zw. Thus f(k, w) = f(k, . . . , k; w).

Proposition 13. For w � 1 and k1, . . . , kw � 1, we have

k2 · · · kw � f(k1, . . . , kw;w) � k1 · · · kw.

The proof of Proposition 13 follows along the same lines as the proof of the inequalities 
kw−1 � f(k, w) � kw at the beginning of Section 3. We propose a conjecture which seems 
to be more general but turns out to be equivalent to Conjecture 1.

Conjecture 14. For w � 1 and 1 � k1 � · · · � kw, we have

f(k1, . . . , kw;w) = k2 · · · kw.

Proposition 15. Conjectures 1 and 14 are equivalent.

Proof. Clearly, Conjecture 14 yields Conjecture 1. To prove the converse implication, 
we assume f(k1, . . . , k1; w) = kw−1

1 and prove f(k1, . . . , kw; w) = k2 · · · kw. Let A be a 
(k1, . . . , kw)-crossing-free antichain in Zw. For any selection of k1-element subsets I2 ⊂
{0, . . . , k2 − 1}, . . . , Iw ⊂ {0, . . . , kw − 1}, consider the family A(I2, . . . , Iw) = {A ∈ A:
A[i] mod ki ∈ Ii for 2 � i � w}. Now, modify each A ∈ A(I2, . . . , Iw) to get a vector A′

so that if A[j] = ajkj + rj , where 0 � rj < kj , and �j is the position of rj in the natural 
ordering of Ij , then A′[j] = ajk1 + �j . Clearly, the resulting family A′ of all the vectors 
A′ is a k1-crossing-free antichain. Thus |A(I2, . . . , Iw)| = |A′| � kw−1

1 . Summing up over 
all selections of subsets I2, . . . , Iw, we obtain
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(
k2−1
k1−1

)
· · ·

(
kw−1
k1−1

)
|A| �

(
k2
k1

)
· · ·

(
kw

k1

)
kw−1
1 ,

which implies |A| � k2 · · · kw. �
Proposition 15 tells us that in some sense the most difficult case is when all ki are 

equal. Surprisingly, for some values of ki, we know the exact answer. For instance,

f
(
k, k, 2k, . . . , 2w−1k;w

)
= k · 2k · · · 2w−1k.

Namely, we show that

f
(
k, k, 2k, . . . , 2w−1k;w

)
� kf

(
2k, 2k, . . . , 2w−1k;w − 1

)
,

which together with f(k, k; 2) = k and Proposition 13 gives the previous equality. We 
write A <2

1 B if A[1] < B[1] and A[2] > B[2]. Every maximum chain in this order has size 
at most k, as otherwise it would yield a (k, k, 2k, . . . , 2w−1k)-crossing. Let A′ be a family 
of vectors of a fixed height in the order <2

1. Now let φ(A) = (A[1] +A[2], A[3], . . . , A[w])
for A ∈ A′. The mapping φ is an injection, and φ(A′) is a (2k, 2k, . . . , 2w−1k)-crossing-
free antichain in Zw−1. This gives the required inequality.

6. Extremal examples

Some classical extremal problems have elegant solutions due to the fact that all max-
imal structures are also maximum. For example, the maximum number of edges in a 
planar graph is 3n − 6 when n � 3, because if G is any planar graph containing 
a face that is not a triangle, then an edge can be added to G while preserving pla-
narity.

Other extremal problems can have many different maximal structures but essentially 
only one which is maximum. An example of this is Turán’s theorem, which asserts that 
the maximum number of edges in a graph on n vertices which does not contain a complete 
subgraph on k + 1 vertices is the number of edges in the complete k-partite graph on n
vertices, where the part sizes are as balanced as possible. Another example is Sperner’s 
theorem, which asserts that the only maximum antichains in the lattice of all subsets of 
{1, . . . , n} are the ranks at levels �n/2	 and 
n/2�.

It is our feeling that the extremal problem discussed in this paper is challenging 
because there are many different examples that we suspect to be extremal. We already 
presented one example at the beginning of Section 3, and in this section we develop some 
others.

6.1. Inductive construction

Suppose that we have constructed a k-crossing-free antichain A in Zw, and suppose 
it is contained in [0, c)w. We are going to construct an antichain A′ of size k|A| on w+1
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coordinates. Put k disjoint copies of A one above another on coordinates 1, . . . , w, that 
is, the ith copy inside [(i −1)c, ic)w, and set the coordinate w+1 to be −i for all vectors 
in the ith copy. This way we obtain a k times larger k-crossing-free antichain in Zw+1. 
If |A| = kw−1, then |A′| = kw.

6.2. Lexicographic construction

When A ∈ Z
w, the rank of A is the sum A[1] + · · ·+A[w]. Let k, w � 2. We construct 

an antichain A in Zw as follows. First, consider the family F of all vectors in Zw with 
0 � A[i] � k − 1 for 1 � i � w and 

∑w
i=1 A[i] ≡ w(k − 1) (mod k). Clearly, there are 

kw−1 vectors in F . For each A ∈ F , there is a unique non-negative integer m(A) such 
that

m(A) · k + A[1] + · · · + A[w] = w(k − 1).

Let n be the maximum value of m(A) taken over all vectors A ∈ F . Then, let τ =
(i1, . . . , in) be any sequence of integers from {1, . . . , w}. We modify F into an antichain 
A by the following rule. If A ∈ F , then we modify A by increasing coordinate i by 
pk, where p is the number of times i occurs at the first m(A) positions of τ . Clearly, 
these modifications result in a family A consisting of kw−1 vectors. Furthermore, since 
each vector A ∈ A has rank w(k − 1), we know that A is an antichain. Also, A is 
k-crossing-free.

The example presented at the beginning of Section 3 with the wth coordinate of all 
vectors shifted up by w(k − 1) is the special case of this construction where τ is the 
constant sequence (w, . . . , w).

6.3. Cyclic construction

Here, we fix w = 3 and consider coordinates {1, 2, 3} in the cyclic order. Thus if i = 3
then i + 1 = 1, and if i = 1 then i − 1 = 3. Let k � 2. Consider the infinite family

F =
{
A ∈ Z

3:A[i + 1] � A[i] + k and A[i− 1] � A[i] + k − 1 for i ∈ {1, 2, 3}
}
.

Clearly, it contains no two k-crossing vectors. If k ≡ 0 or k ≡ 2 (mod 3), then the vectors 
in F of rank 2k − 1 form an antichain of size k2. If k ≡ 1 (mod 3), then the vectors in 
F of rank 2k − 2 form an antichain of size k2. In both cases, there is a cyclic symmetry 
between all three coordinates.

When k ≡ 1 (mod 3), the vectors in F of rank 2k− 1 form an antichain of size k2 − 1
only. Still, we can add the vector (k−1

3 +k, k−1
3 , k−1

3 ) to obtain a k-crossing-free antichain 
of size k2 at the price of losing the cyclic symmetry.
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6.4. Remarks on rank

All the examples we have constructed so far are ranked antichains, that is, they consist 
of vectors in Zw all of which have the same rank. Based on this observation, it would be 
tempting to try to reduce the entire problem to ranked antichains. Indeed, we have the 
following proposition.

Proposition 16. For all k, w � 1, the maximum size of a ranked k-crossing-free antichain 
in Zw is kw−1.

Proof. We only need to prove that if A is a ranked k-crossing-free antichain in Zw, then 
|A| � kw−1. We can assume as before that k, w � 2. For each vector A in A, let σ(A)
denote the vector in {0, . . . , k−1}w−1 such that A[i] ≡ σ(A)[i] (mod k) for 1 � i � k−1. 
Clearly, σ is an injection and its range has at most kw−1 elements. �

However, we know examples of k-crossing-free antichains in Zw of the conjectured 
extremal size kw−1 that are intrinsically non-ranked. For example, for k = 2 and w = 4, 
the following eight vectors form a non-ranked 2-crossing-free antichain in Z4:

(0, 2, 1, 1), (2, 1, 0, 1), (1, 0, 2, 1), (1, 1, 1, 1),

(1, 3, 2, 0), (3, 2, 1, 0), (2, 1, 3, 0), (2, 2, 2, 0).

The first four of the vectors above have rank 4, while the last four have rank 6. More-
over, this antichain is compressed on each of the four coordinates. More generally, any 
family obtained by the cyclic construction (Section 6.3) can be extended to w = 4 in an 
analogous manner.

6.5. Remarks on the size of the largest coordinate

Proposition 17. Let k and w be positive integers. Suppose that A is a k-crossing-free an-
tichain in Zw, and suppose that there is a coordinate j on which all vectors are different. 
Then |A| � kw−1.

Proof. Suppose all vectors differ on the first coordinate. For 2 � i � w, we define an 
order <i on A as follows. We put A <i B if A[1] < B[1] and A[i] > B[i]. The maximum 
size of a chain in this order is at most k, as otherwise A would have two k-crossing 
vectors. Let φ(A) ∈ {1, . . . , k}w−1 be the vector of heights of A in orders <2, . . . , <w. 
Clearly, if A, B ∈ A are such that A[1] < B[1], then for some coordinate i we have 
A[i] > B[i], and thus the heights of A and B in <i are different. This shows that the 
mapping φ: A → {1, . . . , k}w−1 is injective. �
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It follows that in any k-crossing-free antichain in Zw the number of different values 
attained on any coordinate is at most kw−1. Otherwise, a choice of representatives of the 
attained values would contradict Proposition 17.

6.6. Remarks on compression

Careful analysis of the proof of the case w = 3 shows that we do not really need a 
fully compressed coordinate. We only use the following two properties:

(P1) For 1 � j � r, the set Bj = {A ∈ A: A[3] = s + (j − 1)k} is an antichain.
(P2) For 1 � j � r − 1, there is a short path from a vector Xj+1 in Bj+1 to a vector Yj

in Bj .

However, when w = 4, this weaker notion of compression (with A[3] replaced by A[4]) 
is not enough. To see this, consider the union of the following families of vectors in Z4:

(i) The vectors for which 0 � A[1], A[2] � k− 1, A[3] � 2, A[1] +A[2] +A[3] = 2k− 2, 
and A[4] = k.

(ii) All vectors of the form (i, k − 1 − i, k + 1, 0) where 0 � i � k − 1.
(iii) The vector (k − 1, k − 1, k, 0).
(iv) All vectors having rank 3k − 2 with 1 � A[i] � k − 1 for 1 � i � 4.

It is easy to see that this family satisfies properties (P1) and (P2) but has more than k2

vectors for which A[4] ≡ 0 (mod k).

Acknowledgments

We are very grateful to Tomasz Krawczyk, who invented the problem, and Stefan 
Felsner for their significant contribution at the early stage of research. We thank Dave 
Howard, Mitch Keller, Jakub Kozik, Ruidong Wang, Marcin Witkowski, and Stephen 
Young for their helpful comments and observations. We also thank anonymous reviewers 
whose suggestions helped us to improve the quality of this paper.

References

[1] B. Bosek, T. Krawczyk, E. Szczypka, First-fit algorithm for the on-line chain partitioning problem, 
SIAM J. Discrete Math. 23 (4) (2009/2010) 1992–1999.

[2] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1) (1950) 
161–166.

[3] R.P. Dilworth, Some combinatorial problems on partially ordered sets, in: Combinatorial Analysis, 
in: Proc. Sympos. Appl. Math., vol. 10, American Mathematical Society, Providence, RI, 1960, 
pp. 85–90.

[4] V. Dujmović, G. Joret, D.R. Wood, An improved bound for first-fit on posets without two long 
incomparable chains, SIAM J. Discrete Math. 26 (3) (2012) 1068–1075.

http://refhub.elsevier.com/S0097-3165(14)00099-5/bib424B533130s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib424B533130s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib44696C3530s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib44696C3530s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib44696C3630s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib44696C3630s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib44696C3630s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib444A573132s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib444A573132s1


M. Lasoń et al. / Journal of Combinatorial Theory, Series A 128 (2014) 41–55 55
[5] S. Felsner, T. Krawczyk, W.T. Trotter, On-line dimension for posets excluding two long incompa-
rable chains, Order 30 (1) (2013) 1–12.

[6] P.C. Fishburn, Intransitive indifference with unequal indifference intervals, J. Math. Psych. 7 (1) 
(1970) 144–149.

[7] G. Joret, K. Milans, First-fit is linear on posets excluding two long incomparable chains, Order 
28 (3) (2011) 455–464.

[8] K.M. Koh, On the lattice of maximum-sized antichains of a finite poset, Algebra Universalis 17 (1) 
(1983) 73–86.

[9] B.G. Mirkin, Description of some relations on the set of real-line intervals, J. Math. Psych. 9 (2) 
(1972) 243–252.

[10] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1) (1928) 544–548.

http://refhub.elsevier.com/S0097-3165(14)00099-5/bib464B543133s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib464B543133s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4669733730s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4669733730s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4A4D3131s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4A4D3131s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4B6F683833s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4B6F683833s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4D69723732s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib4D69723732s1
http://refhub.elsevier.com/S0097-3165(14)00099-5/bib5370653238s1

	An extremal problem on crossing vectors
	1 Introduction
	2 Background motivation
	3 General bounds
	4 The case w<=3
	5 Generalization
	6 Extremal examples
	6.1 Inductive construction
	6.2 Lexicographic construction
	6.3 Cyclic construction
	6.4 Remarks on rank
	6.5 Remarks on the size of the largest coordinate
	6.6 Remarks on compression

	Acknowledgments
	References


