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Dushnik and Miller define.’ the dimension of a partially ordered sct X, denoted dim X,
as the smallest positive integes ¢ for which there exist 7 linear extensions of X whose inter-
section is the partial ordering on X. Hiraguchi proved that if n > 2 and |X] < 2n + 1, then
dim X < n. 3ogart, Trotter and Kimble have given a forbidden ~bposet characterization
of Hiraguchi's inequality by determining for cach 1 = 2, the mir mum collection of
posets (3" such that if (X! < 2n + |, the dim X < n unless X co .tains one of the posets
from C,,. Although 1C3) = 24, for each 1 > 4,C,, contains only the crown S, - the poset
consisting of all 1 element and 7 -~ 1 elcment subsets of an » element set ordered by in-
clusion. In this pape:, we consider a variar:t of dimension, called interval dimension, and
prove a forbidden subposet charac:erization of Hiraguchi’s inequality for interval dimen-
sion: If n = 2 and iX1 < 2n + |, the interval dimension of X is less than n ualess X con-
tains 53

I. Introduction

Dushnik and Miller [3] defined the dimension of a partially ordered
set (poset) X, denoted dim X, as the smallest positive integer ¢ for which
there exists  linear extensions L,, L,, ..., L, of X whose intersection is
the partial ordering on X, i.e. x <y in X iff x <yin L, foreachi< 1.

If @ is a collection of closed intervals of the real line R (points are
considered to be closed intervals), then ihere is a natural partial order-
ing on € defined by 4 > Biffa€ A and b € Bimplya > b in R. We
then define the interval dimension of a poset X, denoted Idim X, to be
the smallest positive integer ¢ for which there exists a furnction " which
assigns to each x € X a sequence F(x)(1), F(x)(2), ..., F(x)(¢) of closed
intervals of R so that x > v in X iff F(x)({)> F() () foreachi < ¢. It
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follows easily that laim X = Idim X < dim X = din X where X denotes
the dual of X.

A poset X for which Idim X =1 is called an in‘erval order. In this
paper we dznote an 7 element chain by n and the free sum of posets
X and Y by X + Y. With this notation we have the following character-
ization theorem for interval orders.

Theorem 1.1 (Fiskburn [4]). A poset is an intervai order iff it does not
contagin 2 + 2.

In this paper we will find it conveniert to use the concept of the join
of two posets X and Y, denoted X @ Y. As defined in [8], X @ Y is the
poset whose point set is the same as the free sum X + Y. However to
the partiai order on X + Y, we add the re’ation x < y for every x € X,

v € Y. (This poset is what Birkhoff cails the lexicographic sum of X and
Y over the poset 2.) It is easy to se¢ that dim X @ Y = max{dim X,
dim Y and Idim X @ Y = max {ldim X, ldim Y}.

2. Hiraguchi’s theorem and forbidden subposets
In 1955, Hiraguchi [5] proved the following theorem.
Tiheorem 2.1. If |X| = 4, then dim X < [}1X1].

A poset X is said to be irreducible if dim(X — x) < dim X for every
x € X. There are no irreducible posets of diiensior. 2 on 4 or § points
since a poset has dimension =2 iff it contains 1 + 1. There are 24 non-
isomorphic irrcducible posets of dimension 3 on 6 or 7 points [10].
However for n 2 4, there are no irreducible posets of dimension n on
2n + 1 points [6], and only one poset of dimension n and 2n points
{2]. This poset consists of ai! one element and #» — 1 element subsets
of an n element set ordered by inclusion; following the notation int-o-
duced in [7], we label this poset SO. For n > 2, S has maximal elements
A ={ay, a5, ..., a,} and minimal elements B ={b,, b,, ..., b,} witha;
covering b; iff { # j. We then have:

Theorem 2.2. If | XI < 5, then dim X < 2 unless X contains 1 + 1. Iff
IXI < 7, then dim X < 3 urless X contains one of the 24 posets cata-



W.T. Trotter, K. P Bogart ' Maximal dimensional partially ordered sets 391

loguedin [10}. If n 2 4and |\ X1 < 2n + 1, ther dim X < n unless X
contains SS.

This *““forbidden subposet™ characterization of Hiraguc!:i’s inequality
is very difficult to prove. The most difficult aspect of the proofis to
show that although there are 2i irreducible posets of dimension three
on seven points, there are no irreducible posets of dimension four on
nine points.

From the mequahtv given in Section 1 and the characterization

Theorem 2.3. Iy 1 X1 = 2, then Idim X < [}|X]].

The primary purpose of this paper is *o prove a forbidden subposet
characterization of this inequality vhich will avoid much of the pathol-
ogy encountered in the proof of Theorem 2.3. We w, t also obtain new

meanalitine far interval dimancinn: far enme nf the sge we un" also nh-
ll.v\‘uull‘lvo EW/E ER331WWil Viia “llll\/'l\,lvll EN\JR OUVIELIIW VL CILW IO Y W LI

tain forbidden subposet characterizations.

3. Some preiiminary inegualities

We begin this section by starting a number of inequalities for ordinary
and interval dimension. Proofs may be found in [1,2,5,6,9,131.

Theorem 3.1. Let X be a poset, x € X, Ca chain in X, A an antichain,
and M the set of maximal elements. Then the following inequalities
hold:

(D dim X < 1 +dim(X — x),

Q) ldimX < | +Ildim(X - x),

(3)dimX<2+dim(X - O),

(4) Idim X < 2 + Idim(X - O),

(5)dim X < | X — Alwhen | X — A1 22

(6) dim X < width X,

(N dimX<2widih (X - A)+ VL wien X — A+ Q,

BYIdimX<2width{(X —A) — 1 when X - A # 0,

9 dim X < width (X — M) + | when X - M # §,

(10) Idim X < width (X — M) when X — M # §.
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We comment that ail the inequalities of Theorem 3.1 are known to
Ye best possible except statement (8).

Let x aad y be distinct points of a poset X; we say that x and v have
the same holdings in X it z > x iff 2 > y forevery ~ € X — {x,3} and
< xiffz< y forevery z € X — {x.y}. The following statement is
proved in {9].

Theorem 3.2. If x and y have the same holdings in a poset X, then
dim(X — x) =dim X unless x [ v in X and X — x is a chain. In this
case dim X = 2 and dim(X - x) = 1.

For interval dimension we have the following variant of Theorem 3.2.

Theorem 3.3. If x ana » huve the same holding: in a poset X, and x iy,
then tdim X = ldim/ A — x).

Proof. Let F be an interval coordinatization of X — y of lengthr =
Idim(X — x). Extend F to X by defining F(x) = F(v).

We note that if x and y have the same holdings but x > v, then the
removal of x (or y) may decrease the interval dimension of X by one.
The poset 2 + 2 is just one special case where this situation occurs.

The foliowing inequality is proved in [5].

Theorem 3.4. [f a is maximal element, b is a minimal element, a I b, and
X ~-i{ab;#Q,thendim X < 1 +dim(X - {a. b}).

A stronger version of Theorem 3.4 holds for interval dimension. An
incomparable pair a, b is s2id to satisfy property M if z > a implies
2> b and y < b implies y < a. We then have [13]:

Theorem 3.5. If a, b satisfies property M, then idim X < | + Idim(X -
{a, b}).

HX=Y+Z, then dimi X = max{dim ¥, dim Z} unless both X and Y
are chains; in this case, dim X = 2. For interval dimension the corres-
ponding statement is Idim X = max{Ildim Y, Idim Z} unless both ¥ and
Z are interval orders and each contains 2; in this case Idim X = 2.
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The following statement follows immediately from the characteriza-
tion theorem for interval orders.

Lemma 3.6. If A is an antichain o, a poset Xand |X - Al < 1, then
Idim X = 1.

The following theorem then follows easily from Lemma 3.6 and
Theorem 3.1(2).

Theorem 3.7. If A is an antichain of a poset X and |X - A} =n < 1,

2fsmze Do3iens Vo~ oo
RECR UL A X i,

We now derive a generalization of Theorem 3.1(10). If A is an anti-
chain of a poset X, we let X;;,(4) ={x € X: x > a for somea € A} and
X, (A)={x € X: x <aforsomea€ A}. Note that if 4 is a maximal
antichain, then X = X, (4) U A U X, (A) is a partition of X.

Theorem 3.8. If A is a maximal antichain of X and every point of
Xy (A) is greater than every noint of X; (4), then Idim X =
max {Idim(X - X (4)). Idim (X — X, (4))}.

Proof. Let £ be an interval coordinatization of length ¢ of X — X, (4)
and G an interval coordinatization of length s for X - X, (A).) Without
loss of generality, we assume s < ¢. If s < t, define G(x){) = G(x)(5)
forevery x € X — X;;(A) and integer i withs <i <.

Then for each i < ¢, let P, be the partial order defined by x >> y in P,
iff v, ye X — X, (A) and F(x)(D > Fy)i), x,ve X — X, (4) and
G B> GO orx € X (A) and y € X, (A). It follows by Theorem
1.1 that the poset (X, P;) is an interval order. We then define an interval
coordinatization H of length ¢ for X by choosing intervals H(x) (i) so
that for each i < ¢, the intervals {H(x)(i): x € X form an interval co-
ordinatization of the interval order (X, 7).

We note that there is no analog of Theorem 3.8 for ordinary dimen-
sion as the examples given in [11] demonstrate.

The following result is easily established by slight modifications in
the proof of Theorem 3.1(10) and the preceding theorem.
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Theorem 3.9. Suppose A s 2 maximal antichain of X, the width of
Xp(yisn= 1, Xy ()= U Gy u ..U G, is a partition into chains,
and X; (A) U C;is a chain for some i < n. Then ldim X < n.

Ifa>bande> x > b implies x =g or x = b, then a is said to cover
b and the paira, b is called 4 cover. The rank of a cover is the number
of pairs x, y where a covers x. y covers b, and x / y. Hiraguchi proved
that the removal of a cover of rank zero or one reduces the dimension
of a puset at most one. For interval dimension we have:

Thecrem 3.10. If a, b is a cover of rank zero, then Idim X < 1 +
Idim(X - {a. b}).

Proof. Let F be an interval coordinatization of X — {a, b} of length 1.
Foreachi <t - 1, choose intervals F(a)(i) and F(b)(i) so that x > v
in X implies F(x){i) > F(y)(i). Let P denote the partial order on X.
Ther: let @, be the partial order on X — {a, b} defined by x > v in £,
iff Fix)(r) > F(3}(¢). Note Q, is an extension of the restriction of P to
X - {a, b}.
Let
X, =lxeX:x<binX},
X,={xe€X:xibandx<ain X},
Xy={xeX:xIbandx lain X},
Xy={xeX:x>bandx/ain X},
X;={x€X:x>ain X:.
We then consider each of these sets and the union of any collection of
tiiem as subposets of the interval order (X - {a, b}, Q)).
| Now choose intervals F(x)(¢) and £{x)(¢ + 1) for each x € X so thit
the intervals {F(x)(¢): » € X} form an interval coordinatization of the

interval order
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and the intervals { £ (x)(r + 1): x € X} torm an interval coordinatization
of

Xyeby o X, ¢{a} (X3 U X, U Xo).

It is straightforwar 1 to verify that F is an interval coordinatization of X
of length ¢ + 1.

We note that the removal of a cover of rank one mav reduce the inter-
val dimension by two as the poset S shows.

4. The characterization theorems

We begin this section with a lemma which will be essential in our for-
bidden subposet characterization of Theorem 3.7.

Lemma 4.1. If A is au antichain of @ pose: X and |\ X - A' =n = 3, then
Idim X < n unless A is a maximal antichain, one of the sets X (A) and
Xy (A) is empry, and the other is an antichain.

Proof. If A is not a maximal antichain we conclude ¢un X < » from
Theorem 2.3. Now suppose that A is maximal and that X;(4) # 0 #
X, (A). If there exists a pairx € X (A4), y € X (A) withx [ y, then
there exists a pair .oy € X, (A), Y, € X (4) where x, v satisfies pro-
perty M. Then Idim X < 1 + Idim(X — {xp. veh < 1+ (e - 2)=n - 1.
We conclude that all points in X, () are greater than all points in
X (A) and by Theorems 3.7 and 3.8, we kave Idim X <» - 1.
Without loss of generality, we now assume that either X;;(4) = 0 or
X (4) =0 and our conclusion follows from Theorem 3.1(10).

We invite the reader to compare the foliowing theorem with analo-
gous result for ordinary dimension given i {12]. (See also Thecrem
3.1(5))

Theorem 4.2. If A is an intichain of a poset X and |\ X - Al =n = 2, then
idim X < n unless X contains S.

Procf. Theorem 1.1 impliss that the result holds for n = _ since S =
2 + 2. Now let A be an antichain of a poset X with |X — A| =n > 3 and
suppose that X does not contain Sff . By Lemma 4.1 and our earlier re-
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marks opr duality and free sums. we may asiume Mﬁwuz ims of gener-
ality that A is the set of maximal elements. B = b0y, ... b =X -
is the set of minimal elements, and both A4 and 8 are rramrwi anti-
chains. Since X does not contain S, we may also assume that there
does not exist @ maximal element which covers all minimal elements
except b,. Foreach b€ B. we denote w € iz alb; by l(b). Alsc let
P denote the partial order on X and foreach i< n - 1, let @, be the
extension of P which is the partial order or X defined by adding to P
the comparabilitiesb >aand b > b, > b, forevery b€ B - b, b,
and every a £ A. By Theorem 1.1, we conciude that each poset (X, 0,)
is an interval order: we may then choose intervals Fx () for every
x& Xandi<n - 1 sothat the intervals < Fix)i): x € X form a coor-
dinatization of X, ;). It is easy to verify that F is an interval coordin-
atization of X of length ¢

Lemma 4.0, If A is an axiichain of a poset X and (X - Al =4, then
[dim X < 3 wnless one of the following statements is true:

(1y X, or X, contains a three elemeni autichain,

(2) X, ind X, are each two element antichains and each point in
Xy (A)is yrecrer than exactly one puint in X;(A).

Proof. Suppose that A is an antichain of a poset X with (X - A{ =4

and Idim ¥ = 3. If 4 is not maximal or either X, (4)or X/ {1} is empty.
the result follows from Theorem 4.2. Now suppose that (X, (4} =
iX;{A)i = 2. Then we conclude from Theorem 3.8 tha" there exists

x€ XAy € X (4ywithx ]y Nowif X, {4)={x;, xyrand x; > x,.
then x, is incomparabie with both points of X, (4} for if x5 > v for
some y € X, (A4). by Theorem 1.1 we may remove the other point of

X, (A4) to produce a poset with interval dimension one.

Now x . x4 is a cover of rank zero so we conclude that X, (A) =
V.5 I8 4 two element antichain. If x,/y, and x, 7y,, then X is the
free sum of posets each of which have interval dimension at most two.
Therefore we may assume x,; > 3, in this case x,, ¥; satisfies property
M so we conclude that x, /5.

it follows that X i'zas the same interval dimension as 2 subposet of
the poset shown in Fig. 1.

In view of our remarks on holdings given in Section 3, we see that
tris poset has the same ordinary dimension as a subposet of the poset
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in Fig. 2(a). However the diagram shown in Fig. 2(b) proves that the
mia linary dimension two.

We mmment here that the Hasse diagram of the poset in Fig. 2(a) is
a “tree”. We refer the reader to [14] for theorems concerning such
pusets.

By duaﬁty we can now conclude that both X', ¢4) = v x,; and
Xpd) =3 vy are two element antichains. Since it cannot be true
that all points of X, (4} ars greater than ali poinis of X, (1), we may
assume that x; /1, . Hence it follows that x5 /v, If. 5/1 ., then x,/ v,

f 1O
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Fig. 3.

Suppose first that X (A) is a chain. Then the removal of v leaves a
poset with interval dimension one. Now suppose the only order rela-
tion in X (4) s x; > x,. Then {x,. x,} is a cover of rank zero which
implies that x;/v,. We then have that x3, 3, satisfies property M but
Idim(X — {x3.3yH =1

Now suppose the only order relations in X ;;(4) are x; > x, and
x; > x3. it follows that x5 /3. x3/v,, but x; > v,. Thus x,, v, satisfies
property M but Idim(X - {x,, ;)= 1.

Now suppose the only order relations in X;(4) are x; > x; and
X, > X,. Then it follows that x3/y, butx; > 1, and x, > ;. Thus X
ha. the same interval dimension as a subposet of the poset in Fig. 3.

This poset contains three irreducible posets with ordinary dimension
3. However we conclude from Theorem 3.9 that it has interval dimen-
sion two.

Theorem 4.4. [ A is an antichain of a poset X and |X ~ Al=n+12 8§,
then Idim X < n unless one of X (A} and X, (A) contains an n element
antichain.

Proof. By Thecrem 4.2, we may assume A is maximal. If either X (4)
or X, {A) i; emsty the result follows from Theorem 3.1(10). If all points
of X AA) are greater than all points of X, (4), the result follows from
Theorem 3.8. So we assume there exists a pair x, y satisfying property
Mwithxe Xy A)andy € X, (A4). Then if both X;(4) and X, (4) con-
tain at least two points, the result foliows from Lemma 4.1.

Without loss of generality we may then assume that X ;<4) contains
n points and X, (4) only one. The conclusion that X (4) is an n ele-
ment antichzin then follows easily by induction on n forif x,, v; € X (4)
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and x; > x,, we may remove v3 € X .(A) - {v,. x,} and decrease the
interval dimension by at most one.

We are now ready to state and p. ove our forbidden subposet charac-
terization of Hiraguchi's inequality for interval dimension. It is interest-
ing to note that for the first time we will find it necessary to restrict
the cardinality of an antichain.

Theorem 4.5. If n = 2and | X| < 2n + 1, then Idim X < n unless X con-
tains Sy

Proot. Our argument is by induction on n. Theorem [.] implies that the
result holds for » = 2. Now assume validity if #» < A and suppose n =
k+123.

It is easy to see that we may assume without loss of generality that
X1 =2n+1 and the width of X is 1. Suppose first that there exists a
maximum antichain 4 ={a,, a,, ..., a, } for which X(4) # 0 # X (4).
Then we may alsc assume that X,;(4) = {x, x,, ..., x,, is a maximum
antichain, X, (4) ={y}. v <a,.and y /a,. Since a,, v s then a cover of
rank zero, we label the remaining points so that {x;, x,. ....x, ;} U
{a).ay. ....a, _,} form a copy of Sy | with x| coveringa; iff i # j for
everyi,j<n - 1.

Now a, is a minimal element, the p;air x|, a, satisfies property M, and
therefore X — {x,,a,} also contains Sj; _,. Suppose X - {x,. a;. «,} is not
sY It Then X — {x;,a,,y} s ST | and we conclude that a,dx,. a; < x,.
a, < x, foreveryi with 2<i<n. Then the pair x,, a, satisfies property
M and X -{x,, @} must also contain SO LI X —{x-,ay}is SO ..
then we conclude a, < xpa,<x,and thus X - y is 59 Theretore we
may assume that X — {x,.d,.y} is not Sy _ in which (ase X-{x,.4ay4a,;
is SO . This requiresa; < x,.a,/x , vla,,and y <g; foreveryi<n - ]
with i # 2. But we have previously concluded that g, < x, and hence
v < x, also. This implies that X' - ¢, is SY. The contradiction shows
that X - {x,.a,. a,} mustbe S, .

Now we have that y /x,, y < x;,and ¢; < x,, jor every iwith2<i<n.
Hence x,. a, satisfies property M and A~ {X‘). az} musi again contain
SO LITX = {xy.a5a,}isSY |, then X —a, is Sp:if £ —{x;.a5.4,) is
not ¢ _,, it follows easily that X — y is S).

We may now assume that every maximun antichain consists entirely
of minimal elements or entirely of maximal elements. Let x be the unique
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»

element of X" which is neither minimal nor maximal. It follows that x
must cover at least two minimal elements and be covered by at l-ast

two maximal elements. We label the maximal elements A = {a,.d,, ....qa,}
and the minimal elements B = {b b,. .... b,}.

If all maximal elements are greater than all minimal elements, then
Idim(X - x)=1.lfae A, be B,and a /b, then X — {a. b} must contain
57, and it follows that X — {a, b, x} is S°_, and n > 5. We may then
assume that a,/b, and X — {a,, b,. x} is S} witha; /b, and a; > b,
forevery / # jwithi,j<n — 1. We also assume a; > x, 2, > x, x > b;,
and x > b,.

If X - {(a,.b;.x} and X — {a, b,. x} are both S _,, then X - x is SP.
Butif X - {a,.b,,a,} is SY_,s0is X ~{a,, b,.x} and if X - {a,, by.a;}
is SY_,5C is X — {a,. by, x}. We conclude that X — x is S? and the proof
of our theorem is complete.
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