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SOME COMBINATORIAL PROBLEMS FOR PERMUTATIONS

William T. Trotter, Jr.
Department ¢f Mathematics and Computer Science

University of South Carclina

Columbia, South Carclina 25208

. 1. Introduction
For integers m,k with m > k > 2, Dushnik defined N(m,k) as
the least positive integer t for which there exist permutations

.0, of {1,2,...,m} so that for every k-element subset

012992 ---%¢
Ac {1,2,...,m} and each a & A, there is at least one i for
which ci(ao) < oi(a) for all a € A with a # 2, The permutations
G),0gs+--,0, are said to k-filter {1,2,...,m}. Dushnik's
interest in the computation of N(m,k) came from the fact that
N(m,k) is the dimension of the partially ordered set consisting
of all one element and k - 1 element subsets of an m element

[ set ordered by inclusion [1). Dushnik derived two inequalities
for N(m,k) from which it is possible to determine N(m,k)
exactly when k is relatively large compared to m. Spencer used
a probabilistic argument to obtain inequalities for N(m,k) for
fixed kK with m large [2], In this paper, we will concentrate
on determining N(m,k) when both m and k are relatively small.

H In doing so, we will obtain modest improvements in the results
of Dushnik and Spencer for large values of m and k.

I 2. Spencer's Inequalities

We define f(k,t) for integers k > 3 and t > 1 as the

PROC. 8TH S-E CONF. COMBINATORICS, GRAPH
THEORY, AND COMPUTING, pp. 619-632.
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largest integer m for which there exist permutations o

which k-filter {1,2,...,m}. The Erdds-Szekeres theorem states

that any two permutations of n2 + 1 integers have a monotonic

subsequence of size n + 1. It follows by induction that

t-1
f(k,t) < 22 and N(m,k) > 1 + log,log, m for each k > 3.
2t-1

Spencer[ 2] proved that £(3,2t) > 2 t

and therefore N(m,3) < 1og210g2 m + 1

+ (1). However, an examination of the construction used
by Spencer to produce the inequality for £(3,2t) reveals that
(zt—l)
t

for each pair of integers il‘iz € {1,2,...,m} where m = 2
there are exactly t permutations in which i1 precedes i2 and
exactly t permutations in which i2 precedes il‘ In particular

Spencer's construction produces 4 permutations 01,02,03,04,

which 3-filter (after relabeling) {5,6,...,12} so that for

each pair il,iz € {5,6,...,12} there are two permutations in

which i1 precedes iz. We now extend 01,05,03,0, to permutations

of {1,2,...,12} by letting i be the first element in o and
{1,2,3,4} - {i} the last 3-elements (the ordering is irrelevant)

in oi for i = 1,2,3,4. We now show that o 3-filter

1°92°93:%

{1,2,3,...,12}. Consider a 3-element set A with distinguished

element a € A. If a, € T = {1,2,3,4}, there is nothing to

show. Now suppose a, € M ={56,...,12}. If A - {ao} CrT,

say A - {a_} = {i,,i,}, then we may choose i, € {1,2,3,4} -
o 1’72 3

{11,12} and thus a, precedes il and i2 in 95 If A - {ao} C M,

then Spencer's construction applies. Finally, suppose

- 620 -

1.02,...0t

( zt)
and £(3,2t + 1) > 2517

g logylogylog, m + 1og2(/§h)

- {ao} = (il'iz} where il € T and 12 € M. Then there are two

ermutations in which ao precedes 12 and at least one of these

In this permutation, a, precedes i1 and iz.

£(3,4) = 12.

The argument given above shows that £(3,4) > 12. Ve

roof :

ow show that £(3,4) < 12. Suppose to the contrary that we

pave permutations 0,05,03,0, which 3-filter {1,2,3,...,13}.
Without loss of generality [1], we may assume that i is the
first integer of o, and {1,2,3,4} - {i} are the last three

i _1 = -
_elements of o,. i.e. 01(1) =1 and o4 {11,12,13} {1,2,3,4}

{i}.

Let T = {1,2,3,4} and M = {5,6,7,...,13}. For each

i ions
distinct pair ml,m2 € M, there must be exactly two permutat

in which m1 precedes m2 for if m, precedes my in every

i permutation except possibly o;, then we cannot handle {El’i’mz}'

j.e. there is no permutation in which ml precedes both i and m, .

Now let x € M, A C M, and suppose that x precedes every

element of A in two of the permutations oil and o5 Then the

2

i ermore
> other two permutations 013 and o5 are dual on M. Furth
ci and Oi are also dual on M. For if ml,m2 € M and ml

1
precedes m, in oy

& 3

and o, , then we cannot handle {gz,ml,x}.

are dual on M, the argument

(. Once we know that 013 and 014
given in the preceding paragraph implies that Uil and 012 are
|l
{ also dual on M.
i
? Now let x € M, A C M, and suppose that x precedes every
4
i
l
N
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element of A in two of the permutations ci and ci Suppose
1 2

further that |A| > 6. Then the ErdSs-Szekeres theorem implies

that there exists a 3-element subset {ml,mz,ms} C A on which

o, and o5 either order these
3

12
three elements in the same order or in dual order.

are monotonic, i.e. o, and o,
i i

Hence we

may assume that m, is between my and my in both o

and o,
2 i

and o

i and o are also
2

are dual on A and o,
i i

3
dual on A, we may conclude that m, is between m

But since o
1 4

1 and mg

four permutations which implies that we cannot handle {gz,ml,m

in all
3
The contradiction allows us to conclude that if 0;1(2) =x €M,
then cj(x) > 6 for j € {1,2,3,4} - {i}. Therefore, we may
assume without loss of generality that czl(2> =4 + i for each
i=1,2,3,4.

Similarly, if o]'(3) = x, then 05(x) 2 5 for j € {1,2,3,4}
- {i} and we may assume without loss of generality that
0;1(3) =8 + i for each i = 1,2,3,4. Then the first 3 positions
of the permutations are:

o: [ 1,5,9]

gg: [ 2,6,10]

03: [ 3,7,11J
o [2812]

Then without loss of generality we may assume that 13

[¢]

precedes 11 and 12 in o, and that 13 precedes 9 and 10 in o..

1 3
We may then assume that 13 precedes 9 and 11 in Oy- Similarly

we then assume without loss of generality that 13 precedes 10

and 12 in o,.

1 It follows that 9,10, and 11 precede 13 in ¢

4

- 622 -

}

We then conclude that 13 precedes 10 and 5 in O3, 13
precedes 9 and 6 in Ggs 13 precedes 11 and 5 in Ogs and 13
precedes 11 and 6 in Og- Thus 9 precedes 5 and 13 in T4 10
precedes 6 and 13 in Oy and both 5 and 6 precede 13 in O4-

Similarly 13 precedes 6 and 7 in 9q and 13 precedes 5 and
7 in Ogy- Therefore, 11 precedes 7 and 13 in Oy and 7 precedes
13 in 04+

Then without loss of generality, we may assume 12 precedes
13 in Oy and 13 precedes 12 in GS' Thus 11 precedes 12 in 01
and 9 precedes 12 in Og- Also, we must have that 11 precedes
7 and 12 in 9y and that 9 precedes 5 and 12 in Og- Therefore,
5 precedes 9 in P and 7 precedes 11 in Oy-

Finally, we note that 9 must precede 5 and 11 in Oy and
11 must precede 7 and 9 in 04 which is a contradiction and

completes the proof of our theorem.

The role of the Erdds-Szekeres theorem in Spencer's
inequality and in the preceding theorem suggests the following
modified problem. For integers k > 3, t > 2, we define
f*(k,t) as the largest positive integer m for there exist t
permutations 01055 --+504 which k-filter {1,2,...,m} with the
additional requirement that o = 82, i.e. 01 and 02 are dual.

4 but £*(3,3) = 3.

For example £(3,3)
6.

[]

Theorem 2: f£(3,4)

Proof: Consider the permutations 01,02,03, and 04 of

{1,2,3,4,5,6} defined as follows:

- 623 -




‘ where the original Erdds-Szekeres bound only provides the
: [1,2,3,4,5,6] :

1 i 2% _ 516, Simitarl have T*(k,t) <
jnequality £(3,5) < 2 =27, imilarly we have , <
ot [6,5,4,3,2,1] , 2
, [f*(k,t—li} and thus f*(3,5) < 36.
oy [3,2,5,4,6,1] |
- Theorem 3: £%(3,5) < 27.
o, [4.5,2,3,6,1] «

~ proof: Suppose £*(3,5) > 28 and let Oys Og» Og, Ty, Og 3-filter
These permutations 3-filter {1,2,3,...,6} and 0, = 0, SO ~
{1,2,3,...,28} with ci(i) = 1 and 0y = Oy We may assume

£*(3,4) > 6. Now suppose that £*(3,4) > 7 and let 0130903,
~ without loss of generality that 1 and 28 occupy the last two

and Oy 3-filter {1,2,3,...,7} with o = Og- We assume that

positions in o4, 0,4, and Og- Now choose a six element subset
ol: [1,2,3,4,5,6,7]. Suppose 03(2) < 2; then there is a four

of {2,3,4,...,27} which is monotonic for 02 and Og- We may
element subset S C {3,4,5,6,7} such that 2 precedes each

then append 1 or 28 as required to obtain a 7-element subset
element of S in oy and Og- If x,y € S and x precedes y in both .

which is monotonic for ag and Og- The restriction of the five
0y and O4» then we do not handle {y,2,x}. Therefore, we may

permutations to these seven element produces two identical

assume that Oy and o, are dual on S. We then restrict each of

the permutations to this four element set and discard 04 since ;
%i contradiction completes the proof.

permutations and thus would require that £*(3,4) > 7. The

it is now identical to Oy We obtain 3 permutations which
It is the author's opinion that the precise determination
3-filter a four element set which is not possible when 9, and
of £%*(3,5) is a manageable problem while the problem for

o, are dual. Therefore, we may assume that 2 and 6 are not

2

£(3,5) is probably not. Although we will discuss such problems
the first or second elements in either Ug OT 0,. As before we
in more detail in the next section, it should be relatively
assume that 1 and 7 occupy the last two positions of 03 and Og4-
}  easy to determine £(4,7) and £(5,9).
Now if 4 does not occupy the first position in either Oq

¥ Furthermore, we note that the balanced nature of Spencer's
or o, then we cannot handle {4,3,5}. Therefore, we may assume .
construction permits the following modest improvement in the
that 03(1) = 5 and that 04(1) = 3. We may assume that 03(3) =5 (Zt—l)
lower bound on f(3,t). If we let g(2t) = 2 t and

2t

and 0,(4) = 5. Therefore, 0,(5) = ¢,(5) = 2. But this implies
: 2 N (-1) t t t-1 2, t-2
g(2t+1) = 2 then £(3,2%) > g(2) + 2g(2"77-1) + 2%(2"7°-1)

that we cannot handle {2,1,5} and the contradiction completes

the proof of our theorem. 4+ ... . This inequality is produced simply by stacking

We can now obtain a slight improvement in the Erdds-Szekeres Spencer's construction in the obvious manner with blocks near

inequality since it follows trivially that f(k,t) < £*(k,t-1) , the top in this stack placed in reverse order in the other

f(k,t-1). For example, we conclude that £(3,5) < 6 . 12 = 72

} -~ 625 -
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permutations. Note that this is simply a generalization of the
construction used in Theorem 1.
3. Dushnik's Inequalities
. 2 2
In [ 1] Dushnik proved that N(t°-2,2¢-2) = N(t®-1,2¢-2) =
2
t%-t and N(tZ+t-1,2t-1) = N(t2+t,26-1) = t2 for every t > 2.
In this section we present some extensions of these results.

2,2t-2) o N(t2+1,2t-2) = t2.¢ for every t > 2.

Theorem 4: N(t
Proof: 1t suffices to show that N(t2+1,2t—2) < t2—t for every -
t > 2. The result is trivial when t = 2 so we assume t > 3.

We now construct tz-t permutations o,,0,,...,0 of
1’72 tz_t

{1,2,...,t2+1}. We will actually specify only a small number
of positions of each Oy We begin with the standard device;

we set Ui(i) = 1 and let the last tz—t—l positions in o; be

(1,2,...,t2—t} - {i}. Now label the elements of

2 2 2
M= {t%t+1,t°-t+2,...,t“+1} by {ml,mz,...,mt+1}. We call
these elements "middle elements'". Now let my and m,, each

occupy 2nd position in t-1 permutations and let each of the

d

other middle elements occupy ol position in a block of t-2

permutations. We call my and m,, big middles and Mo, eee,Myy
little middles. Now place each little middle in 3rd position
in one of the permutations having my in 2nd position. Do the

same for m,. For each block of permutations containing the

nd

little middle element my in 2 position, place each of the

other little middle elements in Srd position. Then put my in

4th position in the ml block. In the other permutations having

d

my and mj in 2nd and 3r positions respectively, put m1 in

- 626 -

fgourth position if i < j and m, in fourth position if i > Jj.
: he remaining positions are arbitrary.
Now let A be a 2t-2 element subset of {1,2,..‘,t2+1} and

iiet a, € A. Ve show that there is a permutation in which a,

recedes all the remaining elements of A. Clearly we may

- ssume a_ € M. If a, € {mS’m4""’mt+l]’ there is no problem

unless A contains the t-2 top elements of the block having

2y in an position and at least one element of the t disjoint
pairs of elements in the first two positions of the permutations

having a, in 3rd position. However, this requires A to contain

1+(t-2)+t = 2t-1 elements.

Now suppose a =m,. Then we may assume that A contains

the t-1 elements in first position in the my block. Now suppose

A contains s other middle elements. Note that t-s>2. Then

. : th sk
there are iﬁ:ﬁlﬁ%:ﬁ:ll permutations having m, in 4 position

. nd
where A does not contain either of the elements in 2 and
st

3rd position so we may assume A contains the elements in 1

position in each of these permutations. Then Al > 1+(t-1)
+ g+ £8) ;'5'1 >t + s+ (t-s-1) = 2t-1.

b’ completes the proof of our theorem.

The contradiction

Example: Here are the first four positions of 12 permutations

which 6-filter {1,2,...,17}
: [ 1,m1,m3,m2 ]
- U 2,my,my,m,y bl

1 67: [ 7,m3,m4,m1]
2

03: [ 3,m1,m5,m2
4
5

og! [ 8,m3,m5,m1]
oy L 9,m,,mgy,Mmy 1

[

g

T,t [ 4,m2,m3,m1_3 010: [10,m4,m5,m1]
Y gt [S,mz,m4,m1 1 011° Lll,ms,ms,mz]
og: [ 6,my.mg,my 1 0qg [12,m5,m4,m2]

- 627 -




2

Theorem 5: N(tz+t+1,2t—1) = t” for every t > 2.

Proof: the result for t = 2 follows from Theorem 1. We now

assume that t > 3 and construct 2 permutations o,,0

PYRRREL- PN
2

which 2t-1 filter {1,2,3,...,t“+t+1}. We begin by setting
0;(1) = 1 and letting 07" {t+3,t+4,t+5,...,t24¢t+1) =
{1,2,3,...,t2} - {i}. Then relabel the elements of

2+1 .2

M= {t",t +2,...,t2+t+1} by m We call m, a

1oMgs e sy 1

big middle element and m little middle elements.

PR LRSS |
Place my in second position in a block of t permutations. Then
place each little middle element in second position in a block

of t-1 permutations. Then place each little middle element

in third position in one of permutations in the my block. For
each i > 2, place each the little middle elements (except mi)
in 3rd position in a permutation in the m, block. Finally

place m1 in fourth position in all the permutations in the
little blocks.
Now consider a 2t-1 element subset A (:{1,2,3,...,t2+t+1}

and an element a, € A. We show that there is a permutation in

which a, precedes all other elements of A. If ag [3 {1,2,...,t2}

there is nothing to show. If a, = my for some i > 2, then
there is no problem unless A contains the t-1 elements which
precede my in the permutations in the my block. Furthermore
A must contain an element from each of the t two element sets
consisting of the elements which precede mi when my is in third
position in one of the other blocks. But this would require

A to contain 1 + (t-1) + t = 2t elements.

- 628 -

Now consider the case ag, = my. We may also assume that

LLA contains the t elements preceding my in the permutations

in my block. Now suppose that A contains s little middle

elements. As before t-s > 2. So there are (t-s) (t-s-1)
permutations containing my in fourth place with m, preceded

py two little middle elements neither of which belongs to A.
so we may assume that A contains each of the first elements of

these permutations. However, this requires A to contain at

ljeast 1 + t + s + (t-s) (t-s-1) > 1+t + s+ t-s > 2t-1
elements. The proof of our theorem is now complete.

We note that Theorem 4 is best possible when t=3 since
we have the following result.
Theorem 6: N(11,4) = 7

proof: It suffices to show that N(11,4) > 6. Suppose that

01,05:93504:05, and og4 4-filter {1,2,3,...,11}. We assume
that oi(i) =1 and 011{7,8,9,10,11} = {1,2,3,4,5,6} - {i}. We
then relabel {7,8,9,10,11} as my,my, Mg, My, and mg. We may then
assume that mg precedes all other mi's in at least two
permutations. If we delete the appearance of mg from each of
the permutations, we obtain 6 permutations which 4 filter a
set of size ten. Using arguments as in [1], it is easy to see
that we may assume without loss of generality that the first
five positions of these restrictions are:

0yt [ l,ml,ms,mz,m4 ]

Oyt [ 2,m1,m4,m2,m3 ]

03t [ 3,m2,m3,ml,m4 ]

04: [_4,m2,m4,m1,m3 ]
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05: LS,ma,m4,m1,m2]

06: [6,m4,m3,m2,m1J

Furthermore, the deletion of any other my must leave this
same pattern (although the ordering on the permutations may
change). Note that the fourth position in each permutation

is occupied by a big middle.

Suppose that mg is the leading middle element in Ul and

02. Then if we delete m4, we have mj followed immediately by

m1 in oy and 0y and the required pattern is broken. The same

argument applies if mg is the leading middle element in o, and

3
Og- Now suppose mj is the leading middle element in oy and ©

3
then m

If we delete Mg, 1 and m, are little middle elements but

they then occur in position 4 in o, and o,.

1 3
shows that mg cannot lead in 9y and Og. Similarly mg cannot

The contradiction

lead in oy and Oy Og and O4» OT Oy and Og-

If mg leads in oy and O, delete my to obtain a contradiction;

It mg leads in Og and Og» delete m,. The other can follow by

symmetry. The proof is now complete.
Theorem 7: N(14,4) = 7
Proof: It suffices to show that N(14,4) < 7. We describe the
first positions of seven permutations which 4-filter {1,2,3,...,14}:
oy [1,814,11,0]
o5 [2,9,8,12,10 ]
oy [3,10,9,13,11]
0,0 14,11,10,14,12]
o [5,12,11,8,13 | \
og: [6,13,12,9,14 ]
ogt [7,14,13,10,8]

- 630 -

i Theorem 8:

i proof:

i On the other hand, Theorem 4 is not best possible when t=3.

N(14,5) = 9

We give the first few positions of 9 permutations

1 which 5-filter {1,2,...,14}.

07: [ 7,12,14 ]

og: [ 8,13,14,12,10,11 1

oy [ 1,10,13,12,11 ]

: [ 2,10,14,22,11 ]

a

cz: [ 3,10,11,12] og: [ 9,14,18,11,10,12 ]
04 [4,11,13]

o [5,11,14 ]

og: [ 6,12,13 |

We conclude with a small table of values for N(m,k).
k
2 3 4 5 6 7 8 9 10 11 12 13 14

2 2

3 2 3

4 2 3 4

5 2 4 4 5

6 2 4 5 5 6

7 2 4 6 6 6 7

8 2 4 6 7 7 7 8

9 2 4 6 8 8 8 8 9

10 2 4 6 8 9 9 9 9 10

11 2 4 7 9 10 10 10 10 10 11

12 2 4 7 9 10 11 11 11 11 11 12

13 2 5 7 9 11 12 12 12 12 12 12 13
14 2 5 7 9 12 12 13 13 13 13 13 13 14
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Note: The author has succeeded in proving that Theorem 4

‘ is best possible for t > 3, i.e. N(t2+2,2t-2) = t%—t+1.

Furthermore, Theorem 5 is best possible for t > 4, i.e.

N(t2++2,2t-1) = t2+1.
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