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We consider «n extremal problem for directed graphs which is closely refated to Turédn’s
theorem giving the maximum number of edges in a graph on n vertices which does not contain
a complete subgraph on m vertices. For an :nteger n=2, let T, denote the transitive
tournament with vertex set X, ={1, 2, 3,..., n} and edge set {(i. j): 1 si <j=n}. A subgraph H
of T, is said to be m-locally unipathic when the restriction of H to each m element subset of
X,, consisting of m consecutive integers is unipathic. We show that the maximum number of
edges in a m-locally unipathic subgraph of T, is (1)}(m—1)2+q(m - \)r+ [ir?] where n=
q(m—-1)+r and [3(m~1)]sr<[3(m—1)]. As is the case with Turdn’s theorem, the extremal
graphs for our problem are complete muitipartite graphs. Unlike Turén’s theorem, the part
sizes will not be uniform. The proof of our principal theorem rests on a combiratorial theory
originally developed to investigate the rank of partially ordered sets.

1. Introduction

For integers, n, k with n=2k =2, let g(n, k) be the maximum number of edges
in a granh G on n vertices which does not contain a complete subgraph on k
vertices. Then let n=(k —1)q+r where 0<r<k—1 and consider the complete
multipartite graph G(n, k) having k — 1 —r parts of size q and r parts of size q+ 1.
Clearly, G(n, k) has n vertices but does not have a complete subgraph on k
vertices. The following well known theorem of P, Turan [9] tell us that the lower
bound on g(n, k) provided by the graph G(n, k) is best possibie. It also tells us
that G(n, k) is the unique extremal graph.

Theorem 1 (Turan). For integers n, k with n=k =2 the maximum number g(n, k)
of edges in a grapk on n vertices which does not contain a complete subgraph on k
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vertices is given by:

(k —1—
g("v k)— '\ 2

')q2+ ( ;)(q+ 12+(k-1-nrq(q+1)
where n =(k — 1)q+r and 0<r<k—1. Furthermore, if G is a graph on n vertices

which does not contain a complete subgraph on k vertices, then G has g(n, k) edges
if and only if G = G(n, k).

In this paper, we will consider a similar combinatorial problem involving the
maximum number of edges in a directed graph which satisfies a particular
property. As in Turan’s theorem, the extremal graph(s) will complete multipartite
graphs, altiiough the part sizes will not all be uniform.

For an integer n=2, let T, denote the transitive tournament with vertex set
X, =4{1,2,...,n} and edge set {(i, j): 1 <i<j=<n}. A subgraph H of T, is said to
bz unipathic if for each pair x,y of distinct vertices, H contains at most one
directed path from x to y. Now consider the following elementary extremal
problem: What is the maximum number u(n) of edges in a unipathic subgraph of
T,? It is easy to see that this problem is equivalent to a special case of Turaa’s
theorem.

Theoren 2. For each n=2, the maximum number u(n) of edges in a unipathic
subgraph of T, is given by the formula: u(n)= in?l. Furthermore, if H is a
unipathic subgraph of T, heving u(n) edges, then the underlying undirected graph
determined by H is the complete bipartite graph K(|3n|, [3n]). Moreover, if n=4,
the vertices in each of the two parts of H occur consecutively in {1,2,3,...,n}.

Proof. Let H be @ unipathic subgraph of T, and let G be the underlying
undirected graph determined by H. Since H is unipathic, G is triangle-free, i.e., G
does not contain K;. Thus H and G have at most g(n, 3) = |3n?] edges. On the
other hand, let t = {3n| (or t = [3n]) and consider the subgraph H of T, contain-
ing the =dges {(i,j):1<i<t t+1<j<n}. Clearly, H is unipathic and contains
Lin?] edges, and thus u(n)= {in?|].

Finally, suppose that n =4 and let H be a unipathic subgraph of T, containing
[2n?] edges. It follows from Turin’s theorem that the uaderly:1g undirected
graph G determined by H is the complete bipartite graph K(|3n], {in]). Then let
A and B denote the subsets of {1,2,3,..., n} which form the vertex sets of the
two parts of G. If n=4 and either A or B does not occur consecutively in
{1,2.3,..., n}, then there exists integers a,, a,€ A, by, b,e B for which one of
the following statements holds: a,<b.<a,<b,, a; <b,<b,<a,, b;<a;<a,<
by, or b;<a,;<b,<a,. In each of the four cases, H would fail to be unipathic
even though it is triangle-free.

We note that although u(3)=13%/4] =2, there are three extremal graphs
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corresponding to A ={1}, A ={1, 2} and A = {1, 3} respectively. These graphs are
{(1,2),(1,3)}, {(1,3),(2,3)}, and {(1,2),(2,3)}. O

Now let n and m be integers with n=m =2. A subgraph H of T, is said to be
m-locally unipathic when the restriction of H to each subset of V, containing m
consecutive vertices is unipathic. On the other hand, H is said to be m-locally
triangle-free when the restriction of H to _ach subset of X, containing m
consecutive vertices is triangle-free. Then let u(n, m) be the maximum number of
edges in an m-locally unipathic subgraph of T, and A(n, m) the maximum
number of edges in an m-locally triangle-free subgraph of T,,.

We have already observed that u(n, n)=A(n, n)=g(n, 3)= |in?] for every
n = 2. Furthermore, it is easy to see that u(n, 2) = A(n, 2) = (3) for every n=2 and
that A(n, m)=u(n, m) for every n=m =2.

In view of Theorem 2, it is reasonable to conjecture that the extremal graphs
for u(n, m) are complete multipartite graphs for all n=m =2 with the vertices in
each part occurring consecutively in {1,2,3,...,n} (except for the case
(n, m)=(3, 3)). Analysis of the properties of such graphs suggests the following
scheme. For arbitrary integers m=2,q=0,r=0 with n=q(m-1)+r=2, we
construct a complete multipartite subgrapk H(m. q, r) of T,. We begin by setting

V()={19 2—, 3,- --al%r_l}’
Ve =in—[3r1+1,n—[3r1+2,n—[3r]1+3,...,nh
and
Vi={i-1)(m-1)+Pr]+j:1sjsm-1} for i=1,2,...,q

Finally, we define H(m, q, r) as the complete multipartite graph having q + 2 parts
Vo, Vi, V,, ..., V., with edge set {(j,, j»): There exist i, i, with je V,,j,e V,
and 0<i,<i,<gq+ 1}. Note that H(m, q. r) is a bipartite graph when q =0. Also
note that Vj contains the first | ir] vertices of {1,2,3,..., n} and V,,, contains
the last [ir] vertices of {1,2,3,...,n}. We then denote by H(m,q.r) the
complete multipartite graph obtained by reversing the roles of V, and V,.,, i.e.,
in H(m, q,r), V, contains the first [3r] vertices of {1,2,3,...,.n} and V,,,
contains the last |3r]. Note that H(m, g, r) and H(m, g, r) have the same number
of edges. In fact, H(m, g, r)= H(m, q, r) when r is even. For convenience, we let
h(m, q. r) denote the number of eiges in H(m, g, r). Note that

h(m,q,r)= (;)(m —1?+q(m-Dr+ |3r7].

It is easy to see that H(m, q, r) and H(m, g, r) are m-locally unipathic. Further-
more, it is straightforward to verify that for fixed values ot n and m with
n=m =2, if we choose q=0 and r=0 so that n = q(m - 1)+ r, then the maximum
value of h(m, g, r) is achieved when [¥(m — 1)] <r < [3(m —1)]. When m =3, this
maximum value is achieved by a unique triple (m, g, r) unless r = 3(m — 1) in which
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case, we have h(m, q, V=h(m, q—1, r+m—1). For example H(S, 3, 2) and
H(5,2,6) each have h(5.3,2)=h(5,2,6)=73 edges; and H(11,1,5) and
H(11,0, 15) each have 56 edges. Wiien m =2, we observe that the maximum
value of h(m, g, r) is (3), and this maximum value is achieved if and only if r is 0,
1, or 2. We also observe that H(2,n,0)=H(2,n—1, 1)=H(2,n-2,2)=T, for
everv n=2. These observations are summarized in the following result.

Theorem 3. Let n=m=2. Then the maximum number u(n, m) of edges in an
m-locally unipathic subgraph of T, satisfies the inequality:

u(n,m)=h(in,q,r= (g)(m -1 +q(m—-Dr+ |37,

where
n=qm-1+r and [Ym-1)]sr<[3m-1)].

In th> remaining sections of this paper, we will show that the inequality in
Theorem 3 is best possible. We will also show that if (n, m)# (3, 3), then the
complete multipartite graphs H(m, q,r) and H(m, q,r) are the only extremal
graphs except when r=3(m —1). When r=3(m—1) and r is even, there are two
extremal graphs: H(m, q,r) and H(m,q—1,r+m—1). When r=4(m—1) and r is
odd, there are four extremai graphs: H(m, q,r). H(m, q,r), Him,q—1,r+m—1)
and H(m,q~-1,r+m—1). Sections 2 and 3 will be devoted to the theoretical
preliminaries, and the proof of the principal theorem will be presented in Section
4. In Secticn 5, we will present a brief discussion of the concept of rank for
partially ordered sets and the specific problem which motivated our investigation
of m-locally unipathic subgraphs of T,.

2. The digraph of nonforcing pairs for a partially ordered set

In this paper, a partially ordered set (poset) is a pair (X, P) where X is a finite
set and P is an irreflexive transitive binary relation on X. The notations (x, y) €
P,x>y in P, and y<x in P are usec interchangeably. The notations x<y in P
and y=x in Pmean x>y in P or x=y and we write xIy in P when x# y, x£y
in P, and y£ x in P. We also let I, -={(x, y):xI'y in P}. A poset (X, P) is called a
totally ordered set (also a linearly orc r:d set or chain) when I, =0.

Throughout this paper, we adopt the folibwing conventions concerning directed
graphs. We denote an edge from a vertex x to . vertex x to a vertex y by (x, y)
and we specify a digraph by its edge zet. It is then understood that the vertex set
of a digraph, when not explicitly described, is the set of endpoints of the edges.
We may therefore view a binary relation on a set X as a digraph. For example,
when a,. a,, ..., a,, are distinct, we say that the sequence {(a;, a;,,): 1<i<t}is
a dir. cted path of length t from a, to a,,,. When a,, d,, ..., a, are distinct and
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a, = a,,,, we say that the sequence {(a;, @;.,): 1 <i=<t} is a directed cycle of length
t. A digraph H is said to be acyclic when it does not contain any directed cycles.
A digraph H is said to be unipathic when it contains at most one directed path
from x to y for every pair of vertices x,y, i.e., if Py={(u, u;,;):1<i=<t} and
P,={(v;, v;+1):1=<j=<s} are paths in H, u;=v,=x, and Y4, =v,,; =Y, then s=¢
and (u, u.)=(v, v, fori=1,2,...,¢

To assist in distinguishing directed and undirected graphs, we will continue the
notational convention adopted in Section 1. Specifically, we will use the letter G
to denote an undirected graph and the letters H and N to denote directed graphs.
We will then use “primes” or subscripts when we are discussing more than one
such graph.

When X is a set, we let | X| denote the number of elements in X, and wher H is
a digraph, we let |H| denote the number of edges in H.

Now let (X, P) be a poset and let (x, y)€ I,. We say that (x, y) is 2 nonforcing
pair when PU{(x, y)} is a partial order on X, i.e., z>x in P implies 2>y in P,
and z <y in P implies z <x in P for every z € X. We then let N, be the digraph
(binary relation) of all nonforcing pairs. To illustrate this definition, we provide in
Fig. 1 the Hasse diagram of a poset (X, P) and the digraph N, associated with
(X, P).

Note that in general, the digraph N, may contain directed cycles. In order to
extract an acyclic subgraph of p, we adopt the following convention for *“‘break-
ing ties”. Let L be an arbitrary linear order on X. Then define the acyclic digraph
of nonforcing pairs N§ by

NE={(x, y)e Np:(y.x)¢ Np or (x, y)e L}.

It is straightforward to veriiy that N§ is acyclic, so we may adopt the same
convention used for Hasse diagrams in providing a diagram for N, ie., we
require that each edge (a, b) € N¥ be represented by a nonhorizontal arc with the
point corresponding to a having larger y-coordinate then the point corresponding
to b. In order to avoid drawing arrows, it is then understood that the direction of
an edge is from top to bottom on the page. For example, if L is defined for the
poset drawn in Fig. 1 by a>b>c¢>d>e>f>g>h in L, then we may represent
N%¥ as shown in Fig. 2.

Fig. 1.
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b d

PN, b

Fig. 2.

The notation N¥ does not indicate the particular linear order L used in its
definition since it is easy to see that the subgraphs of N determined by different
linear orders ure isomorphic.

A subgraph H < N} is said to be unipathic relative to P (we also say H is a U¥
graph) when the fcllowing condition is satisfied: For each pair x, y of distinct
vertices, if H contains two nonidentical paths from x to y, then (x, y)¢ N&.

For example, the subgraph H < N¥ shown in Fig. 3 is unipathic :elative to P
(but it is not unipathic). Note that H contains nonidentical paths from a to d, but
(a.d)¢ N¥. In fact a>d in P.

We next present some elementary but important lemmas which detail the
interplay between the partial order P and the acyclic digraph of nonforcing pairs.
The proofs are immediate consequences of the definitions and are therefore
omitted.

Lemma 4. PONE=).
Lemna 5. PUN¥ is a partial order on X.

Lemma 6. If {(u, ., ):1<i<t}c PUNE, and (, u)€P for some iy, iy with
I=i,<i;=t+1, then u;>u,,, in P.

It follows from l.emmas 4 and 5 that a subgraph H of Ng is a U% graph if and
only if it satisfies the following condition: For each pair x, y of distinct vertices, if
H contains two nonidentical paths from x to y, then x>y in P. These lemmas

a a

a b c b b

m c :

d e £ a d

e e

(xX,Pi £ £
. H

NP = NP

Fig. 3.
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also allow us to mal.e the following observation concerning graphs which are not
U¥ graphs. If Hc N¥ and H is not a U¥ graph, then there exisis an edge
(x, y)€ N§ for which H contains two nonidentical paths P, and P, from x to y.
Although these two yaths are nonidentical, they may have vertices in common
other than x and y and may also have common edges. On the other hand, if we
examine all edges (x, y) of M¥ for which H contains two or more nonidentical
paths from x to y, and then choose an edge (x, y)€ N and nonidentical paths P,
and P, from x to y for which the sum |P,|+|P,| of the lengths of P, and P, is as
small as possible, then it is easy to see that P, and P, have no vertices in common
other than x and y. A U¥ graph H is called a maximai U¥ graph when there
does not exist a U¥ graph H' whose edge set contains the edge set of H as a
proper subset. A U§ graph H is called a maximum U% graph when no U% graph '
contains more edges than H.

Maximal and maximum U§ graphs are important concepts in the theory of rank
of partially ordersd sets, and we refer the reader to [2—6] for details. In
particular, we note that (except for certain degenerate cases) the rank of a
partially ordered set (X, P) equals the number of edges in a maximum U§ graph.
In Section 5, we will return to this concept and employ the solution of our
extremal problem to compute the rank of a class of partially ordered sets.

3. Exchange theorems for UF graphs

In this section, we develop two exchange theorems for U} graphs. These
theorems establish conditions under which it is possible to exchange edges
between a U¥ graph H and N3 - H so as to produce a new U¥ graph.

Theorem 7. Let (X, P) be a poset and {a,, a,, as} a subset of X for which {(a,, a,),
(ay, a3), (a, a:)}cNg. If H is a U§ graph and {(a,, a5), (a. a3)}<s H, then
H' =(H-{(ay, a))) U{(ay, a3)} and H'=(H-{(a,, a;))))U{(ay,as)} ave UF
graphs.

Proof. We show that H' is a U§ graph. The argument for H” is dual. “uppose
to the contrary that H’ is not a U§ graph. Then there exists an edge (x, y)e N§
for which H' contains nonidentical paths

Py ={(u;, u.):1<si<t} and P,={(v;, v;.q):1<j<s}

from x to y. Without loss of generality, we may assume that the edge (x, y)e N§
and the paths P, and P, have been chosen so that s+ ¢ is mmimum. We may then
assume that x and y are the only two points belonging io both P; and P,.
Since H is a U¥ graph, we may assume without !nss of generality that
(ay, az) € Py, say (ay, a;) = (u;, 4, +,). Then it follows that H contains the paths
1= (P-{(a,, as;)}) U{(a,, a,), (a,, as)} and P, from x to y and we must therefore
have P} = P,, which is impossible. The contradiction completes the proof. O
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Fig. 4.

To illustrate the preceding theorem, consider the poset (X, P) shown in Fig. 3
and the sequence of U¥ graphs shown in Fig. 4.

Observe that H, ., is obtained from H; for i =1, 2, 3 by an exchange permitted
by Theorem 7. Also note that H, is a maximal (but not maximum) U3 graph, but
that H, is not maximal since H,U{(b, d)} is also a UE graph. Therefore, an
exchange of edges permitted by Theorem 7 may destroy the property of being a
maximal Ug graph. For brevity, we say that a U¥ graph H does not admit a Type
1 exchazge when {(a;, ay), (a,, a;)}c H implies (a;, a;)¢ N¥ (and therefore
a;>a, in P) for all a,, a,, a;e X.

Our next exchange theorem describes a somewhat more complicated exchange.

Theorem 8. Let (X, P) be a poset, {a,, a,, a3, a; < X, and A={(a, q):1<i<
j<4}< N§. Further, suppose that H is a U% graph for which {(a,, a,), (as, a,)}< H,
and then let G(ay)={zeX:(z,a,)eH and (z,a;)e N§—F} and [.(a;)=
{weX:(as, w)eH and (a,, w)e NE—H}. If H does not admit a Type 1
exchange, then the graph H'=(H—-{(z, a,):z € G(ay)}—{(as, w): we L(a;)) U
{(z, a3): z € G(ay)}U{(a,, w):we L(ay)} is a UE graph.

Proof. Suppose to the contrary that H' is not a U graph and choose an edge
(x, y)e N¥ for which H’' contains nonidentical paths P, = {(u, u;,;):1<i<t} and
P,={(v, vy;,,: 1 <j<s} from x to y. As in Theorem 7, we assume that the edge
(x, y) and the paths P, and P, have been chosen so that s+ ¢ is minimum. Then let
S$,={(z. a3): 2 G(ay)} and S,={(a,, w): we L(a,)}.

Since H is a U¥ graph, it is clear that (P,UP,)N(S,US,)# . On the other
hand, it is clear that |P,N(S,US,)|=:1 for i=1,2. In view of the obvious
symmetry and duality, we may therefore reduce the remainder of the argument to
the following three cases. Only in the -nird case will we requ ‘re the additional
hypothesis that H admits no Type 1 =sxchanges.

Case 1. |PyNS)|=1and |P,NS,|=1.

In this case, we may assume that (z, as)e P,N S, (z, a3) = (4, Uy . 1), (ap, W)€
P,NS,, and (a,, w)=(y B ;,+1)- Recall thaa PUNE is a partial order on X. It
follows that z>a,>¢,>>w in PUN¥, which implies that v, = x# a,. Therefore,
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Pi={(v;, v;+1):1<j<jo} is a path in HNH' from x to a,. Howcver, H also
contains the path P,={(w, w.,): 1<i<ig}U{(z, )} from x to a,. Since (z, a,) e
P,— P;, we conclude that P;# P, which contradicts the assumption that H is a U¥
graph.

Case 2. |P,NS,|=1 and |P,NS,|=1.

Choose iy, jo so that (z, a;)=(w, u.)eP,NS, and (2, a3)=(y,, v+, €
P,NS,. Since s+t is minimum, we must have iy=t and j,=s, i.e., Y, =y=
Us+1 =as. Then it follows that H contains the nonidentical paths P} ~=
{(u, ) 1sist—-1}U{(z, a,)} and P3={(v;, v;11): 1sj<ss—-1}U{(z', 4,)} from
s to a,, and therefore x >a, in P. Since (a,, a;) is an edge in N¥, we conclude
from Lemma 6 that x>y in P, which is a contradiction.

Case 3. |P,NS,|=1 and |P,N(S,US,)|=0.

Choose i, so that (z, as)=(u;, u,.,)€ PN S,. Now suppose that i,<t. Then
(W15 Ui) = (a5 )€ H'  implies  that  (a,, u;.,)¢ NE—H, ie., either
(az, u,.o)€ H or a,> U, ., in P. If (a,, u; ;) € H, then H contains the nonidentical
paths P;={(u;, 1) : 1<i<igtU{(z, ay), (a2, U )Y U{(w;, i) ip+2<i<t} and
P, from x to y. On the other hand, if a,> i, ., in P, then it follows from Lemma 6
that x>y in P which is a contradiction. We may therefore assume that i, =t and
a3=Y = U, = ;.. At this stage of the argument, we require that H admits no
Type 1 exchanges. Since P,N(S;US,)=0. i.e., P,c H, we know that s=1,
x = vy, and y = a5 = v,. since P, and P, are edge disjoint and (z, a,) € P;. we know
that x# 2 and t=2. Therefore t=2 and P,={(x, z), (z, a;)}. Furthermore, we
know that {(x, z), (z, a,)} = H and since H admits no Type 1 exchanges, we must
have x>a, in P, which in turn implies that x >a;=y in P. The contradiction
completes the proof of this case znd the theorem as well. [

We illustrate the preceding theorem with the U graphs in Fig. 5.
We call the exchange of edges in Theorem 8 a Type 2 exchange. For example,
we leave it 10 the reader to verify that for the poset shown in Fig. 5, the graphs H,

o »
o »
Comm—0
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(%,P) a a
e e
£ £
g g
h hl
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Fig. S.
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Fig. 6.

and H, as shown in Fig. 6 are maximal U} graphs which do not admit Type 1 or
Type 2 exchanges, and that H, is the unique maximum UF graph for this poset.

4. The extremal problem

In this section, we will apply the theory developed in the preceding two sections
to determine the maximum number of edges in a Up graph of a carefully
constructed poset (X, P). As a consequence, we will solve the original extremal
problem: the determination of u(n, m).

For integers «n, m with n=m =2, let X(n, m)=(X(n. m), P(n, m)) be the poset
defined by X(n,m)={1,2,3,..., n} and P(nnm)={(i,j):1<i<i+msj=sn}.
For example the poset in Figs. 3 and 4 is (after relabeling) X(6, 3), and the poset
in Figs. 5 and 6 is (after relabeling) X(8, 4). To determine the acyclic digraph of
nonforcing pairs for X(n, m), we use the lineer order L=T, ={(i.j):1<i<j<n}
to break the ties. Thus N§={(i, )e T, :j> : +m}. We then define w(n, m) to be
the maximum nuraber of edges in a U?* subgraph for the poset X(n, m) and
reduce the determinaiion of u(n, m) to the determination of w(n, m). The
equivalence of the two problems is easily established by the following lemma
which is an immediate consequence of the definitions and the fact that |P(n, m)| =

(",

Lemma 9. Let n=n =2 and (X, P)=X(n. m). Then a subgraph H< N¥ is a U¥
graph if and only if HUP(n,m) is a m-loc lly unipathic subgraph of T,.
Furthermore, u{(n, m)=w(n, m)+""7*".

Lemma 9 allows us to apply the exchange theorems developed in Section 2 to
m-locally unipath:c subgraphs of T,. We will selectively apply these exchange
theorems in the proof of the principal theorem.,
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The next lemma establishes some combinatorial identities which we will recuire
in future arguments.

Lemma 10, The following identities hold :

() h(m,g.r)=h(m—-1,q,r-2)+(@3)+(n—q-2)(q+1)
when m=3, q=0, r=2, and a=m(q—1)+r=3.

(i) h(im,q. r)=h(m—-1,q, r—1)+(@3"HY+(n—q--1)q+ |3r]
when m=3, q=0, r=1, and n=m(q—1)+r=3.

(iii) h(4p+1,9,2p)=h(4p,q—1,6p-2)+(*;)+(n—q—1)q
when p=1, gq=1, and n=4pq+2p. '

(iv) h(4p+3,q9,2p+1)=h{@dp+2.9-1,6p+ 1D+ (*3H+(n—q-1)q
when p=1,q=1, and n=4pq+2q+2p+1.

Proof. To establish the first identity, consider the complete multipartite graph
H = H(m, q, r) having h(m, q, r) edges. Using the notation of Section 1, we label
the q+2 parts of H by V,, V,, V,, ...V, Vg, with |Vi|= 13r], |V, = [ir].
and |V)|l=m—1 for i=1,2,...,q. Then let S be a q+2 element subset of
X.=1{1.2,3,....n} chosen so that S contains one element from each of the sets
Voo Vi, Voo, V,+1, and let H' be the restriction of H to X, ~S. Then |H'|=
h(m—1, q. r—2). Now consider the edges in H— H'. There are (332) edges in
H — H’' with both endpoints in S, and there are (n—q—2)(q+ 1) edges in H— H'
with one endpoint in § and the other in X, —S. The identity follows since
H=H' U(H-H').

To establisii the second identity, we modify the argument given above as
foliows. We choose a g + 1 element subset S < X,, consisting of one element from
each of the seis Vi, Vs, ..., V.|, and let H' be the restriction of H to X,, - S.
Then |H'|= h(m —1, q. r—1). There are (°}') edges in H— H’ with both ¢ :dpoints
in S, there are |3r|(q+1) edges in H— H’ with one endpoint in V/, and there are
(n—|3r] —q—1)q edges in H— H' with one endpoint in X,, — S — V|, and the other
in S. The desired identity follows as in the previous paragraph sirce H =
H U(H—-H').

To establish the third identity, we consider a q+1 element subset of X,
containing exactly one element from V,, V,,...,V,,;. Let SNV;={x} for
i=1,2,.... q+1. Then let V, = V,U V] where |V =3p, |V =p, and x,€ V.
Let H' be the restriction of H to X,, —S, and let H" be the complete q+1
multipartite graph whose parts are V,U(V,,, —{x,. DU V,V,—{x;}. V,-
{2} ..., Vq—l—{xQ‘lh V.’;‘{xq}- Since |‘/()U(Vq+l—{xq+l})u VZ|=|V:;“'{Xq}| =
3p—1 and |V,—{x}=4p—1 for i=1,2,...,9—1, we conclude that |H"|=
h(4p,q—1,6p—2). But H" is formed from H' by adding (3p — 1)p edges between
vertices in V/, and Vj and deleting 3p>—2p edges with both endpoints in
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VoU(Ve1—{x,+1)UV, From: the second identity we have |H|=
|[H'|+ (3" +(n— q - 1)q+ p. and since |H'| = |H"| - p, the desired identity follows.

The proof of the last identity is similar and is omitted in the interests of
brevity. O

For an edge (i, j)€T,, we define the length of (i, j) to be j—i. Note that each
edge in P{x1, m) has length at least m, and we may therefore view the edges in
P(n, m) as “long” edges. Furthermore, if H is a m-locally unipathic subgraph of
T, having u(n, m) edges, then P(n,m)< H. On the other hand, there are
limitations on the number of “short’” edges a m-locally unipathic subgraph of T,
can contain. For example, the restriction of a m-locally unipathic subgraph to a
set of m consecutive vertices contains at most |im?| edges. The next lemma also
limits the number of short edges.

Lemma 11. Let n=m =2 and let H be a m-locally unipathic subgraph of T,. Also
let i be an integer with 1<i<i+m-—1<n. Then H contains at most m — 1 edges
from the 2m — 1 element set

K{(i, x):i<x<i+m-1}U{(y,i+m-1):i<y<i+m-1}.

Proof. Suppose first that H contains the edge (i, i + m — 1). Since the restriction of
H to the set {i,i+1,i+2,...,i+m—1} is unipathic, it follows that for each j
with i<i<i+m—1, H contains at most one edge from the pair {(i, j), (j, i + m —
1}. Since ther¢ are m —2 integers between i and i+m — 1, we conclude that H
contains at most 1+(m—2)=m —1 edges from K.

On the otker hand, suppose that (i,i+m—1,¢ H. If it is still true that H
contains at most one edge from the pair {(i,j), (j,i+m—1)} for each j with
i<j<i+ m-1, then it follows that H contains at most m —2 edges from K. So
we may assurie that there exists an integer j, with i <j,<i+m —1 for which H
contains both (i, j,) and (j,. i -+m —1). Since the restriction of H to {i,i+1,i+
2,...,i+m~1} is unipathic, it follows that for al! j with i<j<i+m—1 and
i# jo, H contains at most one edge from the pair {(i, j), (j, i + m — 1)}. Therefore
IHNK|<=2+(m-3)=m—-1. O

We next introduce a technique for considering subsets S of X, for which the
identities in Lemma 10 as well as the restriction on the number of short edges
given in Lemma 11 will be applicable. This technique will allow us to construct an
inductive argument for the principal thi:orem utilizing the following convention. If
S < X, and [S|= s with 0 <s<n, then the restriction of T, to X, — S is isomorphic
to T,_,. Given integers m,, m, with n=m,;=2 and n—s=m,=2, we may
consider a m,-locally unipathic subgraph H of T, and its restriction H' to X,, - S.
We may then ask whether H' is a m,-locally unipathic subgraph of T, _..

For integers n,m,k with n=m:*2 and Osk<m, we let S(n,m, k)=
{ie X, :i=k (mod m - 1)} and s(n, m, k)=|S(n, m, k)|.
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Lemma 12. Let n, m, k be integers with n=m =3 and 0<k <m, and let H be a
m-locally unipathic subgraph of T,. If H' is the restriction of H to X, -
S(n, m, k) and s =s(n, m, k), then H isam— 1-locally unipathic subgraph of T, _,.

Proof. Let A be a set of m —1 vertices which occur consecutively in T, _,. If the
vertices in A also occur consecutively in T,, then since H is m-locally unipathic, it
is also m — 1-locally unipathic, and the restriction of H' to A, which is the same as
the restriction of H to A, must be unipathic. On the other hand, if the vertices in
A do not occur consecutively in T,,, then it follows that there is a unigue element
x € 8(n, m, k) so that A U{x} is a set of m consecutive integers in T,. As before.
the restriction of H' to A must be unipathic, and the argument is complete. [

We pause to detail two exceptional cases. The following result inllows im-
mediately from the remarks at the end of Theorem 2.

Lemma 13. u(3, 3)=2. Furthermore, there are exactly three 3-locally unipathic
subgraphs of Ts which have two edges:

H(3,0,3)={(1,2), 1, 3)},
H3,0,3)={(1, 3), (2, 3)},
H,={(1,2), (2, 3)}.

We next discuss the special case (n, m)=(5,4). The argument presented here
will be generalized to obtain the principal theorem.

Lemma 14. u(5, 4)=7. Furthermore, H(4, 1, 2) is the unique 4-locally unipathic
subgraph of Ts having 7 edges.

Proof. Let H be a 4-locally unipathic subgraph of Ts with |H| = u(5, 4). Then let
$,=805,5.1)={1,4}, $,=58(5,4,2)=1{2,5}, 5,=|S;|=2, and s,=1S,|=2. Also
let H, denote the restriction of H to Xs5~—S; and let L;=(H-H,)NP(5,4) =
{(1,5)} for i=1,2. Then set E,={(4,5}NH and E,={(1,2)}N H. Finally, let
L=H,-L-E fori=1,2.

Now H, is a 3-locally unipathic subgraph of T; so |H;|<2 for i =1, 2. Also, we
note that |[E;|=<1 for i = 1, 2. We next show that |I; U L;|<4 for i = 1, 2. However,
this follows immediately since |L;|=1 and [|<3 by Lemma 11 for i=1,2.
Therefore, 7<u(5,4)=|H|=|H,|+|E|+|LUL|<2+1+4=7. Thus |H|=
u(s,4)=17.

We now proceed to show that H = H(4, 1, 2). We begin by observing that we
must have |H;|=2, |E;|=1, and | UL;|=4 for i=1,2. In particular, we know
that H, and H, must be one of the three extremal graphs in Lemma 13, and we
know that {(1,2), (4,5), (1,5)}<H.

Suppose first that H, = H(3, 0, 3), i.e., {(2. 3), (2, 5)}< H. If H contains the edge
(3, 4), then H contains nonidentical paths from i to 4. The contradiction requires
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that (3,4)¢ H. This in turn implies that H,# H(3,0, 3) and H,# H,, i.e., H,=
H(3, 0, 3). Thus H contains the edges (1, 3) and (1, 4) which in turn implies that
H contains nonidentical paths from 1 to 3. The contradiction shows that H,#
H(3,0,3). At this point, we may take advantage of the obvious duality to
conclude that H,# H(3,0, 3).

Now suppose that H,=H;={(2,3),(3,5)). Then we observe that H,=
H@3,0,35={(1, 3), (1,4)} and H,= H,={(1, 3), (3. 4)} imply that H contains the
edge (1, 3). This in turn imiplies that H contains nonidentical paths from 1 to 3.
The contradiction shows tha: H,# H,, and by duality, we may conclude H,#* H,,.
Therefore H,= H(3,0,3) and H,= H(3,0, 3). But these statements imply H =
H@4,1,2). O

The next lemma allows us to restrict cur attention to m-locally unipathic
subgraphs which do not admit Type i or Type 2 exchanges. This will simplify
subsequent arguments consideraly.

Lemma 15. Let n, m be initegers with n=m =3. If q and r are integers for which
n=qim-1+r. [Bm-D]sr<3Em-1)], and (m,q,r#3,0,3), then
H(m. q.r) and H(m, q, r) cannot be obtained from a m-locally unipathic subgraph
H of T, by an exchange of Type 1 or Type 2.

Proof. Suppose first that H(m, q, r) can be obtained by a m-locally unipathic
subgraph H of T, by a Type 1 exchange. The argument for H(m, q, r) is dual.
Choose integers x, y, z with 1=sx<y<z=<x+m—1 for which H contains (x, z)
and (y. z) but one of these edges is exchanged for (x, z) to form H(m,q,r).
Without loss of generality H(m, q, r)=(H —{(x, y)}) U{(x, z)}. Choose an integer i
so that x e V. Since (x, y)¢ H(ix, q, r), we know that y also belongs to V,. Since
z—x=m—1, we know that ze V. If i>0, let w denote the largest integer in
V..y. Then him,q,r) and H contain the edges (w, x) and (w, y). But H also
contains (x, y) which is a contradiction since y— w<m — 1. Therefore i =0, r=3,
and m = 6. If |[V,|=2, we may consider the first two integers in V, and choose one
of them, say z’, with z'# z. It follows that H contains (x, y) (y, z'), and (x, z').
Since z'=2+|3r] and x=1, we see that z’—x<1+|3r]<m—1 which is a
contradiction.

Now suppose that H(m, q, rj is obtained from a m-locally unipathic subgraph H
of T, by a Type 2 exchange. Choose intergers x, v, z, w with 1sx<y<z<ws
x+m—1 for which (x,y)e H, (z, w)e H, (x,z)¢ H, (y,z)¢ H, and H(m, q,r) is
then obtained from H by a Type 2 exchange which results in (x, y) being
exchanged for (x, z) and (z, w) being exchanged for (y, w). (Other exchanges may
also be involved but this will not matter.) We then choose an integer i for which
x,ye'V; and z, we V,,,. Hence H contains both (x, w) and (y, z) but tkis implies
that H contains nonidentica! paths from x to w. The contradiction completes the
proof. [3
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We are now ready to present the principal theorem of this paper.

Theorem 16. Let n=m3=2. Then the maximum number u(n, m) of edges in a
m-locally unipathic subgraph of T, is h(m, q,r) where q and r are the unique
integers satisfying n=q(m—1)+r and [5(m—1)] <r<[3(m—1)). Furthermore:
(@) If m=2, then T, itself is the unique m-locally unipathic subgraph of T,

having u(n, m) edges.

(i) If n = m =3, then there are three m-locally unipathic subgraphs of T, having
u(n, m) edges: H(3,0,3), H?3.0,3), and Hy={(1, 2), (2, 3)}.

(i) If n=m =3, r>}(m—1), and H is a m-locally unipathic subgraph of T,
having u(n, m) edges, then either H=H(m, q,r) or H= H(m, g, r).

(iv) If n=m=3, r=3(m—1), (n,m)#(3,3), and H is a m-locally unipathic
subgraph of T, having u(n, m) efiges, then either H= H(m, q,r), H=H(m, q, 1),
H=(m,q—1,r+m-1), or H=H(m,q—1,r+m—1).

Proof. We first dispense of the case m = 2. In this case, we observe that T, itself
is the only 2-locally unipathic subgraph of T, having u(n, 2)=(3) edges, and the
desired result follows since T, = H(2,n—1,1). We may also assume (n, m)#
3, 3).

We then assume validity for all values of m with m <p where p is some integer
with p =2 and consider the case m = p+ 1. In view of Theorem 2, we may assume
n > m. Throughout the remainder of the argument, q and r will denote the unique
integers for which n=q(m—1)+r and Bm-D]sr<[3(m-1).

From this point on, we proceed with an indirect proof. We assume that the
theorem is false and let € denote the set of all counterexamples, i.e., € is the set
of all m-lccally unipathic subgraphs of T, having u(n, m) edges other than the
canonical graphs given in the statement of the theorem. We may then choose a
counterexample H € € which does not admit either a Type 1 or Type 2 exchange.
To see that this is possible, we observe that each time an exchange of either Type
1 or Type 2 is performed, the sum of the lengths of the edges in the graph
increases, but of course the number of edges remains the same. On the other
hand, it follows that if we choose a graph H € € for which the sum of the lengths
of the edges in H is maximum, then H does not admit either a Type 1 or Type 2
exchange. Otherwise, the exchange would necessarily transform H into one of the
canonical extremal graphs which is impossible by Lemma 15.

It is important to note that the counterexample H satisfies the following two
properties.

P,: If 1sx<y<z=m, (x,y)eH, and (w, z)e H, then w<y.

P Ifn—-m+1sx<y<z (y,z)eH, and (x, w)e H, then y<w.

We first establish P;. Suppose to the contrary that Isx<y<z=m, (x,y)e H.
(w, z) and y =w. Suppose first that y=w. Then H contains {x, y) and (y, z) and
admits a Type 1 exchange. Now suppose y<w. If H contains either (x, w) or
(y, z), it admits a Type 1 exchange and if H contains neither (x, w) or (y. z), then
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it admits a Type 2 exchange. This completes tiie proof of P,. The proof of P, is
dua! and is therefore omitted.

At this point, we divide the remainder of the argument into four cases
depending on the magnitude of r.

Case 1. m<r<[3(m-1)].

Let S, =S(n, m, 1), S;=8(n, m, 1+ |3(r—m)}), S3=S(G, m,r—m+1), and 5,=
S(n, m, 1+ |ir]). Note that |S,|=1S.|={Ss|=q+2 and |S,|=q+1. For conveni-
ence, we also let 5,=|S;| for i=1,2,3,4. Then for i=1,2,3,4, let H, be the
restriction of H to X, —S;. It follows from Lemma that H; is a m —1-locally
unipathic subgraph of T,_,_, for i=1,2,3, and that H, is a m—1-locally
unipathic subgraph of T, —q—1.

W ¢ next observe that the equation n=q(m—1)+r, and the inequality m <r <
[3(m - 7! together imply that the following statements hoid.

(@ n-q-2=q(m-2)+r-2 and [3(m-2)sr-2<[3(m-2)].

(b) If r#£i(3m—4), then n—-q-i=qm-2)+r—1 and [i(m-2))<r-1<
[3(m-2)1.

© If r=3m~-4), then n—-q-1=(q+1)(m-2)+r-m+1) and r-m+1=

Ym=2).
It follows from the inductive hypothesis that |H;|<u(n—-q-2,m—1)=
h(m-1.q,r-2) ior i=1,2,3. If r¥4(3m—4), then |Hy|<u(n—-q-1,m-1)=
h(m-1,q,r—1). On the other hand, if r=33m-4), then |H|s
un-q-1,m-1)=h(m-1,q+1, r—m+1). But since r—m+1=3(m-2), we
have |H)j<sh(m—1,q+1,r—-m+1)=h(m—-1,q.r—1). We conclude that |F,|<
n{m—1, q, r—1) for aii values of r treated in this case.

We now describe a method for partitioning each of the sets H— H; into three
subsets. First, we let L,=(H-H;)NP(n, m) for i=1, 2, 3, 4. Then let a; be the
least integer in S; and b; the greatest integer in S;. We define

E.=HN{(x, a):1<x<a}U{(b, y):b;<y=<n})

fori=1,2,3,4. Finally, we set [=H—-H,—L,—E; fori= 1,2, 3,4. (We use the
letters L, E, and I to suggest ‘“long”, “‘exterior”, “interior’ respectively.)

We now proceed to examine the nuinbar of edges in these sets. First, it is easy
to see that L; contains (3)— (s, — 1) edges with both endpoints in S;. If xc X, - S;
and a, <x < b, then there are s, — 2 edges in L, having x as one of its endpoints. If
x € X, = §; and either x <g; or b, <x, then there are s; — 1 edges in L; having x as
one of its endpoints. Therefore,

1L1= (3)= (51— D+ (s - Dim -2 -2)

+Hn—(5;-DH(m-1)—1}5-1).

Secrnd, we observe that it follows immediately from Lemma 11 that |[|<
‘S.' - I ;/m - 1)-
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We conclude that
EULI=(3)- -1+ - Don=2)(s-2)
- -Dim—-1)-1)s =D+ (5= 1D(m~-1)
= (3)+n-sx-1.
The form of the preceding inequality is not surprising since it is immediate that
ILuL|= ( )+(n s$)s—1) if H=h(m, qr).

In this case, note that H contains each of the (3) edges with both endpoints in S,
and if x € X, — S, then there are s; — 1 edges of H— E, — H; joining x with a point
of §.

We may combine these inequalities with the identities in Lemma 10 to obtain
the following inequalities.

h(m, q, r)<u(n, m)=|H|=|H;|+ | U L|+|E|

sh(m-1,q,r— 2)+( )+(n s;)(s;— 1) +|E|

+
<h(m-1,q.r—q)+ (q22)+(n—q"2)(Q+ 1)+|E|

<h(m,q,r)+|E]| for i=1,23.
h(m, g, ry<u(n, m)=|H|=|H,|+|[,U Ly|+|E,|

<h(m-1.qr 1)+( )+(n $)(Sa— 1)+ |E4

<h(m, g, n)+|E,| - l3r].

We conclude from this that we must have |E,|= |3r]. Now suppose that |E;|>0
fori=1,2,3.

We notz that a,=1, a,=1+13r-m)|, as=1+r—m, a,=1+r]. b=

n—r+m, by=n—[Mr—m)], by=n, and b, = n— [ir] + 1. Since |E,|>0 and |E;|>
0, we know that H contains an edge e, =(n—r+m, j) where n—r+m<j<n and
edge e;=(i, 1 +r—m) where 1=<i<1+r—m. Since IEQ|>() we know that either
H contains an edge e, = (i’, 1 + |3(r— m)]) where 1=<i’<1+ |3(r— m)] or an edge
e =(n—[3(r—m)l, ") where n— [3(r—m)] <j' < n. Now suppose that H contains
an edge e,=(i’, 1+ |3(r—m))). Since H satisfies property P,, it follows that if
(x, a,) € E,, then 1<x<1+3(r—m). Similarly, since H satisfies P,, it follows
that if (b, y)eEs,, then n-r+m<ys=n It follows that |E <
liz=m)] +r—m|3(r—m)] which is impossible since |E,/=|jr] and [ir|>
[3(r— m)]. On the other hand, if H contains an edge e5=(n— [3(r—m)]. ) then
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we would conclude that if (x, a,) € E,, then 1<x<1+r-—m, and if (b,, y)e E,,
then n—[{(r-m)] <y=n. L follows that |E,J<(r—m)+ [3(r—m)] = [3(r—m)].
As before, this is impossible since |E4|= |3r] and [3r] > [3(r—m)].

The contradiction allows us to conclude that there must be some ie {1, 2, 3} for
which |E/|=0. Since r~2#4(m—2), we note that this implies in turn that
|H,= u(n, my=h(m,q,r), |H|=h(m-1,q.r-2), |[LUL|=(3*)+(n-q-2)X
(q+1) and |I|=(q+ 1)(m —1). Therefore, either H;=H(m—-1,4,r-2) or H;=
H(m -1, q.r-2). In either case, it is easy to see that H; contains q + 1 edges of
length one. Furthermore, if we choose an arbitrary consecutive pair vy, 1€ S,
then there exists a unigue edge (w, w+1)e H; so that 1=y, <w<w+1<up,=
v,+m=n. Since |I|=(q+1)(m~1), it follows that H contains exactly m -1
edges from {(v;. x): v, <x <} U{(y, vy): v, <y <uv,}. Thus if v, <x<v,, then H
must contain at least one of (v,, x) and (x, v,).

First, suppose that v; <x <w. We show that (x, v;) € H. To the contrary, assume
(x, v;)¢ H; then (v, x)e H. Now (x,w+1), (w,w+1)s HNH so (v;, w)¢ H,
(w, vy)e H, i.e., H contains (w, w+ 1), (w+ 1, v,), and (w, v,) which is a contradic-
tion. We conclude that if v, <x=<w, then (x, v,)e H.

A dual argument shows that if w+1=<y<uwv,, then (v,, y)e H. We now show
that H contains (v;, v;). To the contrary, suppose that (v, v,)¢ H. Then there
exists an integer x with v, < x <wv, for which H contains both (v,, x) and (x, v,). If
x <w, then H contains (v,. x), (x, w+ 1), and (v;, w+ 1) which is a contradiction.
Similarly, if w-+ 1=<x, then H contains (w, x), (x, v;), and (w, v,) which is also a
contradiction. Wz conclude that (v, v,) € H.

In the above argument. v, and v, were an arbitrary consecutive pair from S; so
that we have determined the location of each of the (q+1)(m —1) edges in I.
Since E;=§ and L, < P(n, m)< H, it follows that if H,=H(m—1,a.r-2), then
H=H(m.q,r), and if H; = H(m-1, q,r—2), then H= H(m, g, r). Of course, we
have obtained a contradiction since the assumption that H was a counterexample
has led to the conclusion that H was not a counterexample. With this observation,
thie proof of Case 1 is complete.

Case 2. {m—1D)<r<m.

In view of Lemma 14, we assume (n, m)#(5,4). Consider the three sets
S$,=8(n,m, 1), S,=8(n, m, [3r]), and S;=S(n, m, r). Let 5, =|8,| and let @; and b,
denote the least integer and the greatest integer in S; respectively for i =1, 2, 3.
Note that s;,=q+1 for i=1,2,3. We then define for each i=1, 2,3 the sub-
graphs H;, I, L, and FE, =xactly as in Case 1. Since [¥(m —2)]<r—-1<[3(m-2)],
we know that the following inequality holas.

h(m, g. y<u(n.m)=|H|=|H,|+|L U L|+|E|
+
<h(m-1,q,r—1)+ (q2 1)+(n—q— Nq+|E]|

=h(m,q N+|E|-[3r] fori=1,2,3.
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In partcular, we note that |E|=|ir] for i=1,2,3. If |E!=|ir] for some
ie{l,2,3}, then we know that H,=H(m—-1,q,r—1) or H; = H(m—1, q.r-1)
unless r—1=4m—2), in which case, we may also have ;==
Hm—-1,q-1,r-m—-3)or H = I:I(m —1.g-1, r+ m—3). However, it is easy to
show that the requirement that |E;|= |3r] for i =1, 2, 3 rules out this possibility.
To see that this is true, we observe that if HH=H(m—-1,q-1,r+m-3) or
H,=H(m-1,q-1, r+m-3) for some ie{l,2, 3}, then H, contains an edge
(y, y+1) where either y=[3(r+m—1)] or y=[}r+m—1)]. Since |E;|>0, H
contains an edge of the form (x, r) where 1= x <r. But this implies that H violates
Property P,, since 1 <x<r<y<y+1=<m. We may therefore assume that either
H,=H(m-1,q.r—=1) or H;= Him—1,q,r—1) whenever |E|= || and ic
{1,2, 3}.

Suppose first that |E;| = [3r]. Then we must have H; = H(m —1,q,r— 1), for if r
is even and H, = H(m -1, g, r—1), then H, contains each of the 3r—1 Ldges in
the set {(n~1ir+1, x):n—ir+1<x=<n}. However, this implies that |[E,|=<jr—1<
|3r] which is a contradiction. Since H,=H(m—1,q,r—1), we know that H
contains each of the |ir] edges in the set {(n— |3r], x): n— |3r] <x <n}, and thus
E,={(n—r+1, x):n—{3r] <x=n}. The argument in Case 1 may now be applied
to determine the edges in I, and show that H= H(m,q,r). We may therefore
assume that |E,;|> [4r]. Dually, we may assume that |E;|> [3r].

It follows that E, contains no edges from the set {(x,[ir]):1=<x<[ir]}.
for otherwisz we would conclude that |E;|<|3r]. Therefore E,=
{(n—|2r]. x):n—|ir] <x=<n} and |E,| = |3r]. However, this in turn requires that
|E,|=<|4r] which is a contradiction. This completes the proof for Case 2.

Case 3. {(m—1)=r and r is even.

First set r=2p and m =4p+1. We then consider the sets §,, S5, ..., S. where
S;=8(n,m,i{)and 5;,=q+1 for i=1,2,...,r. Note that

uin—q-1,m-1)=u(@pq+2q—-q-1,4p)=h(dp,q-1,6p-2).

It follows that if |1, =0 for some ie{l,2,...,r} then H;=H(4p.q—1.6p-2)
and the same argume:t used in Case 1 wouid allow us to conclude that

H=H(m,q-1,r+m—-1)=H(4p+1,q-1, 6p).

We may therefore assume that (E|>0 for i=1,2,..., r.
Now consider the set S,,, = S(n, m, 3p). Since s,,,=q and

u(n—q, m—1) = u(4pq +2p—q. 4p) = h(4p, q. 2p).

we conclude that |E,.,|=2p. If |E,.,|=2p, it follows easily that H= H(m, g.r)=
H(- p+1, g, 2p). We therefore assume that |E,,|>r.

Next suppose that for some ie{l,2,...,r}, E; contains an edge (x, i) where
1<x<i and an edge (n—r+i, y) where n—r+i<vy=<n. Then we woula con-
clude that |E,,,|<s:(i—1)+r—i=r—1. The contradiction shows that for each
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i=123,....r we either have Ec{(xi):1=x<i} or E, c
{(n—=r+iy):n—-r+i<y=n}.

Similar reasonin; shows that if H contains an edge of the form (x, i + 1) where
1=x<i and an =dge of the form (n—r+i,y) where n—r+i<y=<n, then
|E,+1l<r. The contradiction shows that we must either have E, <{(x, i):1<i<i}
fori=1,2,...,ror EEc{(y,n—r+i):n—r+i<ysnl}fori=1,2,...,r neither
of which is possible. The centradiction completes the proof of this case.

Case 4. {m—1)=4, r is odd, (n, m)# (3, 3).

First set r=2p+1 and m=4p+3. As in Case 3, we consider the sets
5 85,....5 where §;=S8S(n,m,i) and 5;=q+1fori=1, 2,...,r. Note that

un—q-1,m-1)=u(@pq+2p+q,4p+2)=hdp+2,q—1,6p+1).

It follows that if |E;!=0 for some ic{1,2,...,r}, then either
H,=H(4p+2,q—-1,6p+1) or H,=H(4p+2,q—1,6p+1).
Applying (he argument used in the previous cases, we would conclude that either
H=H@p+3,q-1,6p+3) or H=H(4p+3,q—1,6p4 3).

We therefore assume |E;|>0 for i=1,2,...,r.
Now consider the set S,,, = S(n, m, 3p). Since s,,., =g and

uin-gm-1)=u(@dpq+2p+q+1,4p+2)=h(dp+2,49,2p+1),
we conclude that |E,, |=r. If |E, | =r, then it follows easily that
H=H@4p+3,4,2p+1) or H=H(@p+3,q2p+1).

We may therefore assume that |E, | >r. The remainder of the case follows along
the same lines as Case 3 and is therefore omitted. With this observation, the proof
of our theorem is complete. [

5. The computation of rank

K P and Q are partiai orders on a set X and P< Q, we say that Q is an
extension of P. If Q is also a linear order, then we say Q is a linear extension, A
well known theorem of Szpilrajn [7] asserts that if P is a partial order on a set X,
then the collection & of all linear extensions of P is nonempty and 2=P. A
family # of linear extensions of a partial order P is called a realizer of P when
() F=P. A realizer ¥ of P is said to be imedundant when () $# P for every
proper subfamily # & . Dushnik and Miller [1] defined the dimension of a poset
(X, P) as the smallest integer ¢t for which there exists a realizer %=
{L,.L,. . .., L.} of P. Note *hat if (X, P) has dimension t and F={L,, L,,..., L}
is a real.zer of P, then % is irredundant. Maurer and Rabinovit:h [2] defined the
rank of (X, P) as the largest integer ¢ for «/hich there exists an irredundant realizer
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F={L,,L,,...,L}of Pandshowed that while a n-element antichain has dimen-
sion two when n =2, it has rank |[in?| when n=4. In [6], Rabinovitch and Rival
gave a formula for the rank of a distributive lattice. In [3] and [4], Maurer,
Rabinovitch, and Trotter developec a general theory of rank based on the graph
theoretic concepts discussed in Section 2 of this paper. For the sake of complete-
ness, we state here the principal results of this theory.

For n=0, let n and i denote respectively an n-element chain and antichain. If
X=(X, P) and Y=(Y, Q) are posets, we define X join ¥, denoted XY, as the
poset (XUY, PUQU (X XY)),i.e., in XPY, every elem:ent of X is greater than
every element of Y. A poset (X, P) is said to be rank degenerate if there exist
integers n, m =0 such that (X, P) is isomorphic to a subposet of n®3@®m. The
width of a poset (X, P) is the maximum number of points in an antichain
contained in (X, P).

Theorem 17 [5]. If (X, P) is rank degenerate, then rank{X, P)= width(X, P).

Theorem 18 [3]. If (X, P) is not rank degenerate, then the rank of (X, P) equals
the maximum number of edges in a Ug subgraph of N§.

By combining Theorem 18 and Lemma 9, we can now compute the rank of the
family of posets {X(n, m):n=m =2}. Note that X(n, n)=n for n=2 so rank
X(2,2) =2, rank X(3, 3)= 3, and rank X(n, n) = |4n?] when n=4.

Corollary 19, Let n>m =2. Then

rank X{(n, m)=h(m, q,r)— (n-— m+ l)

2

where n=(m—1)q+r and [3(im-D]sr<[B(m-1)].

Proof. Note first that X(n, m) is not rank degenerate when n>m so that by
Theorem 18, the rank of X(n, m) equals w(n, m), the maximum number of edges
in a U¥ subgraph of N§¥. In view of Lemma 9, we know that

n—m+1
win, m)=u(n, m)—( 2 )

and our conclusion foilows from Theorem 16 since u(n, m)=h(m,q,r). 0O

It is of particular interest to consider the special case of the preceding result
which occurs when n = 2m. The family {X(2m, m): m = 1} is a collection of posets
of height one of particular combinatorial interest. First, the posets are interval
orders of height one and secondly, X(2n:, m) is the horizontal split of m (see [8]
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for definitions). X(2m, m) has dimension two for all m =2, and we may examine
Corollary 19 in detail to obtain a formula for the rank of X(2m, m).

Corollary 20.

(i) rank X(4,2)=3.
(it) rank X(6,3)=17.

1
14

!
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(iv) rank X(2m, m = |3(3m?—3)] for m =5.

Proof. X(2m. m) is not rank degenerate when m =2 so that rank X(2m, m)=
w(2m, m), the maximum number of edges in a UF subgraph of N§. By Lemma 9,
we know that

w(2lm.m)=uQm.m)- (m 1 )

2
It follows from Theorem 16 that u(4, 2)=h(2,2,2)=6 so ti.at

w(4,2)= u(4.2)- (;)= 6-3=3.
Similarly
wi6.3) = u(6. 3)- (;)= h3.2.2-(3)=13-6=7.

and

5

wig, 4) - (;)= h4.2.2)-(;

)=22—10=12.

On the other hand, when m =5, u(Zm, m)=h(m, 1, m + 1) so that

w2m, m)=h(m, 1, m+1)~- (m: l)
=(m-1)(m+1)+ [Jfm+1)*] - (m; 1)

={i3Bm?-3)]. O

Although we do not discuss the details here, it is relatively easy to establish the
inequality rank X.(2m, m)= [3(3m?> - 3)] directly from the definition of rank. This
is accomplished by explicitly constructing an irredundant realizer & for X(2m, m)
with |#|= [{{(3m?-3)]. The problem of establishing the reverse inequality,
rank X(2m, m)=< [{(3m*-3)], served as the initial motivating force behind this
paper.



A generalization of Turdn’s theorem to directed graphs 189
6. Open piahlems

One of the obvious problems remaining to be solved is to investigate further the
relationship between u(n, m), the maximum number of edges in an m-locally
unipathic subgraph of T,, and A(n, m), the maximum number of edges in an
m-locally triangle free subgraph of T,. We recall that A(n, m)= u(n, m) for all
n=m=2 and that A(n, n) = u(n, n) = [in?] while A(n, 2)=u(n,2)=(). On the
other hand, it may happen that A(n, m)>u(n, m). For example, when n =9 and
m =8, u(9, 8) = 20 and the only extremal graphs are the complezte bipartite graphs
H(8,0,9) and H(8, 0. 9). However, it is straightforward to show that A(9, 8) =21
and that {(i, j): 1 <i=4, 5<j<8}U{(j, 9):5=<j<8tU{(1, 9)} is an extremal graph.

Several problems involving the digraphs of nonforcing pairs also arise naturally.

(1) What (acyclic) digraphs are the (acyclic) digraphs of nonforcing pairs of a
poset?

(2) Characterize maximal and maxirnum Ug graphs.

(3) If | X| = n, characterize the set S of integers for which there exists a poset
(X. P) so that for every se S, there exists a maximal U¥ graph having s edges.

(4) Which posets have the property that every maximum U¥ graph admits no
Type 1 or Type 2 exchanges.
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