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*
Partially Ordered Sets with Equal Rank and Dimension

Stephen B. Maurer, Department of Mathematics, Swarthmore College,
Swarthmore, PA 19081

Issie Rabinovitch, Department of Mathematics, Concordia Univer=-
sity, Montreal, Quebec, Canada H3G 1M8

William T. Trotter, Jr., Department of Mathematics, Computer
Science and Statistics, University of South
Carolina, Columbia, SC 29208

Abstract
A family F of linear extensions of a partial order P is
called a realizer when nF = P; a realizer F is called irredundant
vhen nG # P for any proper subfamily Gc F. The dimension of P is
the number of linear extensions in a smallest (hence irredundant)
realizer; the rank is the number in a largest irredundant realiz-
er. Rank is clearly equal or greater than dimensicn, and usually
much greater. Here we determine those partial orders which have
dimension equal to rank. Let gf‘ be the partial order of sub-
sets of an n-set. Basically, our posets are subposets of g?
which include all the l-sets and (n-1)-sets, as well as those

posets obtained from these by stretching elements into chains.

1.

Introduction
A partially ordered set (poset) is a pair (X,P) where X is
a set (always finite in this paper) and P is an irreflexive,
transitive, binary relation on X. We write x2y when either
(x,y)eP or x =y. A family F = {LI’LZ""’Lk} of linear ex-
tensions of P (all still defined on X) is called a realizer of
P when nF = P, i.e., (x,y) e P iff (x,y) ¢ Li for all i. A
realizer is said to be irredundant when nG # P for any proper
nonempty subfamily G of F.
The dimension d(P) of (X,P) is defined as the smallest

number of linear extensions in any realizer of P. This old

definition has both pure and applied interest. For instance,
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d(P) is easily seen to be the lowest number n such that the ele- rank much easier than the computation of dimension, but by no

ments of X can be represented by points in Rn so that P is pre- means trivial in genmeral. Basically, the theory says that it

cisely the partial order induced by the usual partial order on suffices to look at all digraphs with vertex set X and which

n-tuples. As for an application, posets arise as preference re- meet certain simple properties related to P; the largest number

lations in measurement theory. One psychological explanation of edges in any such graph is r(P). Thus the actual construc-

as to how people come to their preference, and in particular, why tion of realizers of P is entirely bypassed!

they are sometimes indifferent, is that they actually rate items

on several linear scales simultaneously (perhaps unknowingly) and
only sense a preference when all the scales agree as to the better

choice. Then d(P) is just the smallest number of scales necessary

to "explain" a person's preference order P.

Unfortunately, dimension, though extensively studied, is
extremely difficult to compute. See [7] for a good bibliography.
It is easy enough to construct irredundant (i.e., minimal)
realizers for any P, and every realizer containing d(P) linear

extensions (i.e., a minimum realizer) is irredundant. However,

not every irredundant realizer is minimum. In light of the diffi-

culty of computing d(P) exactly, one might hope to get a good
approximation by constructing some irredundant realizer of P.

With this approach in mind, the first two authors [1] made
the following definition and asked the following question. The
rank r(P) is the largest number of linear extensions in any irre-
dundant realizer of P. How large can r(P) be relative to d(P)?
Unfortunately, the answer is that, when le =n, r(P) can be as
large as lnzlb_], while simultaneously d(P) can be 2. Therefore
a different question is in order: for which types of posets is
rank a good estimator of dimension? In particular, characterize
those P for which r(P) = d(P). Let us call a poset satisfying
this equality an RD poset. In this paper we characterize RD
posets.

We will make use of a general theory of rank which we have

presented elsewhere [2]. This theory makes the computation of
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The organization of this paper is as follows. In the next

section we introduce notation and state our characterization
theorem. In Section 3 we provide (and reference) those concepts
and facts from the general theory of rank which we use in the

proof of our theorem, which follows in Section 4.

For other results about rank, see [2,3,4].

2. Statement of the Characterization Theorem

Let n denote an n-element chain and W an m-element anti-
chain, If (X,P) and (Y,Q) are posets, define the join
(X,P) & (Y,Q) as the poset (X0Y, PUQU (XxY)), where 0 is
disjoint union. Note that in (X,P) @ (Y,Q), every point of X
is greater than every point of Y. Let (X,P) be a poset and let
{(YX,QX): x ¢ X} be a family of posets. The ordinal sum

£ (Y.,Q) is the poset (Z,R) where
X’ K
x e X

Z

{(x,y): stx, xe X}, and ((x,y),(x",y'))e R iff either

(x,x') e P,or x = x' and (y,y")e Qx' In this paper we are con-—
cerned only with ordinal sums where (X,P) is a collection of
sets ordered by inclusion and each (Yx’Qx) is a chain.

Let g“ denote the poset determined by the collection of
all subsets of {1,2,...,n}, ordered by inclusion. Let Cn de~
note the collection of all subposets of g“ containing all the
l-element and (n-1)-element subsets. (We say (Y,Q) is a
subposet of (X,P) if Y<X and Q consists of all pairs from P
with elements from Y.) For n23, 1 # n-1 and the subposet on
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the collection of l-element and (n—-1)-element subsets is called
;ithe crown S:. (See [5] for the more general S:-) Finally, let

c: be the collection of all posets which can be obtained by

taking ordinal sums of families of chains over posets from Cn.
Note first that d(P) = 1

1 trivially, i.e., every linear order is an RD

We can now state our Theorem.

implies r(P)

poset. So we may henceforth restrict ourselves to posets

with d4(P) 2 2.
Theorem 1.

with n22.

cept if n

Let (X,P) be a poset and let n be any integer
Then d(P) r(P)
2 then (X,P) can also be any poset

n if and only if (X,P)e C:; ex—

Eafeﬁoioﬂ, with m,p,q >0,

3. Theory of Rank

For poset (X,P), we say x # y are incomparable, i.e.,
(x,y) €I_ =1, iff (x,y), (y,x) ¢ P.
called forcing induced on I by P, namely, (x,y) forces x',y")
The
set of nonforcing pairs, NP = N, is the set of (x,y) ¢ I which
Equivalently, (x,y)e N iff for all
N, like other
sets of ordered pairs on X, will be thought of as a digraph on
X. A "path"

There is a partial order
iff the transitive closure Tr(Pu {(x,y)}) contains (x',y").

force no other pairs.

z€X, (2,x) €P=>(z,y) € P,and (y,2) € P=>(x,z) € P.

The size of a digraph is the number of edges.
will always mean 'directed path".

It is easy to show that if (x,y) is nonforcing, then (y,x)
is unforced. Moreover, since X is finite, every (x,y) ¢ I is
forced by some unforced pair. It follows easily (or see the
proof of the similar Lemma 4.4 in [2]) that we have

Lemma 2. A family F of linear extensions of P is a
realizer of P iff (y,x)euF for every (x,y)eN.

Thus we say that F realizes P if it "turns over" every

(x,y) e N.

630

A subgraph HES N is unipathic relative to P, and is hence-
forth called a UP subgraph, iff whenever there are two edge-

disjoint directed paths from x to y in H, then (x,y)eP. (If P
is an antichain, a UP graph is unipathic as previously defined

in the literature.)

(Main Theorem on Rank, Form 2, from [2]). Let

Theorem 3
Let r be the size of a largest subgraph of N

UP' Then r = r(P).

to show r2 r(P) is relatively easy; r< r(P) is hard.

P be nonlinear.
which is either a cycle or acyclic
Note:
In rank theory, cycles are a nuisance, for a) N can have
lots of cycles, but b) rarely does the size of some cycle equal
r(P). To elaborate on claim a), Y< X is said to have duplicate
holdings in P iff for eachz € X, either (y,z)e P for all yeY

or none, and (z,y) € P for ally or none. Also, a complete two-
way digraph on Y has both edges (y,y') and (y',y) for all
y,y'e€ Y. Then we have
Lemma 4 (3.9 in [2]).
set Y<=> the restriction of N to Y is a complete two-way digraph

There is a cycle in N with vertex

Y has duplicate holdings in P.
As for claim b), call P rank degenerate if every largest
Every rank degen-

>

subgraph described in Theorem 3 is a cycle.
erate poset must have duplicate holdings, but much more is true:
Theorem 5 (see proof of Main Theorem, Form 1, in [2]).
P is rank degenerate iff P is a subposet of n @ 3e m.

Once the small class of rank degenerate posets is removed,
Theorem 3 requires that we avoid cycles. Happily, it is possi-
ble to restrict attention to a subset of N which is already
acyclic. Namely, for any linear order L on X (L need not even
extend P) define

N N; = {(x,y)e N: (y,x)dN or (x,y) ¢ L}.

It might seem that N* depends on L, but in fact, up to isomorphism,
Thus Theorem 3 readily

it does not. This follows from Lemma 4.

implies:
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Theorem 6 (Main Theorem, Form 3, from [2]). Suppose P is

Then r(P) is the size of any largest UP

not ramk.degenerate.
graph in H*.

As we show in Section 4, with two exceptions, RD posets do
not have duplicate holdings, so for them Theorem 6 applies and
N=N".

To prove Theorem 1, we need not so much the main Theorem(s)
on rank as certain more preliminary facts about N. In addition
to Lemma 4 these are:

Lemma 7 (3.5 in {2]). If X]sXg,...,X are the vertices in
order of a directed path in PUN, and at least one edge is in P, th
(xl,xn) €P,

Lemma 8 (3.8 in [2]).

Tr(PuN) = PUNu {(x,x) : x on a
cycle in N}.

By a transitive tournament in N, we mean a subdigraph

which is a linear order. From Lemmas 7 and 8 we immediately get:

Lemma 9., If (xi’xi+1) €N, i =1,2,...,n-1, and (xl,xn) €N,
then for all 1<i<j<n, (xi,xj) € N. That is, LITER X is the
ordered vertex set of a transitive tournament in N.

(Note: basically the same argument proves the first impli-
cation in Lemma 4,)

Finally, we need one older result often used in studying

dimension. A set ((xi,yi) 1<i<m} is called a TM-cycle for P
when (xi,yi)e I for all i, and yiz xj in P iff j = i+l mod m.
Then it is easy to verify (see Theorem 1 of [6] and commentary
afterwards):
Theorem 10. Let (X,P) be a poset and let ScI. Then
Tr(Pu S) is a partial order iff S contains no TM-cycle.
We will use Theorem lOAas follows. Suppose we find HeN

{(y,x%) :

Then no two edges in H can be

such that in the reverse set H = (x,y) e H} , every
pair of edges is on a TM-cycle.
turned over in the same linear extension of P. Thus, by the

definition of dimension, d(P) > |H].
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Proof of Theorem 1.

The outline of our proof is:

All posets listed in the Theorem are RD posets.

1)
2)

With two exceptions, RD posets have no duplicate holdings.
One exception is the exceptional case of the Theorem. The
other is contained in C;. The non-exceptional RD posets are
thus not rank degenerate and each has an acyclic N.

For any P, let t be the number of maximal transitive tourna-

Then d(P) < t.

3)
ments in N. If for some distinct maximal
1,T2, there is a linear extension
u T2, then d(P) < t. Now assume P has no duplicate

transitive tournaments T
of Pu ;1 T
holdings. Then t<r(P).
tive tournament has more than one edge, then t < r(P).

en
transi-

Thus,

If in addition some maximal

in any RD poset not excepted in 2), each edge of N is a maxi-

mal tournament; no two edges of N can be turned over simul-
taneously; and [N| = d(P).

Let P be an RD poset with d(P) n and no duplicate holdings.

1< i<n} so that we may set

4)

Label N as {(ai’bi)
A= {ai: l1<i<n} , B = {bi: 1si<n} . Then with one ex-
ception, the subposet of P on AuB is the crown S;.

5) For all P described in 4), P as a whole is as described in the
Theorem.

We now proceed in turn with these parts.

1). Recall that elementsAin posets in Cn correspond to sub-
sets of n = {1,...,n}. Set i =1 - {i}.
C* , let e be the element at the top of the chain corresponding

n A
to i. Let di be the element at the bottom of the chain corres-

For any fixed P in

ponding to i. Let C = {Cl""’cn}’ D= {dl"“’dn}' It is
straightforward to show that N = ((ci,di): 1<i<n }; see

Theorem 6.4 in [2] for the main details. When n2 3, the edges

of N are independent; for n = 2 they may be a path or a cycle.

In any event, r(P) < n by Theorem 3. On the other hand, every

pair of edges in N are on a TM~cycle. So d(P) 2n by Theorem 10




and the remarks after it. So P is an RD poset.

As for P -297029503, it is easy to see that N
consists of 2 disjoint 2-cycles and, by Theorem 3, r(P) = 2.
(Any 2 edges in N form a largest cycle or acyclic UP subgraph.)
Clearly d(P) = 2 also.

2). Suppose (X,P) has duplicate holdings. Let Xl,.. .,Xk
be the disjoint maximal duplicate holdings sets. Thus each
IXiI 22, Pick some x; € Xi for each i, and set Y = X - U(Xi-xi).
Let Q be the subposet of P on Y. It is easy to see that if
d(Q) > 1, then d(Q) = d(P); and if d(Q) = 1, then d(P) = 2. It
is equally easy to see that in all cases, r(P) > r(Q): for let H
be a largest subgraph of NQ as in Theorem 3. H may be empty
(if d(Q) = 1), but since Q has no duplicate holdings, H is acyclic
in any event (Lemma 4). Now append to H any one edge between ver-
tices of, say, Xl' The new graph is in NP and is acyclic UP'
Thus r(P) > r(Q).

Therefore, if P is an RD poset with duplicate holdings,
d() = r(p) = 2 andP=EIOHIOEZ¢EZG oﬂkex_xkoEkH,
with all miZO and all niz 1. TI.e., P is a so-called weak order.
However, it is easy to check (use Theorem 3 and Lemma 4) that a
nonlinear weak order has r(P) = 2 iff either a) k = 1 and n, = 2,

1
or b) k =2 and n, = n, = 2. (For the general formula for rank

1 2
of a weak order, see Cor. 6.6 in {[2].) Case a) is included in

*
CZ; case b) is the exceptional case of the Theorem.

3). For any transitive tournament T in N, PUT always has
a linear extension: it is easy to see that T does not contain
any TM-cycles. Since every edge in N is in some maximal T,

A A

d(P) < t by Lemma 2. Likewise, if some PUT, u T2 has a linear

1
extension, Lemma 2 gives d(P) < t-1.

Now suppose P has no duplicate holdings. Let T e T

1 t
be the maximal transitive tournaments. For each i, let ey be
the longest edge of Ti’ that is, the edge from the first element

ay to the last element bi. We claim that the graph

H= {el,...,et} is U_, hence r{(P) 2t by Theorem 6. We show H is
U by showing something much stronger: for every path in H with 2
or more edges, if x and y are its initial and final vertices, then
(x,y) € P. By Lemma 7, it suffices to prove this property for
paths of length exactly 2.

So suppose (ai,bi)(aj,bj) is a path, i.e., 'bi = aj. Then
(ai’bj) € PUN by Lemma 8. We show (ai,bj) ¢ N. For let x = a;,
xz,...,xm = bi be the vertices in order of Ti’ and let X, = aj,
Eopyoeee .
then by Lemma 9, every (xs,xs,) e N for s<s'. But then

= b, be the vertices in order of Tj. If (ai’bj) eN,

x1""’xm+n is a bigger tournament than either Ti or Tj, con-
tradicting maximality. (There cannot be any repeats among the
x , for then N would contain a cycle.)

° Now suppose some T, say Tl’ has more than one edge, i.e.,
at least 3 vertices. Pick any ei = (al,x) + e from 1‘1. We claim
Huei satisfies the same condition on paths of length 2 as H,
hence is UP' Thus r(P) 2t + 1. To prove this claim, we need
only show the condition for paths eiei and eiei, i=2; for ey
and ei do not form a directed path. The proof is essentially
the same as the proof for H: if any such path had its end pair
in N, then Ti would not be maximal.

4), If i# j, then aifaj and bia‘bj. For otherwise
ey ej can be turned over together, violating d(P) = n by Lemma
2. So N consists of vertex disjoint paths. No such path can
contain 3 edges. For if xl,xz,xa,xa were consecutive vertices
in N, then (xl’XZ) and (x3,x4) could be turned over together:
a TM-cycle would imply (x3,x2) ePnli=4.

Moreover, if one path in N contains 2 edges, then there
are no other paths! For suppose N contained (xl,xz) , (xz,x3),
and (x4,x5). Since d(P) = n, Lemma2 and Theorem 10, applied to
{(xz,xl),(xs,x[.)} , would imply (xl,,xz) € P, and applied to
{(x3’x2)’(x5’xl.)} would imply (XZ’XS) € P. Thus
(xé’XS) ePnN = @.
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Thus either n = 2 and N is a 2-path (the exception), or

else N consists of n independent edges (here too nx2, since P is

not linear). In the latter case, since no ei,ej may be turned oveyr

together, Theorem 10 implies (ai’bj)’ (aj »b;) € P. Moreover
(ai,aj)e I, else either e, or ej is in P. Likewise, (bi,bj)e I.

Thus the subposet of P on AUB is the crown S (Previously we

o
n
defined the crown for nz 3 only, but when n = 2 the poset we now
get on AuB is a natural choice to call SZ; only the interpreta-
tion of vertices in terms of distinct l-sets and (n-1)-sets is
missing, and as we will see, distinctness of set lables is about
to be lost anyway.)

5). For all xe X, define A(x) = {i: a
B(x) = {i: x2b, in P}. We will show:

i) For each x, A(x), B(x) partition n = {1,...,n}.

in in P},

ii) (x,y) € I iff neither B(x) nor B(y) is contained in the
other.

iii) If B(x) H B(y), then (y,x)e P.
It follows from ii) that for each Scn, the restriction of P to
{x: B(x) = S} is a linear order. It then follows from iii) that
P is an ordinal sum of chains, where the sum is over a sdbposet
(2,Q) of gn' It follows from the analysis in 4) of the subposet
on Au B that Z contains all l-element and (n-1)-element subsets.
(When n = 2, then n-1 = 1 and AuB gives us each l-set at least
once, whether AUB is a crown or the exception.) Thus, when we
prove i) - iii), we have finished the proof of our Theorem.

We need two observations. First, for any P whatsoever, if

(x,y) € I, then (x,y) forces some (z,w) ¢ N, where z2x and y2w in
P. Second, for all P as in 4), including the exception,
(ai’aj)’(bi’bj) € I. Now to prove i), clearlyno i €A(x)nB(x),
for then (ai’bi) € P. Suppose some i¢ A(x) U B(x). It cannot
be that both (x,ai), (bi,x) € P, for then (bi,ai) € P. So either
(ai,x)e I or (x,bi)e I. (ai,x) would force some (a ,bj), and

since then aj > a; and xzbj in P, we would have j = i and
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ieB(x). Dually, (x,bi) would force the contradiction i €A(x).

To prove ii), if (x,y) € I, then (x,y) forces some (ai,bi).
By the definition of forcing, ie A(x) nB(y) = (@ - B(x)) nB(y), so
ieB(y)-(B(x). Dually, (y,x) €I too, and this forces some (aj’bj)’
so j € B(x)-B(y). To prove the reverse implication, if
(x,y) € P, then clearly B(y)< B(x), and if (y,x) ¢ P, then
B(x) < B(y). These facts also prove iii), for of the exhaustive
possibilities (x,y) ¢ I, (x,y)€P, (y,x) ¢P, the only one compati-

ble with B(x) g B(y) is (y,x)eP.
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