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A Bound on the Interval Number
of a Complete Multipartite Graph

L.B. HOPKINS
W.T. TROTTER*

ABSTRACT

The interval number of a graph G denoted i(G), is the
least positive integer t for which G 1is the intersection
graph of a family of sets each of which is the union of t
pairwise disjoint intervals of the real line. For example, a
graph G 1is an interval graph if and only if 1i(G) = 1, while
i(Cn) = 2 for all n > 4. Griggs showed that the maximum
value of the interval number of a graph on n vertices is
Rn-%l)/é] and Trotter and Harary showed that the interval num-
ber of the complete bipartite graph K(nl,nz) is given by the
formula i(K(nl,nZ)) = Pnln24-1)/(nl-+n2§‘. Several
researchers have been investigating the problem of determining
the interval number of complete multipartite graphs, and it was
conjectured that the interval number of the complete multi-
partite graph K(nl,nz,n3,...,np) , where 0y >0y >0y > ... >
n and p > 3, equals the interval number of the complete
bipartite graph K(nl,nz) . In support of this conjecture,
Matthews proved that for every p > 3, if n, =0, = ng= ... =

np , then i(K(n ,np)) = i(K(nl,nZ)) .  However, D. West

1005
disproved the conjecture by showing that for each n > 3, there

. . 2
exists a constant ¢ so that if n, = n" -n -1, n, = n, =
n 1 2 3

.=n_=n, and p L then i(K(nl,nz,nB,...,np)) =1+
391
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392 A Bound on the Interval Number of a Complete Multipartite Graph

i(K(nl,nZ)). In view of West's counterexample, it was suggested
that the interval number of a complete multipartite graph might
exceed the interval number of the bipartite graph, formed by the
largest two parts, by an arbitrarily large amount. In this
paper, we prove to the contrary that i(K(nl’HZ’n3’°"’np)) <
1+ i(K(nl,nz)) for all »p 50y 5Dy s e e ,np with p > 3 and

n, >n
1=

> n, > >n_ .

2 322y

1. Introduction.

In recent years, there has been considerable interest in
generalizations of interval graphs. Much of the research is
motivated by the wide range of interpretations which may be
given to optimization and extremal problems involving interval
graphs. 1In this paper, we consider the subject of t-interval
graphs. For a positive integer t, we represent a graph as
the intersection graph of a family of sets each of which is the
union of t pairwise disjoint intervals of the real line.

Among the several extremal problems involving t-interval graphs,
we will be concerned with minimizing t for a given graph or
class of graphs. If we view a t-interval graph as a work sched-
ule permitting cooperation between certain specified components
of the work force while safeguarding against interference
between other components, then the minimization of t yields a
schedule in which each component has relatively few work periods.
Consequently, the inherent inefficiency of starting up and
closing down unnecessary work periods of short duration and
limited productivity is avoided.

Among the classes of graphs for which this extremal problem
is quite natural is the class of complete bipartite graphs where
the work force is subdivided into two units with no interference
permitted between any two components in the same unit, but

cooperation required between any two components from different
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units. In this paper, we will discuss the natural generalization
to complete multipartite graphs and will show that the extremal
problem in the multipartite case does not differ substantially

from the bipartite graph.

2. Notation and Terminology,

Trotter and Harary [4] defined a t-imterval representation
of a graph G as a function F which assigns to each vertex
x € G a sequence F(x)(1),Fx)(2),...,F®(t) of closed
intervals of the real line R so that for every pair x,y of
distinct vertices, we have x adjacent to y in G if and only
if there exists a pair of integers i,j with 1 <i, j <n so
that F(x)(A) N F(y) () # 0. The interval number of a graph G,
denoted 1i(G) , is then defined as the least positive integer ¢t
for which G has a t-interval representation. Alternately,

i(G) 1is the least integer t for which G 1is the intersection
graph of a family of sets each of which is the union of at most
t closed intervals of TR . In particular, a graph G 1is an
interval graph if and only if i(G) = 1.

We will find it convenient to consider a point as a
(degenerate) closed interval and will frequently use this con-
vention in specifying an interval representation of a graph.

For example, Figure 1 provides a 2 - interval representation
of the graph G . Note that G is not an interval graph so
i(G) = 2.

Furthermore, we will delete from Figure 1 for an interval
representation, all isolated intervals and points. So Figure 1
may be simplified as in Figure 2.

Throughout this paper, we will use diagrams similar to those
shown in Figures 1 and 2 to illustrate interval representations.
Intervals will be spread out vertically for clarity but the

reader should bear in mind that all intervals are to be projected
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Figure 1.

Figure 2.

onto a single horizontal line.
We now present a brief summary of recent research involving
interval numbers. We begin with the following elementary result

due to Trotter and Harary [4].
Theorem 1 [4]. If T is a tree, then i(T) < 2.

J. Griggs [2] has established the following upper bound on

the interval number as a function of the order of the graph.

Theorem & [2]. 1f G 1is a graph on n vertices, then 1i(G) <

Rn-#l)/d}.
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J. Griggs and D. West [1] have also established an upper
bound on i(G) as a function of the maximum degree of a vertex

in G.

Theorem 3 [1]. If A 1is the maximum degree of a vertex in G,

then 1i(G) < RA-FI)/é}.

Griggs and West [1] showed that if G is regular and
triangle-free, then equality holds in Theorem 3. The following

result follows as an immediate corollary.

Corollary 4 [1]. For each n > 1, the interval number of the
n-cube Q_ is given by 1(Q) = iV(n+ /2] .
Trotter and Harary [4] developed a formula for the interval

number of a complete bipartite graph.

Theorem 4 [4]. The interval number of the complete bipartite

graph K(m,n) 1is given by:
i(K(m,n)) = Rmn%—l)/(m%—n—}.

3. Interval Numbers of Complete Multipartite Graphs

In the remainder of this paper, we will be concerned with

the computation of the interval number of a complete multi-

partite graph .K(nl,nz,...,np) where p > 2. By convention, we
will require ny z_nz > ... z_np . For simplicity, we let
i(nl,nz,...,np) denote the interval number of K(nl,nz,...,np);

note that i(nl,nz) = Eﬁlnzi-l)/(nl4-n2;] by Theorem 4. Since

K(nl,nz) is an induced subgraph of K(nl,nz,...,np) , we always
have i(nl,nz) f_i(nl,nz,...,np) .  We now proceed to show that
i(nl,nz,...,np) never exceeds n, . We begin by presenting a
construction due to M. Matthews [3]. We let the vertex set of
K(n,n) be A UB where A = {al,az,...,an} , B = {bl,bz,...,bn}

with each a; adjacent to every b, .

First let n be even, say n = 2r . Then the following
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diagram provides an r + 1 - interval representation of K(n,n) .

a r-1 a r-1 a r-1 r-1
R e T B S, a L 3
" oo Lo oS el
by yT1 by Ty by T r21 Pn orZ1 P
Figure 3.

In the gap between a; and a; (cyclically), occur the r - 1
points corresponding to T I R P (cyclically).

Similarly, the gap between bi and bi+l contains points
s b

corresponding to b Here is a diagram

i+2 ’bi+3’ Tt itr °
when r = 3. For simplicity, only the subscripts are given.

Figure 4.

We shall continue to use the convention followed in Figures
3 and 4 for bipartite and multipartite graphs i.e., the diagram
will be presented in "levels'! with all intervals occurring in the
same level corresponding to vertices in the same part.

The reader is encouraged to compare this example with the
construction given by Trotter and Harary [4] for a 4-representa-
tion of K6,6' The advantage of Matthews' construction is that
it can easily be extended to multipartite graphs. It suffices to

add additional '"levels" to the diagram following the same inter-

section pattern as determined by the first two. For example,
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here is a 3-representation (with labels deleted) of K(6,6,6) .

Figure 5.

More generally, it is easy to see that whem n = 2r, this

construction produces for each p > 2, an r + 1 - interval

representation of K(nl’nZ""’np) where D, =mn,=...=n =mn.
4r24-1

It follows that when n = 2r, we have r+ 1 = 7 | =

i(n,n) j_i(nl,nz,...,np) <r+1l, and thus i(nl,nz,...,np) =

r+ 1.

When n is odd, say n = 2r + 1 then we construct an r + 2
—-interval representation of K(n,n) using the same scheme as

above. For example, here is the diagram for K(5,5)

Figure 6,

Reading the diagram from left to right, we then remove from

each level the first occurrence of 1 as a point in a gap. The

resulting diagram isan r + 1 - interval representation of
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KQr+1,2r+1) .

Figure 7,

As before, this construction is easily extended to show

that whenever p > 2 and n=2r + 1 = n,=n, = ... = np,

then r+ 1= i(n,n) = i(nl,n .,np). We have then estab-

9o
lished the following result of Mattews [3].

Theorem 5. TFor every p > 2 and every n > 1, if nj =n, =

= = i = 1 = 2 =
e e n, n, then 1(nl,n2,...,np) 1(nl,n2) Rn.-Fl)/Zq
[(a+1)/2] .

From Theorem 5 we obtain the following upper bound.

Corollary 6. If p > 2 and n, >n

> ... >1
1 Z =z

5 ,  then

1(n1,n2,...,np) <m,.

Proof. 1t suffices to establish the result when p > 3

and n, = ng = = np. Set n = n, and then choose a

Rn%-l)/Zl - interval representation of the complete p - 1
partite graph K(n,n,n,...,n) as provided in the preceding
theorem.

We then observe that for each 1 with 1 < i <n, there
are p - 1 intervals, one from each level of the diagram, each
of which has label 1 so that the intersection of these p -1
intervals is a nondegenerate interval. We may then insert in

each of these intervals, n, points - one for each element in

The resulting diagram is a n, - interval

the part of size n 2

1"
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representation of K(nl,nz,...,np) . ®

We illustrate this result for a diagram for K(4,3,3,3).

1234 1234 1234
1 3 2 3 2 1
1 3 2 3 2 1
1 3 2 3 2 1
Figure 8,

For the remainder of the paper, we will adopt the following

conventions. We partition the vertex set of the complete p + 1

- partite graph K(m,nl,nz,. .,np) , where m > ny > n, > ... >
np and p > 1, into the subsets A ,B1 ,B2 s o e e ,Bp where
|A[ =m and |B ] =n, for i=1,2,...,p. We label the

i i
vertices in A with the symbols al ,a2 s e e s B For each
i, we label the vertices in Bi with the symbols

b , b . When providing a diagram for an interval

il’ bi2’ tr in,

i
representation, we will present the intervals in levels. The
intervals (or points) corresponding to vertices in A will be
in the highest level which we call level zero. Then proceeding
downwards, the intervals (or points) corresponding to vertices
in Bi will be displayed in level 1.

When m>n >1 and p > 1, we let K(m,n-p) denote the

complete p + 1 -partite graph K(m,n,n,...,n) and let
i(m,n - p) denote the interval number of K(m,n-p). We then
define i(m,n-®) = sup{i(m,n-p): p > 1}. The following
result then follows trivially.

mn +
Theorem 7. TFor every m,n with m>n > 1, m-ki = i(m,n) <

i(my,ne®) <n.

We next describe a construction generalizing the technique
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used in Theorem 5. Let o be a sequence (with repetition
allowed) of length & and let D be a subset of {1,2,3,...,%}
with {1,2} €D. Then we refer to the pair (o,D) as a
sequence with distinguished positions, or DP-sequence for short.
To define such a pair, we will find it convenient to list in
order the terms of o and underline the distinguished positions,
e.g., (1,2,3,2,4,2,3,2,4,1) . For a DP-sequence (0,D) and an
integer p > 1, we then associate an interval representation
having p 1levels as illustrated below for the DP-sequence given

above and p = 3.

1 23 2 42 3 2 4 1
1 23 2 42 3 2 4 1
1 23 2 42 3 2 4 1
Figure 9.

Suppose we have a DP-sequence (o,D) with the symbols in
o selected from {1,2,3,...,n}. Then it is elementary to
determine when (o,D) produces an interval representation of
K(n,n,...,n) . (Note that the question does not depend on the
number of parts.) For emphasis, we state the characterization of
such DP-sequences as a theorem, but we leave it to the reader

to supply the straightforward proof.

Theorem 8. Let (0,D) be a DP-sequence of length £ with the

symbols in o selected from {1,2,3,...,n}. Also let D =
{ky,ky,evoskyd where 1=k <k, <ky<...<ky==2. Then
(0,D) produces an interval representation of K(n,n,n,...,n) if

and only if for every ordered pair <jl’j2) from {1,2,...,n}.

Proceedings—Fourth Internationm
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there exists an integer B with 1 < B < d so that at least
one of the following statements hold:
a. jl = O(k6+l) and j2 g {o(k) : k
b. i, = G(kB) and j; € {o(k) : kB at1

An essential feature of the comstruction we are building

k < kgqd
¥

<k<
k < k .
depends on an Euler circuit in a directed graph. For an integer
n>2, let T(n) denote the complete directed graph with ver-
tex set {1,2,3,...,n}, i.e., the edgeset of T(n) is

{(1,i): 1 <1i,3j <mn,i# j}. For an integer s with 1 <'s
< kn-—l)/zj , we let T(n,s) denote the spanning subgraph of
T(n) whose edge set is {(i,j): 1 <i <n,i+s+1<j<
n.+ i - s (cyclically)}. Note that T(n,s) is a regular graph
in which each vertex has indegree and outdegree n - 2s.

It follows easily that T(n,s) has an Euler circuit (in the

directed sense). However, in a construction to follow, we shall
require an Euler circuit of ?(n,s) which satisfies an addi-
tional property, namely that when the circuit is specified by a
sequence of vertices which begins and ends at 1, any s + 1
consecutive vertices in this sequence are distinct. To this end
we proceed to explicitly construct such an Euler circuit. We

begin with the following elementary result.

Lemma 9. Let n >2,s >1, and s = l}n-—l)/%J- Then the
following sequence of vertices is an Euler circuit of T(n,s) in
which each s + 1 consecutive vertices are distinct:

l1,s+2,2,s+3,3,s+4,...,n-1,s,n,s+1,1.

Proof. We note that the hypothesis requires that n > 3.
There are then two cases. When n is odd, T(n,s) is a
directed cycle and the given sequence is easily seen to be an
Euler circuit of T(n,s) . Since s + 1 <n, we know that any
s + 1 consecutive vertices in the sequence are distinct.

On the other hand, when n is even, T(n,s) has 2n edges
but the given sequence is still an Euler circuit. A set of s +1
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consecutive vertices in this sequence has the following form:

{i,i4+1,i+2,...,i+s, -1} Y {i+s+1, i+s+2,...,i+s+sz}

1

8158y > 0 and s1 + Sy = s+ 1. Since these s + 1

integers are distinct, the desired result follows. "

where

Lemma 10. Let n > 2 and 1 <s < I_gn—l)/z_[ . Then the
sequence: l,s+2,2,s+3,3,...,n-1,s,n,s + 1,1
traverses a set of 2n edges in T(n,s) . If these 2n edges
are removed from ?(n,s) , then the remaining graph is T(n,s-+D.
Proof. It suffices to observe that the sequence traverses
exactly the edges in the following sets: {(i,i+s+1): 1 <i <
nt U {(E,i-s): 1 <i <n}. But this set consists of precisely

those edges which belong to T(n,s) but not T(n,s+1) . ®

Lemma 11. let n>2,s >1, and 1 <s j_lfn-—l)/%J . Then
?(n,s) has an Euler circuit in which each s + 1 consecutive
vertices are distinct.

Proof. The result follows from Lemma 9 when s = lﬁn-l)/zy
So we may assume that s < lﬁnn-l)/%l. We then construct an
Euler circuit o by recursively applying Lemma 10. It remains
only to show that every set of s + 1 wvertices in o 1is dis-

tinct. TLet S = {o(j): <323yt s} be a set of s+ 1

Jo
consecutive vertices in o. Then let Sl = {o(j) : jO <j <
jg tss 3 odd} and s, = {o(3) : Jjg2i<igts, j even}.
Note that S1 is always a set of consecutive integers (cycli-

cally). However, for some values of j0 ,82 is a set of con-
secutive integers (cyclically), and for other values of j0 ,82
is "almost" a set of consecutive integers with only a single
missing integer preventing it from being a set of consecutive
integers.

Suppose first that is odd. If we let G(jo) =i and

i
0
s, = lSll , then s, = Rs-%l)/i} and S, =

{i,i+1,i+2,...,i+s, -1} . Now let 0(j0+l)=i+s + 1

1 3

Proceedings-Fourth Internationa
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By, 0 +iz1) = 0,(i) for

{2 +i—1;ieD2}.

1

Theorem 12. Let m>n > 1.
Proof. It suffices to sh

for every p > 2. Choose an

result follows from Theorem 5
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has the following form:
s+1,i+s+2,..., i+s+sz}
1. Since these s + 1

ult follows. B

n—l)/Z_J . Then the
,n-1,s,n,s8s +1,1

s) . If these 2n edges
emaining graph is T(n,s +1).
at the sequence traverses
s: {(i,i+s+1): 1 <1<
s set consists of precisely

ut not T(n,s+1). ]

< s < L(n—l)/ZJ. Then

each s + 1 consecutive

emma 9 when s = L(n—l)/‘Z_I.
We then construct an
ing Lemma 10. It remains
vertices in o 1is dis-
- s} be a set of s+ 1
8, =10 53 =
) 23 <dgtss d even} .
secutive integers (cycli-
jO , 82 is a set of con-
r other values of jO s S2
ers with only a single

ng a set of consecutive

If we let O(jo) = 1 and
1d Sl =

= 0@yt =i+ sy 1
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and s

and S

5 = |Szi . Then s, = l£5+1)/2-| »8 <85 < ,ﬁn—-l)/?._l R

is a subset of the following set of s, + 1 consecutive

2
3 :'c — o ] . )
integers S, = {1+s3+1, 1+33+2,..., 1+s3+sz+l} . Since
sl—l<s3+l and sq+s, +1<m, it follows that Slﬂ
%
32 =@ and thus, the s + 1 wvertices in S are distinct.

Now consider the case when j0 is even. As before let

s \S also let 1i = G(j0+l) . Then s, = L(s+l)/2_J

1!;

1=

and S, = {i,i+1,i+2,...,1i+s, -1} . Now let c(jo) =1+ s,

and s, = !S?_I" Then s, = |(s+l)/2—l,sis3_<_ ISn-—l)/2_l,

and S2 is a subset of the following set of s, + 1 consecutive
*

integers S2 = {1+s3, 1+s3+1,...,1+83+52} . Since s, - 1<

%
S, and S, +s, <n, it follows that Sl N 82 = @ and thus,
the s + 1 consecutive integers in S are distinct. With this

observation, the proof is complete. ]

At the risk of belaboring an obvious point, the following
sequence determines an Euler circuit of ;‘(9,2) in which every
set of 3 consecutive vertices is distinct: 1,4,2,5,3,6,
4,7,5,8,6,9,7,1,8,2,9,3,1,5,2,6,3,7,4,8,5,
9,6,1,7,2,8,3,9,4,1,6,2,7,3,8,4,9,5,1.

We need one last concept before presenting the proof of our
principal theorem. Let (ol,Dl) be a DP-sequence of length Zl s
and let (OZ,DZ) be a DP-sequence of length 5&2 . When
01(21) = 02(1) , we define the splice of (cfl,Dl) and (GZ,DZ),
denoted (Gl,Dl) & (02,D2) , as the DP-sequence (0,D) where o
has length & = Ql + 22 -1,0@() = Ol(i) for 1 <1<
21,0(21+i—1)=02(i) for lf_iilz, and D=D1U
{sz,l+i—1; ieg D2} .

Theorem 12. Let m>n > 1. Then i(mn-«) <1+ i(m,n).

Proof. It suffices to show that i(m,n-p) < 1+ i(m,n)

for every p > 2. Choose an arbitrary p > 2. The desired

result follows from Theorem 5 when m = n so we may assume that
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m>n.

Now let t = i(m,n), di.e., t = P;m-kl)/(m-kn;l . Then
Rh-%l)/i] <t<n. If t>n-1, the result follows from
Theorem 7 since i(m,n - p) < i(myn-.«) <n. So we may also
assume that t <n - 1. Then let s =n - t. We observe that
1 <s < EP‘-l)/%J , and in fact s > 2.

We now construct a DP-sequence (Ol,Dl) of length ns + 1
using the symbols {1,2,3,...,n}. The DP-sequence (Gl,Dl) has
n + 1 distinguished positions Dl ={(1E-D(s)+1: 1<1ic<
n+ 1}. The symbol i occurs in the distinguished position
(i-)s+1 for i=1,2,3,...,n and the symbol 1 occurs
in the distinguished position ns + 1; note that the symbol 1
is both the first and last symbol in oy and that both of these
positions are distinguished.

For each i=1,2, 3, .,n, and each j =
1,2,3,...,s8 -1 ,Gl has the symbol i + j + 1 in position
(i-1)s + j + 1; the position is not distinguished. We
illustrate the definition of (Gl,Dl) when n =12 and s = 4.,
In this case, (ol,D ) ds: 1,3,4,5,2,4,5,6 ,3,5,6,
4,6,7,8,5,7,8,9,6,8,9,10,7,9,10,11,8,10,11,12,
9,1,12,1,10,12,1,2,11,1,2, 3, 12,2,3,4,1.

The construction of (o 2,D2) is simple. We let 9y be a
sequence from {1,2,3,...,n} which begins and ends with 1,
determines an Euler circuit of ?(n,s) , and satisfies the
requirement that every s + 1 consecutive symbols in o are
distinct. Note that the length of o. 1is n(n-2s) + 1. We

2
then let D2 =1{1,2,3,4,...,n(n-2s) +1},

i.e., every position
in (GZ,DZ) is distinguished.

Now let (0,D) be the splice (cl,D) + (GZ,D ) . Note
that the length of ¢ is ns + n(n-2s) + 1 =nn-s) +1 =
nt + 1. Also note that D = {(i-1)s+1: 1 <1 <n+1}y

{i: n(n-2s) + 1 <1i<nt+1}.
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The next step in the argur
(0,D) with the criteria given
(0,D) produces an interval rej
To see that this statement holc
(jl’jZ) from {1,2,3,...,n}.
then we may set f = j2 and ol

;€ {ok): k, <k <k, ,.}-.

B— " — TB+L
{jz—jioijis—l} then we m
and B = n when jl =1 and

i, = . If
kB+l} and jl O(k8+l)

then (jZ’jl) is an edge in
integer j with 1 < j < n(n-
GZ(j*'l) =Jq-
O(kg) = j2 and U(kB+l =3y
This completes the proof

We may then s

mines an interval representati

Furthermore, we observe t
except 1, is used exactly
1 dis used t+ 1 times in o
vals corresponding to vertices
tion of (0,D) in order to ob
K(m,n - p) . For each vertex
vals. One of these intervals,
overlap intervals for s + 1
these s + 1 vertices will be
the other t - 1 intervals wh
I(a)) will overlap exactly on
interval and the vertex to whi
each 1.

For j=1,2,...,m W
overlaps the intervals corresp

0(js+1) for each of the leve
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= I?mn—f-l)/(m-'—n)—( . Then
the result follows from

) <n. So we may also

=n - t. We observe that
> 2.
(Ol,Dl) of length =ns + 1
1e DP-sequence (ol,Dl) has
(-1 () +1: 1 <1<
> distinguished position
1 and the symbol 1 occurs
;5 note that the symbol 1

Gl and that both of these

and each j =
ol i+ j + 1 in position
- distinguished. We

when n =12 and s = 4.
5,2,4,5,6,3,5,6,7,
»9,10,11,8,10, 11,12,
3,12,2,3,4,1.

simple. We let 9, be a
egins and ends with 1,
) , and satisfies the
1itive symbols in o, are
) is n(n-2s) +1. We

1}, i.e., every position

jl’D) + (02 ’DZ) . Note
’s) + 1 =n(n-s8) + 1 =
s+ 1: 1 <i<n+1}y
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The next step in the argument is to compare the DP-sequence
(0,D) with the criteria given in Theorem 8 and observe that
(6,D) produces an interval representation of K(n,n - (p-1)).
To see that this statement holds, consider an ordered pair
(jl,jz) from {1,2,3,...,n}. If i, E{j2+j: 0 <3 <sl},
then we may set B = j2 and observe that j2 = O(kB) and
i € {ok) : kg < k f-k8+l}' Similarly, if j; €
{jz-j: 0<j<s-1} then we may set B8 =3j; -1 when j, >1
and 8 =n when j, =1 and observe that j, € {o(k): kgfjgi
k6+l} and j, = G(k6+l
then (j2,j1) is an edge in T(n,s) and there exists an

). If neither of these conditions hold,

integer j with 1 < j < n(n-2s) so that Gz(j) = j2 and
oz(jﬁ-l) = jl' We may then set B = n + j and observe that

B+1) =3; € {o(k) : kBikik{%l}'

This completes the proof of our claim that (o¢,D) deter-

G(kB) = j2 and o(k

mines an interval representation of K(n,n - (p=-1))

Furthermore, we observe that each symbol in {1,2,3,...,n},
except 1, is used exactly t times in o, and the symbol
1 is used t + 1 times in o. We now show how to add inter-
vals corresponding to vertices in A to an interval representa-
tion of (0,D) 1in order to obtain an interval representation of
K(m,n - p) . For each vertex a € A, we will assign t inter-
vals. One of these intervals, which we denote I(a), will
overlap intervals for s + 1 distinct vertices from each Bi;
these s + 1 vertices will be the same for each 1i. Each of
the other t - 1 intervals which correspond to a (other than
I(a)) will overlap exactly one interval from each Bi ; this
interval and the vertex to which it corresponds are the same for
each 1.

For j=1,2,...,m we choose an interval I(aj) which

overlaps the intervals corresponding to o((j-1)s+1) and

o(js+1) for each of the levels in the representation. Note
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that I(aj) overlaps a set of s + 1 intervals corresponding Theorem 14 [5]. 1f mn > 3 an

to s + 1 distinct vertices in Bi for each 1. i(m,n. ) =1+ i(m,n) .

For each j=1,2,...,m, we then choose t - 1 The construction used in °
"points" which overlap intervals corresponding to the the determination of i(m,n «
n- (s+1) =t -1 vertices in Bi not already overlapped by of DP-sequences. We announce
I(aj) . This assignment is easily accomplished since the first solved completely the problem
n distinguished positions in (¢,D) contain {1,2,3,...,n}. values of m and n. The pr
With this observation, the proof is complete. ) appear elsewhere.

We illustrate the preceding theorem for m =7, n =5, Theorem 15. Let m,n be int
and p = 2. For clarity, the points corresponding to vertices 1 .
in A are omitted. *+ im,

i(m,n . ®) = 1 + i(m,
i(m,n)
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4. Concluding Remarks.

It should be noted that the inequality in Theorems 12 and
13 is best possible as the following result due to D. West [5]

implies.
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Theorem 14 [56]. If n >3 and m = n2 -n-1, then

i(m,n-) = 1 + i(m,n) .

The construction used in Theorem 12 suggests strongly that
the determination of i(m,n-«) for m > n rests on properties
of DP-sequences. We announce that the authors and D. West have
solved completely the problem of determining i(m,n . «) for all
values of m and n. The proof of the following result will

appear elsewhere.

Theorem 15. Let m,n be integers with m > n. Then
1+ i(m,n) 4if n >3 and m = n2 -n -1
i(m,n .+ ©) = 1+ i(myn) if m=7 and n =75
i(m,n) otherwise.
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