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The dimension of a partiaily ordered set (X, P) is the smallest positive integer ¢ for which
there exists a function f which assigns to each xe X a sequence {f(x)(i): 1=<i<i} of real
numbers so that x<y in P it and only if f(x)(i)<f(y)}{i) for each i = 1,2, ..., The interval
dimension of (X, P) is the sm:llest integer ¢ for which there exists a function F which assigns to
rach x € X a sequence {F(x)(i): 1=<i=<t}of closed intervals of the real line R so that x<y in P
f and only if a<b in R for every ac F(x)(i), be F{y}i), and i=1,2,...,t For t=2, a
nartially ordered set {posct) is said to be r-irreducible (resp. t-interval irreducible) if it has
dimension t (resp. interval dimension t)," and every proper subposet has dimension (resp.
interval dimension) less than t. The only Z-irreducible poset is a two element anti-chain, and the
only 2-interval irreducible poset is the free sum of two chains each having two points. In sharp
contrast, the coilection R of all 3-irreducible posets consists of 9 infinite families and 18 odd
examples, and the collection R; of all 3-interval irreducible posets is sufficiently complex to
have avoided complete determination as of this daie. Trotter and Moore determined & from
Gallai’s forbidden subgraph characterization of comparability graphs. David Kelly indepen-
dently determined & by a lattice theoretic argument combined with the characterization of
planar lattices Kelly and Ivan Rival had previously obtained. In this pai)er, we introduce a new
operation called a stack which we will apply 10 posets of height one. In some ways the stack
oreration is an inverse of the splic operation on posets previously defined by Kimble. These
operations behave predictably with respect to dimension and interval dimensicii. In particular,
the stack of a poset of height one plays a role in interval dimension theory which is analogous to
the role played by the completion by cuts in dimension theory. As a consequence, we can
exploit the similarities to Kelly’s approach to the determination of ® to preduce a relatively
compact argument to determine the collection R(I, 1) of all 3-interval irreducible posets of
height one. This characterization problem has immediate combinatorial connections with a wide
range of well-known forbidden subgraph problems including interval grapk., 1cctangle graphs,
and circular arc graphs.

1. Introduction

Throughout this paper, we will use the notation and terminology of [13], [14]
and [15] for partially ordered sets (posets), dimension, and interval dimension.
For the sake of completencss we give here the central definitions, notations, and
conventions. Formally a poset X consists of a nair (X, P} where X is a nonempty
set (always finite in this paper) and P is a reflexive, antisymmetric, and transitive
relation on X. P is called a partial order on X. The notations {x, y) € P, xPy, and
x <y in X are used interchangeably. Similarly, we write x<y in Por x<y in X
when x<y in P and x# y. ‘When netther (x; y) nor (y, x) is in P, we say x and y
are incomparable and write xIy in P or xIy in ¥X. We dencte the set of all
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incomparable pairs by I,. A poset (X, P) is called an antichain if xIy in P for
every x, y € X with x# y.

A partial order L is called a linear order (also total order or s. aple order) :/hen
I, =0 and the poset (X, L) is called a chain. We denote an n-elemeni chain by m.
If P and Q are partial orders on a set X and P< @, then Q is called an extension
of P. A linear order L which is an extension of P is called a linear extension ¢f P.
A theorem of Szpilrajn’s [8] asserts that for any partial order P, the collection €
of all linear extensions of P is nonempty and that [ € = P. The dimension [2] of
a poset (X, P), denoted Dim(X, P) or Dim(X), is the smallest positive integer t for
which there exist linear extcasions Ly, Lo, . .., L, of P whose intersection is P. A
poset has dimension one f and only if it is a chain.

Alternately, the dimension [7] of (X, P) is the smallest positive integer t for
which there exists a function f which assigns to each x € X a sequence f(x)(1),
f(x)(2),...,f(x)(t) of real numbers so that x<y in P if and only if f(x)(i)=
f(y)(i)in R for i=1,2,...,t The function P is called an embedding of (X, P) in
R".

We dencte by R, the transitive closure of a relation R. Now let (X, P) be a
poset. Then a set {(b, a;): 1sis=m}<Ip is called a TM-cycle of length m when
(a;, b)) e P if and only if j =i+ 1 (cyclically) for i =1, 2...., m. In [14] T:ctter and
Moore prove that if $ < Ip, then PUS is a partial order on X if and only if S
contains no TM-cycles. Therefore, we can define the dimension of a poset (X, P)
which is not a chain as the smallest positive integer t for which there exists a
partition Ip=S,US,U---US, so that no S; contains a TM-cycle.

If (X, P) is a poset and Y is a nonempty subset of X, then the restriction of P to
Y, denoted P(Y). is defined by P(Y)=PN{YxY). It is clear that P(Y) is a
partial order on Y, and we say (Y, 2(Y)) is a subposet of (X, P). Obviously
Dim(Y, P(Y))<Dim(X, P) wwhenever @ # Y < X. The subposet (Y, P(Y)) is called
a proper subposet of (X, P) when @ # Y # X. For an integer 1 =2, a poset (X, P) is
t-irreducible if it has dimension t but every proper subposet has dimension less
than r. Trivially, the only 2-irreducible poset is a two element antichain.

For a poset ¥X=(X, P) and a point x€ X, we denote by X—x the subpouset
(X —{x}, P(X-{x})). A poset X=(X, P) is then t-irreducible if Dim(X)=1t and
Dim(X-x)<t for every xe X. By convention, a one point poset is the only
1-irreducible poset.

If (X, P) and (Y. Q) are posets, then we say (X, P) is isomorphic to (Y, Q) when

1-1
there exists a function f: X—— Y so that (x;, x,) € P if and only if (f(x,), f(x,) e

onto

Q. In this paper, we do not distinguish between isomorphic posets and write
X =Y when X and Y are isomorphic. Similarly, we say Y is contained in X (or X
contains Y) and write Y< X when Y is isomorphic to a subposet of X.

If I, ={u, v{]and I,=[u,, v,] are closed intervals of R, we say I, is domincied
by I,, and write I,<[,, when v, <u, in R. Trotter and Bogart [13] defined the
interval dimension of a poset (X, P) denoted IDim(X, P) as the smallest pc.itive
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integer t for which there exists a function F which assigns to each xe X a
sequence F(x)(1), F(x)(2),..., F(x)(t) of closed intervals of tl.e real line so that
for distinct points i, y € X, we have x <y in P if and only if F(x)(i) <IF(y){i) for
i=1,2,.. ,t The function F is called a t-interval representation of (¢, P). A
poset with inierval dimension one is called an interval order. For t=2, a poset is
said to be t-interval irreducibie ii ii has inierval dimension ¢ and every proper
subposet has interval dimension less than . By convention, a one point poset is
considered to be 1-interval irreducible. One of the ¢« atral goals of this paper is to
determine the collection R(Z, 1) of all 3-interval irreducible posets of height one.

If P is a partial order on a set X, we denote bv P? the partial order on X
defined by P?={(y, x): {(x, y) e P}. P9 is called the dual of P. When X = (X, P), we
let X denote (X, PY). It is easy to see that Dim(X) =Dim(X9) and IDim(X) =
IDIm(XY) in every poset X.

A fence in a poset (X, P) is a sequence x;, X, - - . , X, of poinis (n=2) from X
with (x,, x;) ¢ Ip if and only if |i —jj=< 1. The length of the fence is n—1 and x, and
x,, are called the end-points. A poset X is said to be connected if for everv pair
x,y of distinct points, there exists a fence in X with endpoints x and y. The
distance in X from x to y is the minimum length of a fence in X with endpoints x
and y. If X is not connected, then a connected subposet F of X is a component of
X when the only connected subposet of X containing F is F itself. A disconnected
poset X is the free sum of its components F,,F,,...,F, and we write X=
F +F,+---+F.

Fishburn proved [3] that the only 2-interval irreducible poset is the discon-
nected poset 2+2. However for t=3, every t-irreducible and every t-inter-al
irreducible poset is connected [13].

The height of a poset is one less than the maximum number of points in a chain
contained in the poset. For any poset X, we have IDim(X) <Dim(X), but there
exist interval orders of arbitrarily large dimension [1]. Such posets must have
large height. For posets of height one, there cannot be a great disparity between
dimension and interval dimension.

Lemma 1. If (X, P) is a poset of height one, then IDim(X, P) is the smallest
positive integer t for which there exists a family {L, L,, . .., L} of linear extensions
of P so that if x is a maximal element and y is a nonmaximal element with xIy in P,
then there is at least one i for which (x,y)= L,

Proof. Supne se first that IDim(X) =1 and let F be an interval coordinatization of
length ¢ .y { Foreach i<y let S, ={(x, y)elp: x is a maximal, y is nonmaximal,
and F(y){1) AF(x)(i)}. Now suppose that for some i=<t, S, contains a TM-cycle
{(x;, y;): 1=jsm} of length m. The poset (X,Q) where OC=
{(x, x): xe XJUlx, y)e X x X: F))<QAF(y) ()} is an interval order but the
subposet of (X, Q) determined by x,, x», y,, and vy,, is 2+ 2. The contradiction
shows that no §; contains a TM-cycle. Therefore foi each i=t, there exists a
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linear extension L; of PUS;. These linear extensions clearly meet the require-
ments of our theorem.

On the other hand, sappose that we have a family {L,, L,, ..., L} of linear
extensions of P so that for every incomparable pair x, y with x maximal and y
nonmaximal, there exists an i<s so that (x, y)e L,, We show that IDim(X)=<s.
For each i<s, let W, ={(y, x)e I, NL;: x is maximal and y is nonmaximal}. It is
easy to see that no W, contains a TM-cycle, and that the poset (X, Q;) where
Q,=PUW, is an interval order. Then for each i<s, we choose intervals
{F(x)(i): x € X} which provide a representation of the interval order (X, Q.). The
function F so constructed is an interval representation of length s for (X, P).

Lemma 2. If (X, P) is a poset of height sne, then Dim(X, P)< 1+ IDim(X, P).

Proof. Suppose IDim(X, P)=t and choose linear extension L, L.,...,L, as
described in Lemma 1. Now iet i; order the maximal elements of (X, P) by
X, <x,<---<x, and the nonmaximal elements y,<y,<---<vy,. Then let L,
be the order y, <y, 1< - "<y, <y;1 <k <X 1 <+ -<x,<x;. Clearly P=
L,NL,N---NL,NL,, so that Dim(X, P)<t+1.

Let X=(X, P) be a poset of height one. Then let B denote the set of maximal
elements and A the set of minimal elements. Note that X = A U B, but that we
may have A NB# (. We associate with X an indexed family ¥y of subsets of A
defined by 4 ={U(b): be B} where U(b)={ac A: a<b in P}. Note that it is
possible for U(b,) = U(b,) when b, and b, are distinct elements of B. Also note
that if Lte ANB, then U(b)=0 For example, we associate witi> the poset X
shown in Fig. * the family Fx="U(i): 1<i=<5} where U1)=UQR)=0, UQ3) =
U(4)=1{6,7, 8} and U(5)={8}.

Conversely, it ={U(b): b~ Bj is any indexed family of sets, we associate with
F a poset Xz of height one whose maximal elements are the elements of B and
whose minimal elements are {be B: U(b)=0}U(|J %). The partia! order on Xg
i« defined by a <b in Xy if and only if a € IJ(b) for every ae |y ¥, be B. For
example, let F={U(i): 1<i<8} where U(1)={1,2,3,4}. U2)={1,3,4,5},
U3)=1{4,5}, U4)={2, 5}, U(5) =12, 3}, U(6) = U(7T)={4, 5}, and U(8) =@. Then
the poset Xg is shown in Fig. 2.
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2. Splivs and stacks

Kimble [6] defined the split of a poset X = (X, P), denoted Split(X), as the poset
of height one with maximal elements {x": x € X} and minimal elements {x": x € X}
with x" <y’ in Split(X) if and only if x<y in X.

Theorem 3 [ 15]. Dim(X) = IDim(Split(X)) for every poset X.

Proof. Let P and O denote the partial orders on X and Split(X) respectively.
Suppose first that IDim(Split(X))=1¢ and let L,,L,,..., L, be the linear orders
guaranteed by Lemma 1. For each i<t let §; ={(x, y)e Ip: (x/, y")€ L;}. Then it is
easy to see that I, =S, US,U---US, and that noc §; contains a TM-cycle, i.e.,
DimX=1t.

Similarly if Dim(X)=s and I =S,US,U---US;, is a partition so that no §;
contains a TM-cycle, then we define for each i<s, W, ={(y’.x" e ly: (y,x)eS,}.
It follows easily that no W, contains a TM-cycle so that we may choose for each
i <s a linear extension L; of QU W.. These extensions clearly satisfy the require-
ments of Lemma 1, and thus IDim(Split(X)) <s.

The reader should note that if X is a poset of arbitrery height and Y = Split(X),
then Y contains twice as mzany poeints as X, but IDim (Y) = Dim{X), and therefore
Dimn(Y)=<1+Dim(X). We now describe a construction for proceeding in the
reverse direction. We oegin with a poset X of height one and associate with X a
poset Y (to be called the stack of X), which may have arbitrarily large height, so
that IDim(X) = Dim(Y). However, in this case, X and Y will contain the sarne
number of points.

Let X=(X,P) be a poset of height one. Then let B denote the set of
rorminimal elements and A the set of nonmaximal elements. Also let L be an
arbitrary linear order on X. For each a ¢ A, let G(a)={be B: a<b in P}, and for
each be B, let U(b)=:{ac A: a<b in P} Then define an extension Q of P by:

0= PU{(b,. b)e BxB: U(b;) g U(b,)}
U{(a,, a;)e AxXA: Glay) g Glay)}
U{(b,a)e(B:<A)N1,: a’<b' in P for every b'e G(a), a'c Uth)}
U{(b,, b,)e (BxB)NL: U(b) = U(b,)}
U{(a,, dx)e(Ax A)YNL: G(a)) = Glay)}.
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The poset (X, Q) is called the stack of X, P and is denoted Stack(X, P) or
Stack(X).

The definition of the stack of a poset X=(X, P) requires us to choose an
arbitrary linear order L on X for :he purpose of ‘breaking ties’. The linear order
L does not have to be a linear extension of P. Furthermore, it is obvious that the
posets determined by diffcrent choices of L are isomorphic, and since we choose
not to distinguish between isomorphic posets in this paper, we also do not indicate
that the stack of a poset depends on the linear order L.

We will find it convenient to extend this construction to posets of height zero
(antichains) by defining Stack(X)=X when X is an antichain. We now pause to
summarize some elementary properties of stacks. Let X=(X, P) be a poset of
height onc and let Stack(X)=(X, Q). Let B denote the set of nonminimal
ciements and let A denotc the set of nonmaximal elements. Then the following
statements hold:

(i) X< SplicStack(X));
(1) PN(AXB)=QN(A XB);

(iii) Stack(X)? = Stack(X");

(iv) f X=F +F,+---+F, then Stack(X)=Stack(F,)+ Stack(F,)+:- -+
Stack(F,).

The reader should note that we= always have PN (B x A)= but it is possible
for QN(Bx A) to be noneiapty. Furthermore, the stack of a connected poset
X =(X, P) can be d:fined in terms of extensions. Let € denote the collection of
all extensions P’ of 2 which satisfy the property that PN (A x B)=P' N (A X B). If
we partial order € by inclusion, then the partial Q on X in Stack(X, P") = (X, Q)
1 a ma imal element in (€, <). Morcover, any two maximal elements Q,, Q, in
(6, <) -:nerate isomerphic posets (X, Q,) and (X, Q,).

To illustrate the preceding definition, we present diagrams of a poset and its
stack in Fig. 3.

The reader may enjoy the task of verifying directly that for the poset X shown
in Fig. 3, we have IDim(X) = Dim(Stack(X)) =2, but that Dim(X)=3.

by
by
by by b3 by a
5
a b4
/
¢ s
a1 A a3 3 35  ag 4

X Stack (X)
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Let X=(X, P) be a poset, and let A,, A< X. We say that A, is incomparable
to A, in X and write A IA, when a,la, for every a;€ A, a,€ A,.

Lemma 4. Let X= (X, P) be a connected poset of height one and let x,, x, € X with
xIx, in Stack(X). Then thcre exist two 2-element chains C,, C,< X so that
x,€C,, x,€ C,, and C,IC, in both X and Stack(X).

Proof. Suppose first that x, and x, are maximal elements. Then since x,Ix, in
Stack(X), we must have U(x,)¢ U(x,) and U(x,)¢ U(x;). Then there exist
minimal elements y,, y,€ X with y;<x; in X, y;<x, in X, y,<x, in X, and
y2¢ x; in X. Then set C, ={x,, y,} and C,={x,, y,}. It is easy to see that C,; and
C, are chains and that C,IC, in X and Stack(X).

The argument is dual when x; and x, are both minimal elements of X. Now
suppose thai x, is a maximal element of X and y, is a minimal clement of X. Since
x1ly; in Stack(X), we know that there exists a minimal element y.€ X and a
maximal element x, € X so that x,>y, in X, x,>y, in X, and x,{y, in X. Then set
C, ={x;, y2} and C, ={x,, y,}. It follows that C, and C, are chains and that C,IC,
in X and Stack(X).

With the assistance of the preceding lemma, we can now prove that the
phenomena observed for the poset in Fig. 3 is representative of the general
situation.

Theorem 5. If X is a poset of height one, then IDim(X) = Dim(Stack(X)) unless X
is a disconnected interval order in which case IDIm(X) =1 and Dim(Stack(X)) = 2.

Proof. Since X < Split(Stack(X)), we know that IDIm(X) <
IDim(Split(Stack(X))) = Dim(Stack(X)), so it remains only to show that
Dim(Stack(X)) <IDim(X) except when X is a disconnected inter\=l order. To
dispense of the exceptional case, we note that X is a disconnecte 1 ‘.iterval order
and X=F,+F,+---+F, is the decomposition of X into cor.ponents, then
IDim(F;) =1 and Dim(F,)<2 for i=1,2,..., t. Thus IDim(X) =1 and Dim(X) =
2. So in what follows we will assume that X is not a disconnected interval order. It
follows from Property (iv) that we may then assume that X is connected;
otherwise, we apply the following arzument to the components of X.

Let X =(X, P) and Stack(X)=(X, Q). Also let B denote the set of maximal
elements of X, and let A derote the set of minimal elements of X. Then suppose
that IDim(X) =1t and let L,, I, . .., L, be linear extensions of X so that (BxA)N
I,cL,UL,U---UL, as provided ! y Lemma 1. Next, for each i=1,2,...,¢ let
S, =L, N(B X A)NI,. Then suppose that for some i<t, S; contains a TM-cycle
{(b, a;): 1<j<m} with respect to (.. Since Q is an extension of P, we know that
{(by, 4;): 1<jsm}c Ip. Furthermore, since PN (A XB)=QMN(A XB), we know
that {a, h)e P if and only if k=i+1 (cyclically). However, these statements
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imply that {b,, 3;): 1<j<m} is a TM-cycle with respect to P, which is a contradic-
tion since L. is a linear extension of P. We conclude §; contains no TM-cycle with
respect to Q, and thus for each i<t we may choose a linear extension M; oi
DUS.

We now show that Q=M,"M,N---N M, It suffices to choose an arbitrary
pair {x, y) € I, and show that there exists an integer i <t so that (x, y)e M,. To see
that this is indeed true, we choose two 2-elements chains C,, C,< X so that
xeC,, ye(C,, and CIC, in X ard Stack(X). Then let b denote the maximal
clement of X in C}, and let a denoie the minima! element of X in C,. Then there
exists an integer i so that (b, a)e L;,. Hence (b, a) € S; and (b, a) € M,. Furthermore
x<b<a<y in M, and the proof is complete.

In [9], the author defined for » =3 and k =0, the (generalized) crown S as the
poset of height one with maximal elements x,, X, . . ., X, ,;, and minimal elements
Yis ¥a2r - - - » Yasi With y, <x; if and only if j# 1, i+1i,...,i+k (cyclically). The
dimension of the crown S is given by the formula Dim(SF) = [2(n + k)/(k +2)]. Tt
is ~asy to see that a poset X contains a crown Sk if and only if Sk is contained in
the split of X. Furthermore, if X is a poset of height one and contains a crown S,
then the stack of X also contains SX. Although the converse of this statement is
false, we can still salvage a weaker result which is sufficient for our purposes.

Following the notation of K=lly [5], we use the symbol A, to denote the poset
S5. The maximal elements in A, are labeied by, b,,...,b, and the minimal
element: are labeled ay, a,, ..., a, with a;<b, and a; <b,_, (cyclically) in A,.
Note that Dim(A,) = IDim(A, ) = 3. Furthermore, since A, —x is a fence, which
has dimension 2, for every x = A, we observe that A, is 3-interval irreducible and
3-irreducible.

Theorem 6. If X is a poset of height one and Stack(X) contains a crown A, for
some n =0, then there exists an integer m with 0<m <n so that X contains the
crown A,

Proof. Choose the smallest integer k =0 for which Stack(X) contains A,. We will
then show that X also contains A,.

Of all of the copies of A, contained in Stack(X), choose one for which the
integer t=|{b: 1<i<k, b; is nonminimal in X}|+{a;: 1 <i=<k, q; is nonmaximal
in X}l is as large as possible. If t =2k + 6, then the poiniz in this copy of A, in
Stack(X) also form a copy of A, in X. So we may assume that t <2k +6. In view
of the duality of the stack, it is clear that we may assume without loss of generality
that b, ,, is not a maximal element in X. Since a,Ib, ., in Stack(X), it follows from
Lemma 4 that there exists a maximal element x in X so that » > b, , and xIa, in
both X and Stack(¥X). if xIg, in Stack{X) for each i=2,3,.. ,k+1, then x can
rzplace by ., in this copy of A . So we must have that x > ., in Stack(X) for some i
with 2<i<k+1. Choose t.: smallest integer i, so that 2<i,<k+1 and x> a,
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in Stack(X). Then it follows that the subposet of Stack(X) generated by
{ay, az, ..., @, @3t ULy, by, oL, by, X, brys} is Ao, But since ig<k+1, we
also have iy—2 <k which is a contradiction.

The reader may easily verify that if X is the poset shown in Fig. 2, then X
contains A, but not A,. On the other hand, the stack of X contains both A, and
A,

For a poset X aud a point x € ¥, we denote by I(x; X) the subposet {y € X: xly
in X}. Th. following result will play a central role in our characterization theorem
for 3-irreducible posets of height one.

Theorem 7. Let X be a poset of height one and suppose that X does not contain the
crown A, for any n=0. If y is a minimal (maximal) element of X and F is a
connected subposet of I(y: Stack(X)), then there exists an element x which is
maximal (iminimal) in X se that x>y i X and F < I(x; Stack(X)).

Proof. We prove the theorem when x is maximal in X. The argument when x is
minimal is dual. We now rroceed by induction on |F|. The result follows from
Lemma 4 when |F|=1. We assure vzlidity when |F|=<k and consider the c.:e
|F| =k +1. Clearly, we may zlso assurne y is nonmaximal in X.

Now suprose ihat mg is a miniioal element of F and that F— i, is disconnected.
Yot F,,F,, ..., F, be the compounents of F—mg,. Then foreachi=1,2,... t the
subposets G;=F, U{m,} and &G!=F-F, are connected subposets of
I(y; Stack(X)). Choose maximal elements x, x’ from X with x>y, x'>y,G, c
I(x; Stack(X)), and G! < I(x'; Stack(X)). Then we may assume without loss of
generality that F,cI(x'; Stack(X)), and for some j<r with 1#j, Fc<
I(x; Stack(X)). Of the points in F, which are comparable to x’, choose one whose
distance to m, in G, is as small as possible and call it b. Similarly, of all the points
in F; which are comparable to x, choose one whose distance to m, in G; is as
small as possible and call it b'. Then let a,, a,, .. ., a,, be a fence in G; from b to
my and let a}, a3, . .., a;, be a fence in G; from m, to b'. It follows immediately
that x, y,x', a,, @2,...,Qn, a5, ..., al is a crown A, in Stack(X) for som= s=0.
The contradiction allows us to conclude that F—m, is connected for every
minimal eiement mye K.

Now let mq be an arbitrary minimal element of F. If m, is the least element of
F, then we may choose a maximal element xeX with x>y and F—my<
I(x; Stack(¥X)) and conclude that F< ¥{(x; Stack(X)). Therefore we may assume
that F contains distinct minimal elements m, and m,. Choose muximal elements
x,x’e X so that x>y,x'>y, F-mgcI(x Stack(X)) and F-m;c
I(x’, Stack(X)). Then we may assum. that x >m, and x' > my, in Stack(X). Now let
a;, asz,...,a, be a fence in F from my to m;. Then it follows that
x, V9, x',ay, as,...,a, is a crown A, in Stack(X) for some s = 0. This contradiction
completes the proof of our theorem.
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3. Three-irreducible posets

Because we intend to follow a similar path through a complex maze of cage
arguments, we adopt Kelly’s notation and labelling for the collection R of 4
3-irreducibie posets.

‘Theorem 8 [5 and 15]. The collection R of all 3-irreducible posets is given by,
®={B,B% C,C D, D CX,, CX{ CX, CXJ,CX,, CX5, EX,, EXS,
EX,, FX, FX{,FX,}
U{ALE, F.F,G, H,,1,I5¥: n=0}

as shown 1 Fig. 4.

4. Interval representable families of sets

In view of the association between indexed families of nonempty sets ang
posets of height one as discussed in Section 1, it is natural to make the fo!lowing
definitions. If F={A,: ac o} and §={B,: BB} are indexed famiies, we say
that & is isomorphic tc G when there exist functions f:|J F—l...U ¢ and
g:d— 0B so that xe 2, if and only it f(x)e By, for eveiy x€!J F apg
aecd. As is the case with pose:s, we do not distingnish beiween isomorphje
families and we write % =% when % is isomorphic to .

On the other hand we say that & is a derived subjamily of € when there exijg;
functions f:F—""'J ¢ andg: o — ' '@so that xe€ A, if and only if Fx)eB,
for every x € i % and « € of. When either f or g fails to be surjective, we say thy;
% is a proper derived subfamily. In particular, if B,c %, we denote by G — By the
proper derived subfamily {3g: B € B, B# Bo). Similarly if xe |J %, we denote by
% - the proper derived subfamily {B; —{x}: Be ®B}.

When F is a derived subfamily of ¢, we say that ¢ contains # (also, & ¢
contiained in ¥) and write ¥ < 4.

If 7={A,: a € o} is an indexed family, we iet F be the indexed family defineq
by 34={U(k): be U F}Ui{U(2): ac o and A, =@} where U(b)={a: be,qu}
when be |J # and U(a) = waen e € f and A, =0. Note that if X is a poset of
height one and G = Fy, then 94 = Fx..

For a bounded subset SR, let [&] dsnote the smaliest closed interval of i
which contains S. Similarly, if F assigns to each x€$ an interval F(x) <R, lg¢
[F(S)] denote the smallest closed interval of R which contains U {F(x): x€ S}. A,
indexed family F={A e o} is said to be point representable when there existg
a funciion f: |J & — L. so that be[f(A,}] if and only if be A, for every be | &
and a« ed. The function f is called a point representation of . Note thag a
derived subfamily of a point representable family is also point representable
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Then let 3R denote the collection of ali familie; which satisfy the following two
properties.

(P,) & is not point representable.

{P,) Every proper derived subfamily of % is poiit representable.

In other words, ## is the coliection of ail critical non-point-representabie
families. We refer the reader to [10] where the collection PR is determined. In
this paper, we are more interested in the extension of the concept of point
represeniability to intervals. An indexed family F={A,: ae s} is said to be
interval representable when there exists a fusniction F which assigns to each
b=1} % a closed interval F(b) of R so that be[F(A,)] if and only if be A, for
every be |J # und a € of. The function F is called an interval repiesentation of #.
We consider a point in R as a degeneraic closed interval so that if & is point
represerniable, then & is also interval repre . ntable. As beforec, we note that a
derived subfamily of an interval representable family is also interval representa-
ble. Now let $R denote the colllection of all indexed families which satisfy the
following two properties:

(I,) % is not interval representable.

(I,) Any proper derived subfamily of & is inierval representable.

in other words, $2R is the collection of all critical non-interval representable
families. Tt is easy to see that property I, can be replaced by:

I15) - A, and F—b are interval representable for every a € f and every

bell %.

The following fundamental theorems explain the interconnections between
interval representable families and posets of height one and interval dimensions at
most two,

Theorem 9 [15]. Let F be an indexed familv of nonempty sets and let Xg be the
poset of heighi one associated with &. Then % is interval representable if and only if
IDim(Xg)=<2.

Recall that we use the symbol ®(I, 1) to denote the collection of all 3-interval
rreducibie posets of height one.

Theorewr 10 [15]). Let & be an indexed family of sets and let Xg be the poset of
height cne associaied with F. Then Fe SR if and on!) if Xgec R, 1).

Interestingly, it follows from Theorems 9 and 10 that if & is interval represent-
able, so is F° Thus F=#%R if and only if F'c $R. On *he other hand, it is
pussible for & to be point represeatable while % is not.

In Table 1 as given below, we define indexed families of nonempty sets which
we will subsequently show all beiong to $R. The formulation of the table is
simplified by the following conventions. For an inieger n =0, let

T =Ya,, as}, laz, as}\as, aq), . .., {@n 1, amz}, {On12, Gy 1))
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Note chat J, is interval representable and that X is a fence containing 2n +5
points.
Next for an integer k=1, let U, ={by, bs,..., b} and V. ={ay, a,,..., a.}.
Also let Uy= Vy=0. Then define W, for each x =0 by

W,={U UV, isksn+3jU{U, _,UV,: 2<k<nu+3}.
Also define W for each n=0 by
W';={UkUV,(,2: 2Sk$n+3}U{Uk_1UVk: 1Sk<n+2}

In this case, W and W7, are interval representable althcugh the reader may
prefer to delay an attempt to verify that this is so.

Table 1

1. For n=0, o, = 7, Ul{a,, a5}

2. Forn=0, §,=9,,,U{V..s~{a, ay.s} {@..s}}

3. Forn=0, # =3, U{V,,,~{a,,s} V..a—{a}

4. Forn=0, F, ={AuU{n+5} AeT JU{{n+3L{n+4,n+5}L V, . ~{a,}}
5. Forn=0, ¢, =W, U{{a,, c}}

6. For n=0, ¥, = W1, U{b,, c}, {b,.})

7. 0, ={a,, a3, ash. {a,, a5} {63, a, {as, ag}

8. €,={{a}. {a,. a5 a;. a.}, {a;, a4, as}. {a,, a3, aglt

9. 0,={a,, a5}, {as. a4, {as}, {a,, a5, aa}. {ay, ay, as5}}

We will now proceed to show that the families defined in Table 1 belong to $&.
For the reader’s convenience, the argument will be presented as a series of
lemmas. We will take full advantage of duality and symmetry. For example, each
of the families in the collections {s,: n=0}, {%,.: n=0}, {¥,: n=0}, and
{%.: n=0}is self dual, i.e., if & is any one of these families, then in order to show
that & satisfies Property I3, it suffices to show that & —x is interval representable
for every xe |J #. Similarly, we note that we can climinate some cascs by
observing that &, 1=, —(n+4), $,—1=4,—(n+3), etc.

Lemma 11. o, € SR for every n=0.

Pioof. Let n=0; then X, =A, =Stack(X,), and thus 3=Dimi{&,)=
Dim Stack(X,, ) = IDim(X,, ). We conclude that &, is noi i.iterval repi esentable.

On the other hand, we observe that &, is self dual and that o, —a; =&, — a, 43
for 1=<i=n+3. However, the function | defined by f(a,)=1i is a point represen-
tation of &, — .3, and since o, — a,.3 is point representable, it is aiso interval
representable. Thus o, € SR.

VLemma 12. &, € SR for every n=0.
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Proof. Let n=0. Then E, < Stack(Xg ) and thus &, is not interval representable.

On the other hand, the function f defined by f(a;) =i shows that &, —(n+35)
and &, —(V, .s—{ay, a,.4}) are point representable.

The function f defined by f(a.,) =1, f(a;)=n+35, ard f(a)=i otherwise
shows that &€,—{ay, a,} and ¥, —a, are point representable. Therefore €, —
{@, 43, Ay .4} and &, — a, ., are also point representable. If i <m <n+4, then the
function f defined by f(a,.s)=n+3 and f(a)=i otherwise shows that
E, —{a.. a..1} and &, —a,, are point repiesentable.

Finally, we note that &, —{a,,s} is not point representable, but the function F
defined by F(a,.s)=[2, n +4] and F(a;) =1 otherwise is an interval representation
of &, —{a,.s}. Thus &, € SR.

Lemma 13. %, c $R for every n=0.

Proof. Let n=0. If n=0, then D<Stack(X,), and if n:>-0, then [, ,c
Stack(X, ). Thus #, is not interval representable.

On the other hand, the function f defined by f(a)=i shows that
F.—(V,.y—a,,3) and £, —a,,, are point representable. Therefore 5, —
(V,.4—a,) is also point representable. When 1<m < n+3, the function f defined
by f(a,.s}=m+3 and f{a;)=i otherwise shows that #, —{a,,, @..,} and £, - a,,
ar: point representable. Since #, — a, .3 = #, — a,, we conclude that $, —a, is also
point representable. Thus $, € $R.

Lemma 14. F, € SR for ever n==0.

Proof. Let n=0. Then F, = Stack(Xs ) so %, is not interval representable. On
the other hand, the function f defined by f(a,) =i shows that %, —a, s is point
representable. The function F defined by F(a,.s)=n+3 and Fig)=[i,i+n+3]
otherwise shows that %, —~a, ., is interval representable. When 1 sm <n+3, the
function F defined by F(a,.s)=n+3, F(a,,.)=[m, m+n+3], and F(a)=
[i,i+n+3] shows that &, — a,, is interval representable. Since %, is self dual, we
conclude that %, € $R.

We pause here to introduce some notation which will simplify the arguments for
%, and ,. For each integer n=0, let F, be the interval representation of W,
defined by F,(b,) =[-1-2k,2k — 1] and F,(a,)=[2-2k, 2k]. Then let G, be the
interval representation of W, defined by

G.(b)=[-4-2k—-2n,2n+2k+8] and
Gula==[-5-2k—2n,2n+2k +5].
Note if 1<k, ko<n+3, then G,(b,)NG,(a)< F,(b)UF,(ay).

Lemma 15. 9, € $% for every n=0.



Stacks and splits of partially ordered sets 245

Proof. Let n=0. Then G, =Stack(Xy ) so 4, is not interval representable.
On the other hand the function F, defined above is an interval representation

of W,=%,—{a,,c}. Now choose an integer m with 1<m=<n+3. Then the
function F defined by

F(a,)=F,(a,) and F(b)=F,(b,) when 1<ks<m;
F(a,)=G,(a,) and F(b)=G,(b) when m<k<n-3;
F(a,)=F,.(a,), F(b,)=G,(b,,)

and F(c)=[-3, 4n+15] is an interval representation of 4, —(U,, UV, ,).

Next choose an integer m with 2<m <n+3. Then the function £ defined by
F(a)=F,(a) and F(b)=F,(b) when 1<k<m, F(a)=G,(a) and F(b )=
G, (b)) when m<k=<n+3, and F(c)=[-},4n+15] is an interval representation
of ¢, —(U,-2UV,,). Since §, is self dual, we conclude that 4, € $R.

Lemma 16. ¥, € $R for every n=0.

Proof. Let »=>0. Then H, = Stack(¥,) so %, is not interval representable. On
the other hand, the function F defined by F(a, ) = F,, (b.) and F(b,)=F, (a,) when
1<sk=n+2, F(b,,3)=--4n—10, and F(c)=[-} 4n+15] provides an interval
representation of ¥, —(U,,3UV,,,). If we modify this definition by making the
single change of setting F(b, .3) = F,(b,,3), then we see that ¥, —{b, .} is interval
representable. Similarly if we change this represeniation by defining F(b, ;)=
4n+15, then we see that ¥, —{b,, i} is interval representable.

Now let m be an integer with 2<m <n+3. Then the function F defined by
F(a)=F,(b) and F(b,)=F,(a,) when 1<k <m, F(a,)=G,(b.) and F(b,)=
G,(a,) when m<k<n+3, F(b,,;)=—4m—-10, and F(c)=[-%,9n+15] is an
interval representation of ¥, —(U,, UV, _,). Finally we observe that if 1sm=<
n+2, then the function F defined by F(a,)=F,(b.) and F(t,)=F,(a.) when
Ilsk<m, Fla)=G,(b) and F(b,)=G,(a,) when m<k<n+2, F(b,)=
F,(a,), F(a,)=G,(b,,), F(b,.3)=—4n—10, and F(c)=[-%, 4n+15] is an inter-
val representation of #, —(U,,_,UV,,). Since #, is self dual, we conclude that
X, € SR.

We are left only to consider the tamilies @,,0,, and 05. These ‘odd’ families
should be viewed as pathological examples. In the interest of brevity we do not
include all the details necessary to show that @,,0,, and ;¢ $R. We note only
that BY < Siack(Xy,), C < Stack(X,,) and EX, < Stack(X,,). Thus 0,, 0, and 9, are
not interval representable. We leave it to the reader to supply the details
necessary to show that every proper derived subfamily of ©,, €, and 0, is intcrval
representable. The argument can be simplified somewhat by taking advantage of
similarity and duality.
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5. The determination of $R

We are now ready to present the principal result of the paper—a complete
determination of $®R, the collection of all critical noninterval-representable
families. In view of Theorem 10, we will simultaneously determine the collection
&({I, 1) of a 3-interval irreducible posets of height one.

¢4
Theorem 17. The collection $R of all critical noninterval-representable families
is given by:

ﬁ% = {01’ 0‘11? 021 og! 03} U{dn’ gn’ ?;l, J", jﬁ’ 9", gn} %ﬂ : n 20}

Proof. Let < $R and X = (X, P) be the poset of height one defined by X=X,
Then Xe®(I, 1), i.e., X is a 3-interval irreducible poset of height one. We let A
denotz the set of all minimal elements of X and let B denote the set of all
maximal elements. Since X is connected, note that ANB=@. Then let Y=
Stack(X) = (X, Q). The poset Y has dimension 3 and thus contains one or more of
the poset: in the collection ® of all 3-irreducible poseis. Suppose first that Y
contains a crown &, for some n=0. Then we know that X also contains a crown
A, for sorme m with 0=<m < n. Since X e R([, 1), we conclude that m = n and that
X=A,=Y. Thus =4, We may therefore assume in the remainder of the
argument that 'Y does not contait a crown A,. The remainder of the argument is
divided into a sequence of cases. In each case, we choose a particular 3-
irreducible poset contained in Y and assume that Y does not contain the
3-irreducible posets treated in previous cases. The argument follows along the
same lines as Kelly’s argument for determining ® but there are several additional
conditions.

Case 1. Y contains .

Choose a copy of D labeled as in Fig. 4. Then it follows immediately from
Theoremn 7 that we may assume that ¢, c,=B and g, be A, for suppose for
example that ¢, ¢ B. Then {c,, b5} is a connected subposet of I{c,:Y)) and thus,
there exists an element ¢} € B with ¢, >c¢, in X and {c¢,, b-} < I(c}: Y). Hence ¢}
can replace ¢, in this copy of D. Next choose an element b, € B so that b5>0, in
X and {b,, by, a} <= 1(b5; Y).

Now suppose that b,, b€ A. Then choose elements b{, b5 B with by >b, n
X, bi>b,in X,

{bs, 2, b3} I(b}: ¥), and ({by,c,, 62} < I(bs; Y).
Then it follows that % =%, contains

{{hls a}* {a" h]}v {blﬂ a, b2}s {a'! b3’ bZ}a {bZ}} :yl)

as a derived subfamily. Thus # = 2,
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Now suppose that b,, b;€ B. Then choose elements b7, b5€ A so that b, > b{ in
X, b,>b5 in X,

{b‘:’,’ bzs C2, bJ}C I( ,l'; Y) and {b59 b2s Cls bl}cI( g; Y)-

Then it follows that F contains

{{ '1'; a}v {a: bg}’{ '1'7 a, bz}.» {av bg’ bZ}’ {bi'}} = j(h

S0 F =.%,.
Next suppose that b, A and b;€ B. Then choose elements bie B and bjc A
so that b, >b, in X, b;>b} in X,

{b% by 2, b3} = I(b%;Y) and  {b%, by, ¢y, by, bi} < I(b5; Y).

Chen it follows that & = #,. Since the case where b,€ B and b, € A is symmetric
to the preceding case, we have theiefore oroven that if Y contains D, then % = 4,,.
By duality, we may conciude that if Y contains DY, then % =.£;. In what follows
we therefore assume that % does not contain D or D°.

Case 2. Y contains C.

Choose a copy of C labeled as shown in Fig. 4. From Theorem 7. we may
assume that ¢, c;€ B and a, b; € A. Next suppose that there is no element c4e B
with ¢5=c¢, in X and {c,, cs} = I{c%; Y). Then there exist elements b,, bs& B so
that b,>c, in X, {c3} < I(b:: Y), bs>c, in X, and {c,} = I(bs; Y). But this implies
that the subposct of Y determined by {a, ¢,, b,, bs, ¢3, b3} is D. The contradiction
allows us to assume that ~ - B.

Next choose an element v =B so that b5>b; in X and {c3, by, a, by, ¢4} <
I(h%; Y). Then choose elements ¢}, c5€ A so that ¢;>c] in X, ¢3>c¢3 in X

{b:’n bgh C2: bZ’ CS}C I(C,lr, Y)s and {b3s baa Ca, bl! C1s C';}C I(Cg: Y)
If b,, b, A, then it follows that # contains
{{b3}a {b3s a’ b29 bl}’ {a’ bh Cll'}» {a, b2’ Cg}} = 02

and thus % =0,.
Next suppose that by, b, € B. Then choose elements bY, b;€ A so that b; > b} in
X, b,>b5 in X,

{bZ’ C.’h Cg}C I(b,!" Y)v and {b,l'a bb Ch C'l'}c I(bIZI, Y)

If 65> b" in X and b4 > b} in X, then {b,, b}, b,, b7, a, b3} generates A,. If P "~ b}
in X and b4Ib% in X, then {c,, b4 b}, ¢y, a, b,} generates B in Y. By symmetry,
we conclude that b57b} in X and b4Ib3 in X. And it follows that

F = {{bs}, 1bs, a, b3, bTHa, b, cTHa, b3, c3}} =0,

We may now add to our list of assumptions the statements that Y does not
contain € or C".
Case 3. Y coutains CX,.
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We choose a copy of CX; in Y with the points labeled as in Fig. 4. Then it
follows from Theorem 7 that we may assume wiithout loss of generality that
b,,ceB and a,, 0;€ A. Next choose an element bjcB with b5=b, in X and
{bs, c} = I(by; Y). If b4>b, in X, then {b3, by, a,, b, ¢, 43} generates a copy of D
in Y. The contradiction shows that b5Ib, in X, i.e., we may assume that b, € B.

Next suppose thai there is no point a5€ A so that aj<a, in X and {a,, a;, =
I(a5; Y). Then we may choose elements a4, as€ A so that a,>a, in X, a,>as
in X, {as}<I(as;Y), and {a;}<I(as;Y). However, it foilows that
Ib,, a,, as, bs, as, as} generates a copy of D® in Y. The contradiction shows that
we may assume that a, € A.

Now let us assume that b;c B. Then choosc elements a,€ A, b,e B so that
l’)4>a3 in X, b3>a4 irl x,
{as, by, a,, bi}<ay; Y), and {ay, bs, ay, by, a b= I(by; Y).

Then it follows that % contains

{{ay, ax}, {2, ash {a;. ay, ash {a, a4, as} {as}} = %,
and thus & = 4.
S0 we may therefore assume that bye A. Then choose elements b3, aj€ B so
that b4>b, in X, a> a,,
{as, by, aq, by} I(b4;Y), and  {b4, bs, a,, by, a;} = I(a}; Y).

Then it follows that

F ={{a,, a3}, {az, b3}, {ay, a,, as}, {ay, bs, asHasl} = S.
We may now assumie in what follows that Y does not contain CX,, or CX4.

Case 4. Y contains CX,.

Choose a copy of CX, labeled as shown in Fig. 4. By Theorem 7, we may
assume that a,, a;€ A and c € B. The same argument used in Case 3 also allows
us to assume a,€ A. Next, choose an element bje B with b{=b,; in X and
{by, by, a,} = I(b4; Y). If b4>c in Y, then Y contains CX,, so we may assume that

b3Ic in Y, i.e., we may assume that b; € B. By symmetry, we may also assume that
b,eB.

Next choose elements b5e B, c"€ A so that b5=b, in X, ¢>c"in X,
{b3, as, by, ay, by} I(c"; YY), and {c, ¢"}=I(b; Y).
Then choose an element b,e B so that by>a; in X and {c,c", a5, by, a,}<
I(b,; Y). Then it follows that
F ={la, ez}, {az, c} {ay, az, as} {ay, ¢, as}, {as}} = So.

We subsequently assume that Y does not contain CX, or CXg.
Case 5: Y contains CX,.

Choose a copy of CX, in Y labelled as shown in Fig. 4. From Theorem 7, we
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may assume tha: by B and a,, a;€ A. Then choose an element b} e B so that
bi=b, in X and {c, by, as} < I(b;; Y). If bi>b; in Y, then {b}, bs; a5, bs, ¢, a’}
generates D in ¥ so we may conclude that biIb; in Y, i.e., we may assume that
b,eB.

If there is no element a3e A with a,=a" in X and {a,, a;} < I (a2; Y), then
there exist elements a4, as€ A, with a,>a, in X, a,>as in X, {a,} < I(as: Y), and
{as}=I(a,; Y). But this implies that the subposet of Y generated by
{c, a3, as, by, a,, a;} in DY, The contradiction shows that we may assume that
a,€A.

Now choose elements aje B, b3e A, aje B so that a{>a, in X, b;>b in
X and a5>a; in X.

{b3’ a29 b2v a3}c I(arl; Y); {a3) b"!’ C, als a'I, bl}c I( b;, Y)9
and
{b3, bs, az, by, ay, aj} < I(al; Y).

If b, e B, then it follows that
gd = {{b3}’ {b3, C, bl- bz}v {(‘a bZ’ a;}, {C, b], ai}} ='672'

If b,e A, choose b5 < B so that b4>b, in X and {a}, a,, b} = [(b5; Y). If b4>b}
in X, then the subposet of Y generated by {c, b5, b, a5, a,, a,, b3} s CX,. The
contradiction implies that b5Ib5 and thus

‘?’Fd = {{b3}’ {b3s < bla bé}’ {ca b'29 aé}’ {C9 bla a’l}}=02-

We may subsequently assame that Y does not contain CX, or Txa°

Case 6. Y contains FX,.

Choose a copy of EX,, in Y iabeled as shown in T.g. 4. By Theorem 7 we may
assume that bye B and a,€ A. Since EX3 =EX, we may assume without loss of
generality that b, € B. Next suppose that there is no point b4 € B so that b=, in
X and {c. h;t < I(b%; Y). Then it follows that there exists points b,, bsc B with
by>b, in X, 0s>b, in X,

{LS}C I(bd; Y)’ and {C, bl}g I(bS; Y)

This implies that bs>b, in Y. If b,>c in Y, then .b,, ¢, a5, bs, bs, as} generates a
copy of D in Y. So we must have b,lc in Y, and thus b, > b, in Y. However, this
implies that {c, b, by, b,, a2, b3, as} generates a copy of CX; in Y. The contradic-
tioni allows us to assume that b,e B and dually that a,€ A

Next choose a point ¢’ B with ¢’=c in X and {b,, a} < I(c’; ¥). H '>b,in Y,
then Y contains D¢, so we may assume that c'Ib; in Y, i.e., we may assume that
¢’ =c € B. Dually, we may also assume that a,€ A.

Then choose points bje A, aje B so that b,=b3 in X, at=a; in X,

{a:,, bz, a]s bls C}C {(bng), and {bgv b37 a2’ Ca bh al}cl(ag;y)-
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Finally choose a point bie A with b,=b" in X and {a4, a3, by, a,, by, bi}c
I(b7: Y). Then it follows thai

;'; = {ay, b}, i4,, b5}, {as}, {a,, by, as}, {a,, az. a3} =0;.

In what follows, we therefore assume that Y does not contain EX,.

Case 7. Y contains FX,.

Choose a copy of FX, labelled as shown in Fig. 4. Then it follows frcm
Theorem 7 that we may assume that b, by, ce B and a;€ A. Next choose an
clement b5 B with &5=b, in X and {b;}<I(b5: Y . f b5>b, in Y, then Y
contains B, so we may assume that b3Ib, in ¥, te.,, we may assume that

5=b,e B. It there is no element a5 A so that a,=¢% in X and {a,,a;}c
i(a%; Y), then Y contains D, so we may assume that a,¢ A.

Next choose an element by € A so that b, = bY in X and {qa, b,, ¢, b3} < I(b]; Y).
lf bY>a, in Y, then Y contains EX,. So we must have b{la, in Y. If b,>a,in Y,
then Y contains D so we must also have b;Ia, in Y.

Then choose elements bz A, aj€ B so that b;=b} in X, aj=a, in X,

{as, by, ay, by, b} I(b5: Y), and {b3, bs, a5, b,. b}, a,} = I(a}: Y).
If u,e A, then
g = {{b'l,a al- az}a {G is a}ﬂ a2}§ {a3}’ {bg* az}a {ah a3a h;O az}} = ‘?0

0 we may assume that a,e€B. Then choose aj€e A so a,>aj in X and
b5, bs, uzt < I(af: Y). If ailas, then F = %, so we assume that a} < a} in X. Then
the subposet of Y generated by {b}. b,, a,, bs, ¢, aj, a4} is EX,. The contradiction
comple “es the proof of the case, and we assume hereafter that Y does not contain
FX, or IS

Case 8. Y contains EX,.

Choose a copy of EX, contaired in Y labelled as shown in Fig. 4. From
Theorem 7, we may assume that b, b€ B and a,€ A. Choose an element b5¢ B
with b5=b, in Y and {b,, a;} < I(b4; Y). If b4>b, in Y and b5>b, in Y, then Y
contains DY If b45>b, in Y and b5Ib, in Y, then Y contains EX,. If b3Ib, and
b5>b, in Y, then Y contains EX,, so we may assume that b4Ib, and b4Ib, in Y,
1.e.. we may zssume that b, = b5 e B.

Next chcose an element bje B with b5=b; in X and {b,}< I(b};Y). If
by>0,in Y and b3 > b, in Y, then Y contains ). If b5> 5, in Y and b51b, in Y,
then Y contains FX,. Simiiarly, if b4>b, in Y and b4Ib, in Y, then Y contains
FX,. Thus we may assume that b;€ B. Next choose an element aje A with
a1 =aj in X and {a,, bt < I(a}: ¥). If a1 >af in Y. then Y contains FX?. Thus we
may assume that ajla; in Y, i.e., we may assurne that aj = g, € A. By symmetry,
we may aliso assume that a,e A.

Next choose elements b}, b€ A, a4e B so that b,=b} in X, b,=b} in X,
at=za, in X,

{bs, a5, by, by, a3} < 1(bY; Y), {bl.0,, by, a,, by, a>, a;} < [(b}; ¥),
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and
{bZa b4, as, b3, a,, b2, bly b’l'}c i *!.,"6; Y)

Then it follows that
F={{b}, a;}, {ay, a5}, {az, b3}, {a,, ay, as}, {as}} = &o.

We may assume hereafter that Y does not contain either EX, or EXJ.

Case 9. Y contains FX,.

Choose a copy of FX, in Y labeled as shown in Fig. 4. From Theorem 7, we
may assume that by, b.€ B and a;€ A. If there is no element ¢'= B with ¢'=c¢ in
X and {by, b5} = I(c¢’; Y), then Y contains . So we may assume that ¢ € B. Dually,
we may also assume that a,€ A.

Next choose an elemz:nt bje B with »5=" in X and {c, b,} < I(b4; Y). If b} > b,
in Y, then Y contains D°. So we may assume that b} = 5;€ B. Dually we may
assume that a. € A. Ther choose points b}, b€ A and aje B so that b, =b] in X,
b,=zbiin X, aj=a,in X,

{b29 C, bS}C I(bl; Y)v {bb b3}c I(bg; Y)a and {brl, als a2’ bg
< I(a%; Y).
Then it follows that

F= {{b,l’7 a, aZ}s {als Qs, a2}7 {03}, {bgv a2}9 {ala as, b'2,7 aZ}} = g:O'

We now assume in what follows that Y does not contain FX,.

Case 10. Y contains B.

Choose a copy of B in Y labe'led as shown in Fig. 4. From Theorem 7 we may
assume that by, b,, by€ A. Then chonse elements b}, b3, bj€ B so that b, =b, in
X, b5=b, in X, bi=b; in X,

{CZv a, b2; C3’ b3}C I(b’l; Y)’ {Ch bl= bi’ a’ C3’ b3}c i(bé; Y}’
and
{C9 blv b’h Q, Ca, b27 b3}C I(bﬁ, Y)

Next choose an element ¢} e B with ¢, =c¢, in X and {c,, b,, b3} < I(c}; Y). If
ci>c3inY, then Y contains C°. So we may assume cilc;. If ¢, > b5 in V, wien Y
contains CX,, so we¢ may assume that c¢iIb; in Y and that .{=c,€B. By
symmetry, we may also assume that ¢,, c;€ B.

Noxt choose an element a"€ A with a=a” in X and {b, CI(a” Y). Then it
follcows that {b4, b5, by} I(a": Y). We conclude that

'g:d = {{Cl‘ C23 C3}~ {C’h hll}’ {CZ’ b’2}9 {Cf}r b,3}} :01'

In what follows, we therefore assume that Y does not contain B or B

Case 11. Y contains F,, for some n=0.

We aiso assume that Y does not contain F,, E,,, or EX when O0<m <n. Now
choose a copy of IF, in Y labelled as shown in Fig. 4. From Theorem 7, we may
assume tha! e,b,¢B and ¢, a,,-€ A. Then without loss of generaiity we may
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assume that d € 3. We then choose an element ¢"€ A so that d =a" in X and
{by, by, ..., byt Ulay, Gz, . .., Gui} < I(d"; Y).

Now let i be an integer with 2<i=<n+2. We try io choosc an element b!e B
with b/=b, in X and {d", q;} = I(b!; ¥) when |i—j|>1 and 1:<j=sn+2. Suppose
that this is impossible for some integer i = i,. Then choose an element x € B with
x=b, in X and {d, d"} < I(x; Y). Suppose that x=b, in Y. If x=a,,, in Y, then
Y contdins D. Now choo:e the largest integer j for which x =a,. Then j<n+2. It
follows that

J_xw th bj+Zs LR ;‘n+2}U{aj3 a]'+1s AL | an+2}u{e’ d, C}

generates ¥, in Y for some m with 0=<m <n. The contradiction allows us t
conclude that xIb, in Y.

It x>b in Y and x>0 in Y, j;<j,, then x>b, for every j with j, <j<j,,
otherwise Y contains a crown or D Similarly, if x>gq; in Y,x>aq, in Y and
J1<J2, then x>¢, in Y for every j with j, <j<j,.

Now suppose that xfe in Y. Then suppose that xla, ., in Y and let j be the
larpest integer for which x> a4, in Y. Then

{x b,'.,,], Ctes bnﬂZ}U{ajs aj+17 Ty an+2}u{c! d’ e}

generates F,, in 'Y where m <n. The contradiction shows x>a, ., in Y. Now
suppose that xla, in Y and let j be the smallest integer for which x >aq; in Y.
Then

{by. b, ... . btU{a a, ..., aq}Uld, e x}

generates E,, where m <<n. Then we may assume that x >a, in Y. However this
implies that {b,, a;, e, x, a,.,», ¢, d} generates FX{. The coniradiction implies that
e>x inY.

Now choose j; and j, as the smallest and largest integers respectively for which
x>a, in Y und x>q;, in Y. If j,>,+1, then the subposet of Y generated by

by bsy oo b YU Ay, ay, ..., q} U] g, ¢, d, €}

2)
1s ¥, for scme m<n. The contradiction shows that j, =j,+1. Thus we may

replace b; bv x in this copy of ¥, By symmetry and duality, we may therefore
assume that

{b].b2,...,b,1+2}c.8 3nd ’{al, az,...,a"+2}cA.
Next choose elements bie A, al,.,€ B so that b, =b} in X, a’,.,=a,., in X,

{bo, bs, ... b, U e, d}c I(BY; YY), and {ay, @-, ..., a.. 1 U4 d7, b7}
< I(a} .2 Y).
Then it follows that F = 7, .
Case 12. Y contains E, for some n=0.
tn this case, we assume that Y does not contain E,,, E2, when dsm <n. We
also assume Y does not contain F,, when 0<m < n. Then chooss a copy of E, in
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Y with the points labeled as shown in Fig. 4. Then it follows directly from
Theorem 7 that we may assume that b,, b,.;€ B and c. A.

Now suppose that 1<i=<n+ 1. Then choose an element a’ with a,=a" in X
and {b;.o}< I{al; ¥). Suppose that c>a¥ in Y. If a,l¢”, then ¥ contains ES,
where m <n. It follows that we must also have a,>a". Then it follows that Y
contains F,, where 0<m <n. The contradiction allows us to conciude that cla” in
Y. Ii b;>a for some j with j#i,i+1, then it follows tha' Y contains E,, whare
m<n.

ir summary. we may therefore assume that {a,,a,,...,a,.,}< A. By sym-
metry, we may also assume that q,.,; € A. Next choose an integer i with 2<i<
n+2. Then choose an element x € B with x = b, in X and {c}< I(x; Y). Suppose
that xld in Y. If x>a,in Y and x>a,,, in Y, then {b,, x,d, b,.3, a,. a, .2, c} is
EX, if xIb, in Y, while the same point set generates EX, when x> b, in Y. We
may therefore assume without loss of ger- rality that xla,.,. It follows that Y
contzins B, where m <n. The contradictio: allows us to conclude that d > x in
Y. Thus b, Ix in Y and b, ,;1x in Y. Finally, we note that if x > a; for some j with
j#i-1,i, then Y contains E,, where m <n. So we may assume without loss of
generality that x = b, € B, and thereforc {b,. b5, ..., b,.,} < B.

Next choose elements by, b,,,3€ A so that b,=b" in X, b,,.=b",; in X,

by, by, ... by, di I(bY;Y), and {by, by, ..., by.a d}= I(bla: Y).

» v assume that d € B. Then it follows easily that # = %,. On the other hand,
if there is no element d'e€ B so that d'=d in X and !b,, b,.5}< I(d"; Y), then it
follows that Y contains $,.,. We may therefore assume that Y does not contain
E..E2 or F, when n=0.

Case 13. Y contains I, for some n=0.

We also assume that Y does not contain I,, when O0<m <n. Then choose a
copy of I, labeled as shown in Fig. 4. Then by Theorem 7, we may assume that
dy,d;. b, b,.1€B and ce A.

Now choose an integer i with 2<i<n+2 and let b/e B with b!=b, in X and
{c}<= I'b!; Y). Then suppose that b/ =g, in Y for some j#i—1,i If b/Id, in Y or
b!Id, in Y, then Y contains D¢ so we may assume that b!<d, in Y and b’/ <d, in
Y. But this implies that Y cortains I, where 0 <m <n. The contradiction aliows
us to conclude that if b/>a; in Y. then either j=i or j=i—-1.

Now let i be an integer with 1 <1 <n+3. Then choose an element aje A with
a,=ainXand{c}cI(a?, Y¥). If b,>a}in Y and b,,;>a’in Y. then Y contains
D¢ Yo we may assume without loss of generality that b,,;la} in Y. Then it
follows easily that Y contains 1,, where (=m <n whenever there exists an
integer j with b,>a} in Y and j# (i+1.

Next, we choose elements b5, by, as :n the preceding case, and observe that
F =.9,.,. In what follows, we therefor¢ add the assumption that ¥ does not
contain I, or I when n=0.

Case 14. Y contains &,, for some n=9.
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In this case, we also assume that ¥ does not contain J,,, or H,, when 0=sm<n.
Then choose a copy of G,, in Y laheled as shown in Fig. 4. We will now estabilish
the following statements
(P)) ¥ 2<i<n+2 and ;€ A, (a P then there exists an element ajeB
(a"e A) so that a/=q; in X (a.=a’ in X) and the subposet of Y obtained
by replacing a; by a; (a; by a’) is G,

(P,) If 2<i<n+2 and b;e A (b, =B), then there exists an element b/cB
(b€ A) so that b/=b, in X (b;=b" in X) and the subpcset of Y obtained
by replacing b, by b! (b; by b} is G,.

We establish Statement P;. Statement P, is dual. Ch~ose a: integer i with
2=<i< n+2. First, we suppose that g; € A. Then choose an element x € B with
x>ga, n X and {b,. b,_,}< I(x; Y). Then suppose that i=n+2.

Next suppose that xla,,; in Y and xIb,,. in Y. If x>c in Y, then Y coatains
FX so we may assume xIc in Y. However, when n>0, we see that Y contains
G,, for some m <n, and when n =0, we see that Y contains FX{. Then suppose
that x <d, .- in Y and xIb,, .5 in Y. Then it follows that xIc in Y. If n =0, we see
that Y conitains I, and if n >0, we see that Y coniains G,, for some m <n.

Next suppose that xIa,.; in Y and that x <b, .3 in Y. Then ¥ contains D°. So
we may now suppose that 2<i <n-+2. With this assumption on the range of i, we
then suppose that xla,,; in Y and xIb, .5 in Y. If xIc, then Y contains G,, where
m < n, and if x >>¢, then Y contains §,, where m <n.

Now suppose that x <a, .5 in Y and xIb,.; in Y. If 2<i, then Y contains G,,
vhere m <n, and if i =2, then Y contains D. Next suppose that xla, ., in Y and
x<b,.sinY. If xIb,., in Y contains G, where m<n, and if x <b,.,inY,thenY
contains . We are left then with the case where x <a,,;in ¥ and x<b, .5 in Y.
Then let j be the least integer for which x <b; in Y. Suppose now that j>i+1. If
xla;, then Y contains G,, where m <nj; similarly, if x <a,, then Y contains G,,
where m <n. Now suppose j=i+1. If xIg; in Y, then Y contains D°. so we are
left with x <g; in Y. But this implies that x can 'eplace a; in this copy of G,.

To complete the proof of Statement P,, we suppose that q; € B and then choose
an element ye A with y<gq; in X and {b, b; ;}<I(y;Y). We proceed to show
that y can replace g; in this copy of G,. Similar to the preceding argument, we
first suppose that i = 2.

We then assume that yla, in Y. If ylc in ¥, then Y contains CX{, and if y <c in
Y. then Y contains DY, So we must have y>a, in ¥. Then if y<c in Y and n >0,
ve see that W contains G, where m<n. If y<c in Y and n =0, then Y contains
D*. Therefore, we must have ylc in Y and thus y can replace a, in this copy of
G,,. 50 it remains to consider the case where 2<i=n+2.

Now suppose that yla. in ¥ and yIb, in Y. If ylc in Y, then Y contains H,,
where m<n. If y<e¢ in Y and i =n+2, then Y contains D?. If y<c in Y and
1 <<n+2, then Y contains G,, where m <n.

Next suppose that yla, in Y and v>b, in Y. Then Y contains G,, where m <n.
Next suppose that v>>a, in Y and yIb, in Y. When i#n+2. we sce that Y
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contains G,, where m <n. When i = n+2, we see that Y contains G, when ylc in
Y and that Y contains D® when y<c in Y.

Thus, we are left with the case where y>a, in Y and y>b, in Y. Now let j be
the largest integer for which y>gq; in Y and suppose first that j#i—1. If yIb,,,,
then it follows that ¥ contains G,, where m <n although the value of m and the
set of points which generates the copy of G,, depends on the comparabilities
between y and b; and b;_,. If y>b;,, in Y and j+1=i-2, then Y contains I. If
y>h.,,in Y and j+1<i-2, then Y contains &G,, where m <n. So we may now
assume that j=i—-1. If yIb,_, in Y, then Y contains G,, where m <n. It follows
that y>b,_; in Y and we conclude that y can replace a; in this copy of G,. This
completes ithe proof of Statement P,, and by duality, Statement P, is also
established.

Finally, we choose elements a,..;€ A, b€ B so that a,.s=a,.;in X, b1=b, in
X,

{ba +2s bn+3a C}C I(a:+3; Y); aﬂd ‘{ﬂ], aj, C}‘: I(b’la Y)-

Then it follows immediately that F =9,

Case 15. Y contains §,, for some n=0.

In this case, we also assume that if 0= m <n, then Y does not contain G, H,,,,
or §,.. We further assume that Y does not contain &,,. At this point, we proceed to
establish the obvious analogues of Statements P, and P, as given in Case 14. For
the sake of brevity, we do not include the details of the argument since they
follow essentially the same pattern. The end conclusion is the same, 1.e., F =9,

Case 16. Y contains H,, for some n=0.

In this case, we assume that if 0=<m <n, then Y does not contain G,,, H,,,, or
3. and that Y does not contain either G, or J,. As in Case 15, analogues of
Statements P, and P, are established. Subsequently, points d"€ A and c'e B are
chosen in the obvious manner after which it follows that ¥ = %,.

Once the reader has supplied the missing details to Cases 15 and 16. the proof
of the theorem i:as been completed.

6. Concluding remarks

At this point, the reader who has successfully navigated the intricate and
sometimes tedious list of cases present in the determination of ®(I; 1) would most
likely agree that in retrospect the proof is lengthy but straightforward. However,
it should be recognized that the details of the argument are :notivated naturally by
‘he physical appearance of the poset diagrams. The diagrams also assist in
verifying the argument. It should be recognized that the determination of &(/: 1)
also representz a major contribution 1o the solutions of the forbidden subgraph
characterization problems for circular-arc graphs and rectangle graphs. (See [11
and 15] for a discussion of these problems.) Furthermore, it is the author’s
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opinion that this contribution would most likely have remained inaccessible
witaout thc poset structure to suggest reasonable avenues of attack. Finally, the
results ¢f this paper shed additional light on the meiits of Kelly’s solution to the
problem of the determination of ®. Consequently, it would be of greai interact to
comiplete the cycle by explaining how Gallai’s [4] characterization of comparabil-
ity graphs can be derived from independent work on posets and interval graphs.
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