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Abstract. In this paper, we show that if a partially ordered set has 2n elements and has dimen- 
sion n, then it is isosnorphic to the set of n-l element subsets and lelement subsets of a sef, 
ordered by inclusion, or else it has six elements and is isomorphic to a partially ordered b;i we 
call the chevron or to its dual. 

1. Introduction 

In 194 1, Dushnik and Miller [4] introduced the concept of the ddrnen- 
aion of a partial ordering - the smallest number of linear orderings 
whose intersection is the original partial ordering. They gave examples 
of partial orderings of dimension n on a 2n element set. Their examples 
consist of the n-l element subsets and 1 element subsets of an n de- 
ment set, ordered by inclusion. Their methods were combined with 
Szpilrajn’s theorem [ 101 by Komm [ 81 to show that the set of all sub- 
sets of an n element set also has dimension ~2. Dushnik and Miller also 
showed that a partial orderiilg has dimension 2 if and only if there is a 
partial ordering whose comparability relation is the incomparability re- 
lation of the original partial ordering. Ghouila-Houri 151 and Gilmore 
and Hoffman [o] proved theorems about the representability of graphs 
as comparability graphs of partial orderings and Baker, Fishburn and 
Roberts [ 11 related these theorems to Dushnik and pl!liller’s result to obq- 
tain additional characterizations of partial orderings of dimension 2. 

* Both authors were partially supported by the N.S.F. Advanced Science Seminar in Combin* 
torial Theory at Bowdoin College in 1971 while doing the research for this paper. 
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The Baker-Fishbum-Roberts paper contains an excellent literature 
;urvey, many results about general dimension theory of partial order; 
ings (for instance thle theory of partial ordenings of dimension n is not 
finitely axiomatizable in first order logic), many good examples, addi- 
tional results on partial orderings of dimension 2 and an explanation of 
the relation of dimension theory to measurement theory and other 
mathematical theories of interest to social scientists. The ribult that the 
theory of partially ordered sets of dimension n is not finitely axiomati- 
zable is especially interesting in light of Dilworth’s finite axiomatiza- 
tion of distributive lattices of dimension n in his paper on decomposi- 
tion of partially ordered sets into chains 1131. This characterization is 
in Theorem 1.2 of Dilworth’s paper; to interpret this theorem in the 
terminology used here, we need Ore’s remark [ 91 that the dimension 
of a partially ordered set is the smallest number of chains such that the 
partially ordered set is isomorphic to a subposet of a product of that 
number of chains. 

The subject of this paper is slightly different. In 195 1, Hiraguchi [ 71 

~XW! that the dimension of a partial ordering of an Y$ element set is 
at most 1 in j . The 1: .lue of this result is indicated by some of the com- 
putations made in I I I l Recently, Bogart gave a considerably simpler 
proof of this theorem [ 21 and suggested that it would be of interest 
to find those partial orderings on n element sets which have dimension 

In thic paper, we solve this problem for even n - we show that the 
only “m;rximum dimensional” partial orderings are the well known 
ones, the Dushnik-Miller example mentioned above and the six element 
chevron shown in Fig. 1 (and, of course, its dual). This example is 
discussed in : 1) This simple characterization, though not a finite ax- 
iomatization, is striking where contrasted with the complexity of the 
general theory of dimension described in [ 1 ] . 

Fig. 1. The maximal dimensional partial orderings on six elements. 
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2. Basic concepts 

We shall use the symbol S,n for the standard example of a maximal 
dimensional partially ordered set - the set of all subsets of an n element 
set with either 1 or n-l elements, ordered by set inclusion. S, is the 
first example shown in Fig. 1. We shall use the symbol C6 to denote 
the six element chevron ordering which is the second ordering shown 
in Fig. 1. 

Our proofs involve detailed examinations of covering pairs. We say 
(a, b) is a cover or a covers b in a partial ordering Pof a set X if a Ss above 
b (i.e., [a, b) E P) and no element of X is betw.een them (i.e., (a, c) aar-1 
(c, b) III P imply a = c or b = c). Following Hiraguchi, we say that a 
cover (a, 6) has rank 0 if each element above b is above each element 
belova. Equivalently, each element covering b is greater than each 
elemt nt covered by a. 

By the height of a partially ordered set we mean the number equal 
to only less than the maximum number of points in any chain of the 
partially ordered set. By the width of a partially ordered set we mean 
the cardinality of a largest antichain - i.e., the largest possible number 
of elements in a set of pairwise incomparable elements. The symbol X 
denotes a set partially ordered by an ordering P 

We shall use each of the following lemmas - proofs of them may be 
found in [7] or 121. 

Lemma 2.1. If (X, P) is a partially ordered set with a maximum element 
x (or minimum element x), then 

LemBna2.2.1fX=X1 ~X,andP=Pl~, uJ& then 

dim P = max(dim PIx, , dim Plx2 ), 

Lemma 2.3. The dimension of a partially ordered set is less than or 
equal to its width. 

Lemma 2.4. If x is a maximal element of (X, P) and y is a minimal ele- 
ment of (X, P), and x and y are incomparably:, then 
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dim P <_ 1 + dim Plx_ (X,y) . 

L43iiiiila 2.5. If (x, y) is Q CoWY of rank zero irt (X, P), then 

dim P <_ 1 + dim PI,__ {x,y) . 

Lemma 2.5. if rhe restrictions of P to Y and to Z are chair;s and the 
enlements of Y are incomparable with the elements of 2, then 

dimP<2+dimPlx_u , 

dim P<_ 2 + dim PIx_qyUL7 . 

This lemma is crucial in both the Hiraguchi proof and the Bogart proof 
cf the theorem that the dimension off a partial ordering on an II ele- 
ment set is at-most [‘in]. We note that the 2 in the lemma cannot be 
replaced by 1 - the removal of any two element chain from S, (which 
has dimension 4) gives a six element partially ordered set which is not 
A’, or the chevron C6 and thus has dimension 2. 

The following lemma was used by Bogart to avoid some of the com- 
plicated reconstructions 6f chains needed by Hiraguchi. 

Lemma 2.7. Let Y E X and let Q be an extension of the restriction of 

P ko Y. Then the transitive closure ojF P u Q is a partial ordering. 

This lemma is in essence a version of the basic lemma used in proving 
Szpilrajn’s theorem. Bogart’s proof of Niraguchi’s theorem made es- 
sential use of the next lemma. 

Lemma 2.8. A partially ordered set contains either a cover 01 rank 0 
cr a pair of covers such that the elentents of one cover are mcompar- 
a,t-le with the elements Of the other. Further, a partially ordered set of 

h,c-igh t 2 or mure has 9 or more elements if it has no covers of rank 0 
acd we may assume that both cot(ers contain a maximal element. 

l In order to present tk results of this paper in the simplest form pos- 
sible, we examine a circtimstance in which removal of a chain reduces 
the dimension of a partially ordered set by at most one. 
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Theorem 2.9. If C is a :hain (X, Pj such that each element of 1Y is in- 
~ompardde with at mcst one element o;l’C. then 

dim (P) <_ d:m (Pjx_& + 1 . 

Proof. Write PIx_c = id1 3 . . . n Lk as an intersection of linear order- 
ings. For i > 1, let ti l)e a linear extension of the transitive closure of 

P U Li (such a linear extension exists by Lemma 2.7 and Szpilrajn’s 
theorem). From the o :dering L 1 we wish to construct two other linear 
orderings Li and ~5;’ such that the intersection of these orderings with 
the remaining Lf is P. Suppose C = (cl, . . . , c, } and (Ci, Ci+ i ) E P for 
i = 1,2, . . . . n-l. Note that two elements of C cannot both be incompar- 
able with the same ehment of X by the hypothesis of the theorem. Thus 
the intersectinn of the,: set of elements incomparable with Ci and the set 
of elements incoSmparable with Cj is empty if i # j 

We sketch the rem$linder of the proof informally to avoid a notational 
mess. We visualize a Inear ordering of a set as a vertical list with larger 
elements at the top. We construct the list Li as follows. At the top of 
the list we put all elelnents incomparable with cl and all elements 
larger than cl and orler them as they were ordered by L 1 f then place 
cl immediately belolv this group. We place elements smaller than cr 
and larger than c2 between cl and c2 and order them by L 1. We next 
place elements incomparable with c2 and c3, and those below c2 but 
above c3 between c2 and c3 and order them by L, . We continue in 
this fashion, placing 9ements incomparable to Ci above Ci if i is odd 

but below it if k is even. We construct L;’ by placing elements incom- 
parable to ci below Ci if i is odd and above Ci if i is even, and then order- 
ing each interval between ci and c~+~ as L 1 orders that set. 

Note first that L i and JC;I are extensions of P. If they were not, an 
ordered pair (x, v) would be in P with (JJ, x) in (say) Li. The only way 
this could happen is if we placed y above Ci and x below ci in our con- 
struction. Thus y is incomparable with Ci or a’bove Ci and x is incom- 
parable with Ci or below Ci in P. (Herle we are using the fact that each 
element of X is incomparable with at most one element of .P.) If y and 
x are both incomparable with Ciy they are ordered in .L; in the same 
way they are ordered in Y, so that o/, xj is not in L; . Ify and _Y are 
both comparable with Ciy then 0, X) is in P, so this is impocsible. If :v 
is incomparable with ci and x is below t‘i, then x is not above ~7 in P, 
which is impossible. Finally, if x is incomparable with Ci and _Y is above 
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cj‘ then x is not above ;v in P which j s again impossible. 
Now if (x, v) is in L, , it is in either ~5; #or L’; . To see this, we need 

only check the case in which x and J:’ are incomparable in R Suppose 
first that they are Seth comparable ItNith each element of C Then one 
ca.nnot be above 2ny element of C that the other is below, so they both 
lie above cl, they both lie below c, or they both lie between Cj and 
Cj.r_r for some i. In this situation (x, JQ) is in both Li and L;’ . Suppose 
now that only .X is comparable with every element of C and ~7 is incom- 
parable with Cj. Then Y is below Cj_ 1 (unless i = 1) and above c~+~ 
(unless i = n). Thus (except in the special cases i = 1, n) x is between 
Cj_r andciorbetweencjandci+l.Thus(x,y)isinLi orL;‘.(Ifi=l 
or n, a similar argument works.) Finally, if x is incomparable with Cj 
and _V is incomparable with cj, i and .i differ by at most l., since x is 
below q__ 1 and above Cj+l and .,v ZS below C)_ 1 and above Cj+l. Thus 

(X, 27) is in Li or f5q. 
It follows that 

p=L;nL;nL’,n...nLi, 

and the theorem is proved. 

3. Main result 

Theorem 3.1. If n _ =5 3 the only partially ordered sets of dimension n , 

with 2n elements are the chevron C6, its dx-rl and the standard max- 
imal dimensional partially ordered sets S2, . 

Proof. The proof is inductive. It is known that the only six element par- 
tially ordered sets of dimension 3 are the chevron C6, its dual, and the 
standard example S6 (shown in Fig. 1). We outline a method of proving 
this fact. Since the width of a poset of dimension 3 must be at least 3 
and since a six elelmenb; poset with dimension 3 has at least two max- 
imal elements and two minimal elements (by Lemmas 2. i and 2.3 and 
Hiraguchi’s theorem), we need consider only posets of height 1 and 2. 
By Lemma 2.2 and Hiraguchi’s theorem we need only consider those 
partially ordered sets whose Ha:sse diagram is connected. 

A case by case aljrgument shows that if the poset has height 1 and 
dimension 3, then it is isomorphic CO S6. If the poset has height 2 and 
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has 3 maximal elements, 2 minimal elements and one element neither 
maximal or minimal it is easy to verify that it has dimension 2. Other- 
wise, a maximum antichain must contain two elements not maximal 
or minimal and one maximal or minimal element. Of the several partial- 
ly ordered sets of this type, it is easy (but tedious) to verify that only 
C’s and its dual have dimension 3. 

Now suppose (X, P) is a 2n element partially ordered set of dimen- 
sion II and n > 3. We show first that :if (X, P) has height 1, then it is 
isomorphic to S,, . To see this, note that if every maximal element is 
above every minimal element in a poset of height 1, then the poset 
has dimension 2. Thus there is a maximal element x of (X, P) incom- 
parable with a minimal element y of (X, P). By Lemma 2.3 and Hira- 
guchi’s theorem, 

dim (PI*-~,,,))=n--1. 

We may assume inductively that (X- {x, y ) , PI*_ fxtu 1) is isomorphic 
to S,,_ 2. Thus if x is above each minimal element other than y and y 
is below each maximal element other than x, then P’ is isomorphic to 
S,,. However, each other maximal element of (X, P) is paired with 
precisely one minimal element with which it is incomparable. By re- 
moving one of these pairs from (X, P), we-obtain a partially ordered 
set isomorphic to S2, _ 2 as above, so that x is above each minimal 
element but the one in the pair removed andy is below each maximal 
element but the one in the pair removed. Removal obf one other pair 
shows that x is above every minimal element except ,y and y is below 
every maximal element except x and thus (X, P) is isomorphic to S,, . 

Thus we may assume that n > 3 and that the height of P is greater than 
1. 

Now, either (X, P) has a cover (x, y) of rank 0 or IX, P) has more 
than 9 elements and has two covers (x, y) and (z, w) with both z and 
w incomparable with both x and y (by Lemma 2.8). 

Suppose (X, P) has a cover (x, y) of rank 0. Then 

p’ = PI& (x,y} = Ply 

has dimension n - 1 by Lemma 2.5 and Hiraguchi’s theorem. Th:us by 
the, inductive hypothesis (X’, P’) is either Cs, its dual, or S2,+2 l If 
(X’, P’) is S,,_ 2, we may assume that y is not minimal in (X, P). To 
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see this, suppose y is minimal. If x is not maximal, we may consider 
the dual of (X, P) rather than (X, P) itself; in this partially ordered set, 
(j?, 3~) has rank 0 and x is not minimal. If x is maximal, then (X, P) has 
height 1 unless x is above sonic maximal element z of Szn _ 2. Since no 
other element of (X, P) can be above z, (x, z) is a cover of rank zero and 
z is not minimal. Thus we may replace y by Z. Now, by Lemma 2.1 and 
Miraguchi’s theorem, x cannot be above each maximal element of 
(X’, PI), so that there is a maximal element u incomparable with a min- 
ij%al element v of (X, P) and neither u or v is in {x, u} . Thus by Lemma 
2.4 and Hiraguchi’s theorem 

P* = PI& (u,“) = Pip 

has dimension n- 1. Since P” has a chain of length 3, (X”, P”) is iso- 
morphic to C6 or its dual by induction. Since S, is self dual, we may 
assume (X”, P”) is isomorphic to C6. Thus (X*, P”) has a maximal ele- 
ment e of height 1. Since x must be the element of (X”, P”) of height 
2 and x covers y , t has height 1 in (X, P) and thus must also be a max- 
imal element of (X’, P). However, each maximal element of C6 is com- 
parable with each minimal element - and thus 8 is above every ele- 
ment that u is above in (X’, P’). This means that (X’, P’) is not iso- 
morphic to S, , a contradiction. This series of constructions is illustrat- 
ed in Fig. 2. 

Now assume that re.,noval of any cover of rank 0 from (X, P) gives 
a poset isomorphic to i -6. (By considering the dual of B’ if necessary 
we may assume that we obtain C6 and not its dual.) Suppose we re- 
move a cover (x, v) of rank 0 from (X, P) to obtain a poset (X’, P’) = 
C6 as labelled in Fig. 1. By Lemma 2.3, (X, P) must have an antichain 
with four elements; thus either {,u, b, e, c) or Cy, b, e, c) is an antichain. 

X III Dolot. x,y 

Y l 

Add x,y ; dolotm u,v 

Fig. 2. 



3. Main result 41 

1 Dole’. c,t 

0 

Roplaco c,f 
l 

b 0 b 

t 

Fig. 3. 

If {x, b, e, c} is an antichain of (X9 P), then no element of X besides a 
is above c, so that (a, c) is a cover of rank zero. However, then 

has dimension n-E = 3. Since (X’, P’) has three maximal elements, x, 
b and e, it is isomorphic to sG, contrary to assumption. Thus CyI b, e, c) 
is the four element antichain of (X, P). Thus no element of X except 
,fis below c in P, so that (c, j) has rank zero. Removal of (c, j) gives a 
6 element poset of dimension 3, (X*, P”). By our inductive hypo- 
thesis, this poset must be isulmorphic to Cs or its dual; since (X”, P”) 
has only one minimal element d not in the three element antichain of 
(X*, P”), this poset is isomorphic to the dual of CG. Thus y must be 
below a; e must be below x since it is not below a (and b is below a) 

and y and d must be incomparable. 
Note that a is comparable with y, c, f and b and that d is comparable 

with e and x, so that each element of (X, P) is incomparable with at 
most one of the elements of the chain (a, cl} . This removal of this 
chain gives a 6-element poset of dimension 3 by Theorem 2.9. However, 
this poset has an antichain tiI e, c, b) and no s!.x element poset of di- 
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mension 3 has width 4. Thi&orrtradiction completes the case in which 
(X, f) has a cover of rank zero. The constructions given here are il- 
lustrated in Fig. 3. (To avoid use of Theorem 2.9 we could remove 
other covers of rank 0 to find out all relations between c, f, x and y; 
however this avoidance makes the proof far more complex.) 

Now suppose that (X, P) has no covers of rank 0. Then, by Lemma 
2.8, we may assume (X, P) has two covers (x, y) and (w, z) with x sod 
w maximal such that x andy are incomparable with both w and z. Re- 
move these two covers to obtam a partially ordered set (X’, P’) on 
2n-4 elements with dimension n-2 (we use Lemma 2.6 and Hira- 
guchi’s theorem here). This poset is isomorphic to either C6 or S,,_ 4 
by Hiragu:hi’s theorem (and by dualizing P if necessary). 

Suppo~ that (A”, 1”“) is isomorphic to C6, labelled as in Fig. 1. Then 
since neither (G, c) nor (c, d) have rank 0, one element of {x, y, \v, z) 
must be above b and one element of {x, y, w, z) must be below b. Thus 
two elements of {x, y, VV’, zj are related ard neither one covers the 
other. This is impossible. Thus we may assume (x’, P’) is isomorphic 
to $a-4 0 

Suppose y IS minimal in (X, P). Then, by Lemma 2.4, 

p* = Pi& .Gtw} = Pip 

has dimension n- 1 and by induction (X*, P*j is isomorphic to S,n_ 2 
(since X has 10 or mere elements). Thus, x is above each minimal 
element of (.A”, P’) and z is below each maximal element of (X’, P’). 
Also z incomparable with each minimal element of (X’, P!) and x is 
incomparable with each maximal element of (X’, P’). Then z is also 
minimal in (X, P). We may repeat the argument just given replacing x 
and z with w and y to show that (X, P) must be isomorphic to S2,. We 
may therefore assume that neither y nor z is minimal in (X, P). If a 
maximal element t of (X’, P) is maximal in (X, 1P) and f’ is the minimal 
element of (X’, P’) incomparable with t, then Plx_ ft,J) has dimension 
n-l and by induction is isomorphic to S2n_2 (since X has 10 or more 
elements). In this case, an argument similar to the one given above 
shows that (X, P) is isomorphic to S,, . 

We are now left with the case in’which each maximal element of 
(X’,p) is below x or M’, and neither-y nor z is minimal. Since (x, y) 
is not a cover of rank zero, there is an element u above y in (X, P) 
which is not below X. (In fact, u is incomparable with something below 
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x.) However, 2 must be a maximal element of (X’, P’>, so that u is below 
w. However, in this case y is below w and that is impossible. Thus if 
(X, P) has no covers of rank zero (and has dimension n with 2n ele- 
ments), (X, P) is isomorphic to S,,_ Z. This completes the proof. 

This result does not completely solve the problem of determining all 
maximal dimensional partially ordered sets, for we hav : not considered 
partially ordered sets of size 2n + 1 having dimension n. It is not true 
for instance that a partially ordered set on 2n + 1 eleme;.ts has dimen- 
sion n if and only if it contains an n-dimensional subpose!. on 2n ele- 
ments. To see this, note that onthe seven element set 
C+ ~2, ~3, .Y 1, y2, y3, 0) the partial ordering P give11 by Xi&i and 
XiPO for all E has dimension 3. Another example is given in [ 1 ] . It would 
certainly be interesting to characterize the maximal dimensional partial- 
ly ordered sets on an odd number of elements. 
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