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Abstract. In this paper, we show that if a pariially ordered set has 2n elements and has dimen-
sion n, then it is iscmorphic to the set of n—1 element subsets and 1element subsets of a set,
ordered by inclusion, or else it has six elements and is isomorphic to a partially ordered vzt we
call the chevron or to its dual.

1. Introduction

In 1941, Dushnik and Miller [4] introduced the concept of the dimen-
sion of a partial ordering — the smallest number of linear orderings
whose intersection is the original partial ordering. They gave examples
of partial orderings of dimension # on a 2n element set. Their examples
consist of the n—1 element subsets and 1 element subsets of an n ele-
ment sei, ordered by inclusion. Their methods were combined with
Szpilrajn’s theorem [10] by Komm [8] to show that the set of all sub-
sets of an n element set also has dimension #. Dushnik and Miller also
showed that a partial orderiiig has dimension 2 if and only if there is a
partial ordering whose comparability relation is the incomparability re-
lation of the original partial ordering. Ghouila-Houri [5] and Gilmore
and Hoffman [6] proved theorems about the representability of graphs
as comparability graphs of partial orderings and Baker, Fishburn and
Roberts [1] related these theorems to Dushnik and Miller’s result to ob-
tain additional characterizations of partial orderings of dimension 2.

* Both authors were partially supported by the N.S.F. Advanced Science Seminar in Coumbina-
torial Theory at Bowdoin College in 1971 while doing the research for this paper.
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The Baker—Fishburn—Roberts paper contains an excellent literature
survey, many results about general dimension theory of partial order-
ings (for instance the theory of partial orderings of dimension » is not
finitely axiomatizable in first order logic), many good examples, addi-
tional results on partial orderings of dimension 2 and an explanation of
the relation of dimension theory to measurement theory and other
mathematical theories of interest to social scientists. The result that the
theory of partially ordered sets of dimension 7 is not finitely axiomati-
zable is especially interesting in light of Dilworth’s finite axiomatiza-
tion of distributive lattices of dimension # in his paper on decomposi-
tion of partially ordered sets into chains [3] . This characterization is
in Theorem 1.2 of Dilworth’s paper; to interpret this theorem in the
terminology used here, we need Ore’s remark [9] that the dimension
of a partially ordered set is the smallest number of chains such that the
partially ordered set is isomorphic to a subposet of a product of hat
number of chains.

The subject of this paper is slightly different. In 1951, Hiraguchi [7]
ccved that the dimension of a partial ordering of an # element set is
at most {{n]. The v:lue of this result is indicated by some of the com-

putations made in | |]. Recently, Bogart gave a considerably simpler
proof of this thecrem [2] and suggested that it would be of interest
to find those partial orderings on » element sets which have dimension
[(4n].

In this paper, we solve this problem for even n — we show that the
only “maximum dimensional™ partial orderings are the well known
ones, the Dushnik-Miller example mentioned above and the six element
chevron shown in Fig. 1 (and, of course, its dual). This example is
discussed in {11 This simple characterization, though not a finite ax-
iomatization, is striking where contrasted with the complexity of the
general theory of dimension described in [1].

DA T

Fig. 1. The maximal dimensional partial orderings on six elements,
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2. Basic concepts

We shall use the symbol §,, for the standard example of a maximal
dimensional partially ordered set — the set of all subsets of an # element
set with either 1 or n—1 elements, ordered by set inclusion. S¢ is the
first example shown in Fig. 1. We shall use the symbol Cg to denote
the six element chevron ordering which is the second orderirig shown
in Fig. 1.

Our proofs involve detailed examinations of covering pairs. We say
(a, b)is a cover or a covers b in a partial ordering P of a set X if a is above
b (i.e., (a, b) € P) and no element of X is between them (i.e., (@, ¢; and
(c, b) in Pimply a = ¢ or b = c¢). Following Hiraguchi, we say that a
cover (a, b) has rank 0 if each element above b is above each element
belov- a. Equivalently, each element covering b is greater than each
elem¢ nt covered by a.

By the height of a partially ordered set we mean the number equal
to one less than the maximum number of points in any chain of the
partially ordered set. By the width of a partially ordered set we mean
the cardinality of a largest antichain — i.e., the largest possible number
of elements in a set of pairwise incomparable elements. The symbol X
denotes a set partially ordered by an ordering P.

We shall use each of the following lemmas — proofs of them may be
founc in [7] or [2].

Lemma 2.1. If (X, P) is a partially ordered set with a maximum element
x (or minimum element x), then

dim P=dim Ply _ (x}.
Lemma 2.2.If X=X; U X, and P=P|y U Ply,, then
dim P = max(dim Ply, , dim Ply,).

Lemma 2.3. The dimensior: of a partially ordered set is less than or
equal to its width.

Lemma 2.4. If x is a maximal element of (X, P) and y is a minimal ele-
ment of (X, P), and x and y are incomparablz, then
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dimP< 1+dimPiy_{ ;] -
Lenmina 2.5. If (x, y) is a cover of rank zero in (X, P), then
dimP<1+dimPly_{ ,} .

Lemma 2.6. If the restrictions of P to Y and to Z are chairs and the
elements of Y are incomparable with the elements of Z, then

dimP<2+dimPly_y ,
dimPS2+dlmPlx_(yUz) .

This lemma is crucial in both the Hiraguchi proof and the Bogart proof
of the theorem that the dimension of a partial ordering on an » ¢le-
rent set is at most [4#]. We note that the 2 in the lemma cannot be
replaced by 1 — the removal of any two element chain from Sg (which
has dimension 4) gives a six element partially ordered set which is not
S¢ or the chevron Cg and thus has dimension 2.

The following lemma was used by Bogart to avoid some of the com-
plicated recornstructions of chains needed by Hiraguchi.

Lemma 2.7. Let Y C X and let Q be an extension of the restriction of
P to Y. Then the transitive closure of P U Q is a partial ordering.

This lemma is in essence a version of the basic lemma used in proving
Szpilrajn’s theorem. Bogart’s proof of Hiraguchi’s theorem made es-
seatial use of the next lemma. '

lpmma 2.8. A partially ordered set contains either a cover of rank 0
or a pair of covers such that the elements of one cover are incompar-
atle with the elements of the other. Further, a partially ordered set of
height 2 or more has 9 or more elements if it has no covers of rank 0
and we may assume that both covers contain a maximal element.

. In order to present tiie results of this paper in the simplest form pos-
sible, we examine a circumstance in which removal of a chain reduces
the dimension of a partially ordered set by at most one.
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Theorem 2.9. If C is a :hain (X, P) such that each element of X is in-
comparable with at mcst one element of C, then

dim (P <dmPly_c)+1.

Proof. Write Ply_c =1.; ™ ... N L; as an intersection of linear order-
ings. Fori > 1, let L; e a linear extension of the transitive closure of
P U L; (such a linear extension exists by Lemma 2.7 and Szpilrajn’s
theorem). From the o:dering L we wish to construct two other linear
orderings L] and L] such that the intersection of these orderings with
the remaining L; is P. Suppose C= {c,,...,c, } and (c;, ¢;, ;) € P for
i=1,2,...,n—1. Note that two elements of C cannot both be incompar-
able with the same element of X by the hypothesis of the theorem. Thus
the intersection of the set of elements incomparable with ¢; and the set
of elements incomparable with ¢; is empty if i #

We sketch the remiiinder of the proof informaily to avoid a notational
mess. We visualize a l'near ordering of a set as a vertica! list with larger
elements at the top. We construct the list L) as follows. At the top of
the list we put all elements incomparable with ¢, and all elements
larger than ¢; and orler them as they were ordered by L, , then place
¢, immediately below this group. We place elements smaller than ¢,
and larger than ¢, between c¢; and ¢, and order them by L. We next
place elements incomparable with ¢, and c5, and those below ¢, but
above c; between ¢, and ¢y and order them by L, . We continue in
this fashion, placing slements incomparable to c; above c; if i is odd
but below it if i is even. We construct L] by placing elements incom-
parable to ¢; below ¢; if i is odd and above ¢, if i is even, and then order-
ing each interval between c¢; and ¢;,; as L, orders that set.

Note first that L} and L] are extensions of P. If they were rot, an
ordered pair (x, y) would be in P with {y, x) in (say) L} . The only way
this could happen is if we placed y above c; and x below ¢; in our con-
struction. Thus y is incomparable with ¢; or above ¢; and x is incom-
parable with ¢; or below ¢; in P. (Here we are using the fact that each
element of X is incomparable with at most one element of P.) If y and
x are both incomparable with c¢;, they are ordered in L] in the same
way they are ordered in P, so that (¥, x) isnotin L. If y and x are
both comparabie with ¢;, then (¥, x) is in P, so this is impoessible. 1f y
is incomparable with ¢; and x is below ¢;, then x is not above y in P,
which is impossible. Finally, if x is incomparable with ¢; and y is above
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¢;. then x is not above y in P which is again impossible.

Now if (x, ) is in L, it is in cither L} or L. To see this, we need
only check the case in which x and ) are incomparable in P. Suppose
first that they are hoth comparable with each element of C. Then one
cannot be above 2ny element of C that the other is below, so they both
lie above c,, they both lie below c,, or they both lie between ¢; and
¢;., for some i. In this situation (x, ) is in both L} and LY. Suppose
now that only x is comparable with every element of C and y is incom-
parable with ¢;. Then y is below ¢; _, (unlessi = 1) and above ¢;y
(unless i = n). Thus (except in the special cases i = 1, n) x is between
¢;_; and c; or between ¢; and ¢;,;. Thus (x,¥) isin L or L. (Ifi=1
or n, a similar argument works.) Finally, if x is incomparable with ;
and y is incomparable with Cjp i and j differ by at most 1, since x is
below c; _; and above c;,; and y s below ¢;_; and above ¢;,,. Thus
(x,»)isin L) or Lj.

It follows that

P=LinLiNnLyyn.NL,

and the theoicin is proved.

3. Maia result

Theorem 3.1. If n > 3, the only partially ordered sets of dimension n
with 2n elements are the chevron Cg, its d:al and the standard max-
imal dimensioral partially ordered sets S,,.

Proof. The proof is inductive. It is known that the only six element par-
tially ordered sets of dimension 3 are the chevron Cy, its dual, and the
standard example S¢ (shown in Fig. 1). We outline a method of proving
this fact. Since the width of a poset of dimension 3 must be at least 3
and since a six element poset with dimension 3 has at least two max-
imal elements and two minimal elements (by Lemmas 2.1 and 2.3 and
Hiraguchi’s theorem), we need consider only posets of height 1 and 2.
By Lemma 2.2 and Hiraguchi’s theorem we need only consider those
partially crdered sets whose Hasse diagram is conniected.

A case by case argument shows that if the pcset has height 1 and
dimension 3, then it ic isomorphic to Sg. If the poset has height 2 and
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has 3 maximal elements, 2 m:nimal elements and one element neither
maximal or minimal it is easy to verify that it has dimension 2. Other-
wise, a maximum antichain must contain two elements not maximal

or minimal and one maximal or minimal element. Of the several partial-
ly ordered sets of this type, it is easy (but tedious) to verify that only
C¢ and its dual have dimension 3.

Now suppose (X, P) is a 2n element partially ordered set of dimen-
sivn n and n > 3. We show first that if (X, P) has height 1, then it is
isomorphic to §,,. To see this, note that if every maximal element is
above every minimal element in a poset of height 1, then the poset
has dimension 2. Thus there is a maximal element x of (X, P) incom-
parable with a minimal element y of (X, P). By Lemma 2.3 and Hira-
guchi’s theorem, ’

dim (Ply_{x,y})=n-1.

We may assume inductively that (X—{x,y }, Piy_ fx.y }) is isomorphic
to S5, _,. Thus if x is above each minimal element other than y and y
is below each maximal element other than x, then P is isomorphic to
S, . However, each other maximal element of (X, P) is paired with
precisely one minimal element with which it is incomparable. By re-
moving one of these pairs from (X, P), we obtain a partially ordered
set isomorphic to £, _, as above, so that x is above each minimal
element but the one in the pair removed and y is below each maximal
element but the one in the pair removed. Removal of one other pair
shows that x is above every minimal element except y and y is below
every maximal element except x and thus (X, P) is isomorphic to S,,,.
Thus we may assume that n > 3 and that the height of P is greater than
1.

Now, either (X, P) has a cover (x, y) of rank 0 or (X, P) has more
than 9 elements and has two covers (x, y) and (z, w) with toth z and
w incomparable with both x and y (by Lemma 2.8).

Suppose (X, P) has a cover {x, y) of rank 0. Then

4 =P|X~ .} =P|X'
has dimension n—1 by Lemma 2.5 and Hiraguchi’s theorem. Thus by

the inductive hypothesis (X', P') is either Cg, its dual, or S5, _,. If
(X', P)isS,,_,, we may assume that y is not minimal in (X, P). To
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height 1 unles x is above SOni¢ maxlmul element z of Sz,, 2. Slnce no
other element of (X, P) can be above z, (x, 2) is a cover of rank zero and
2 is not minimal. Thus we may replace y by z. Now, by Lemma 2.1 and
Hiraguchi’s theorem, x cannot be above each maximal element of

(X', P), so that there is a maximal element # incomparable with a min-
imal element v of (X, P) and neitheru orvisin {x,y}. Thus by Lemma
2.4 and Hi chi’s theorem

Q
Sy

y
isomorphic to C.. Thus
ment ¢ of height 1. Since x must be the element of (X * P*) of height
2 and x covers y, ¢ has height 1 in (X, P) and thus must also be a max-
imal element of (X', P'). However, each maximal element of C¢ is com-

parable with each minimal element — and thus ¢ is above every ele-

PR I U R — =t -u

ment that u is above in (X', P'). This means that (X', P') is not iso-
morphic to 86 , a contradiction. This series of constructions is illustrat-

Now assume that removal of any cover of rank 0 from (X, P) gives
a poset isomorphic to (’g. (By considering the dual of 2 if necessary
we may assume that we obtain Cg and not its dual.) Suppose we re-
move a cover (x, y) of rank 0 from (X, P) to obtain a poset (X', P) =

Ce as labelled in Fig. 1. By Lemma 2.3, (X, P) must have an antichain

Lo PROS e r 1 :

ts; thus either {x, b, e, ¢} or {y, b, e, ¢} is an antichain.

Loy |~ W\o
v
Add x,y ; deiete u,v |
£
v X
' Add R
LT 2l SR
t O ——re _
Delete v v %
Xy
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x| Deleteax,y Q; Add oy 2
i — g, :
d ¢ in biggest D?
y

antichein

Add x,y ify Delete &,c
in biggest
antichain

Dclon c,f

X

Replace c,f

Fig. 3.

If {x, b, e, ¢} is an antichain of (X, "), then no element of X besides a
is above ¢, so that (g, ¢) is a cover of rank zcro. However, then

P =P|X—-{a,c} =PlX'

has dimension n—1 = 3. Since (X', P') has three maximal elements, x,

b and e, it is isomorphic to Sg, contrary to assumption. Thus {y, b, e, c}
is the four element antichain of (X, P). Thus no element of X except
[fis below ¢ in P, so that (c, f) has rank zero. Removal of (c, f) gives a

6 element poset of dimensic:n 3, (X*, P*). By our inductive hypo-
thesis, this poset must be iscmorphic to Cy or its dual; since (X*, P*)
has only one minimal element d not in the three clement antichain of
(X*, P*), this poset is isomorphic to the dual of C;. Thus y must be
below a; ¢ must be below x since it is not below a (and & is below a)
and y and d must be incomparable.

Note that a is comparable with y, ¢, f and b and that d is comparable
with e and x, so that each element of (X, P) is incomparable with at
most one of the elements of the chain {a, d} . Thus removal of this
chain gives a 6-element poset of dimension 3 by Theorem 2.9. However,
this poset has an antichain {y, e, ¢, b} and no six element poset of di-
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miension 3 has width 4. This coutradiction completes the case in which
(X, P) has a cover of rank zero. The constructions given here are il-
lusirated in Fig. 3. (To avoid use of Theorem 2.9 we could remove
other covers of rank 0 to find out all relations between ¢, f, x and y;
however this avoidance makes the proof far more complex.)

Now suppose that (X, P) has no covers of rank 0. Then, by Lemma
2.8, we may assume (X, P) has two covers (x, y) and (w, z) with x and
w maximal such that x and y are incomparable with both w and z. Re-
move these two covers to obtaia a partially ordered set (X', P') on
2n—4 elements with dimension #—2 (we use Lemma 2.6 and Hira-
guchi’s theorem here). This poset is isomorphic to either Cg or S,,_,
by Hiraguchi’s theorem (and by dualizing P if necessary).

Suppose that (X', ') is isomorphic to C¢, labelled as in Fig. 1. Then
since neither (g, ¢) nor {c, d) have rank 0, one element of {x, y, w, z}
must be above b and one element of {x, y, w, z} must be below b. Thus
two elements of {x, v, w, z} are related ard neither one covers the
other. This is impossible. Thus we may assume (X', P') is isomorphic
to S In~4-

Suppose y is minimal in (X, P). Then, by Lemma 2.4,

P*=Piy_ yw} =Plx»

has dimension n—1 and by induction (X*, P¥) is isomorphic to S,,_,
(since X has 10 or more elements). Thus, x is above each minimal
element of (X’, P') and z is below each maximal element of (X', P).
Also z incomparable with each minimal element of (X', P') and x is
incomparable with each maximal element of (X', P"). Then z is also
minimal in (X, P). We may repeat the argument just given replacing x
and z with w and y to show that (X, P) must be isomorphic to Son- We
may therefore assume that neither y nor z is minimal in (X, P). If a
maximal element ¢ of (X', P') is maximal in (X, P) and # is the minimal
element of (X', P') incomparable with ¢, then P| x-{tr'} has dimension
n—1 and by induction is isomorphic to S,,_, (since X has 10 or more
elements). In this case, an argument similar to the one given above
shows that (X, P) is isomorphic to Syp-

We are now left with the case in ‘which each maximai element of
(X7, P') is below x or w, and neither y nor z is minimal. Since (x,y)
is not a cover of rank zero, there is an element u above y in (X, P)
which is not betow x. (In fact, « is incomparable with something below
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x.) However, ¥ must be a maximal element of (X, 7}, so that u is below
w. However, in this case y is below w and that is impossible. Thus if

(X, P) has no covers of rank zero (and has dimension n with 2n ele-
ments), (X, P) is isomorphic to S,, _.. This completes the proof.

This result does not completely solve the problem of determining all
maximal dimensional partiaily ordered sets, for we hav': not considered
partially ordered sets of size 2n + 1 having dimension n. It is not true
for instance that a partially ordered set on 2n + 1 eleme;.:s has dimen-
sion # if and only if it contains an n-dimensional subpose: on 2n ele-
ments. To see this, note that on the seven element set
{x{,x5,%3,¥1,¥5.¥3,0} the partial ordering P givei by x,Py; and
x;PO for all i has dimension 3. Another example is given in [1]. It would
certainly be interesting to characterize the maximal dimensional partial-
ly ordered sets on an odd number of elements.
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