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In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem
is a matrix analogue of the classical problem of finding a svstem of distinct representatives
{(transversal) of a family of sets and relates closely to an extremal probiem involving 1-factors
and a long standing conjecture in the dimension theory of partially ordered sets. For an integer
n =1, let mn denote the n element set {1,2,3, ..., n}. Then let A be a k Xt matrix. We say tiat
A satisfies property P(n, k) when the following condition is satisfied: For every k-tuple

(x1, X3, ..., 5 JEDX, there exist k distinct integers )y, j5,...,J so that x;=q; for i=

1,2,..., k. The minimum vzlue of t for which there exists a k X ¢t matrix A satisfying property
P(n, k) is denoted by f(n, k). For each k=1 and n sufficiently large, we give an explicit formula
for f(n, k): for each n=1 and k sufficiently large, we use probabilistic methods to provide
inequalities for f(n, k).

1. Introduction

Let ¥ ={A,;: 1<i=<k} be an indexed family of sets. A set S={s;.s5,..., 5} of
k distinct elements is called : system of distinct representatives (SDR) of ¥ when
s,;€A fori=1,2,...,k The following well-known theorem of P. Hall [2] gives a
necessary and sufficient condition for the existence of a SDR cf a family #.

Theorem 1 (Hall). A family ={A;: 1<i<k)} has a SDR if and only if ||J 4|=
|| for every subfamily $< %.

In this paper we consider a combinatorial problem involving the determination
of systems of distinct representatives for families of sets formed by selecting
subsets of the entries in the rows of 2 matrix. For an integer n =1, let m denote:
the n element set 1,2,3,...,n}. We refer to the elements of m as letters;
consequently, it is natural to refer to a k-tuple (x4, X2, X3, - . -, X)) from n* as a
word and use the notations x and x;X,x; * * * X; for this word. When x,x,x3* - * X
is a word and 1<i;<i,<---<i, <k, we call x;, x; x;, - - x, a subword. We then
say that the k Xt matrix A =(a;) satisfies property P(n, k) when the following
condition holds:

For every word x;x,X;- ‘- X €m®, there exist k distinct integers (columns)
f1s J2s §3s « - - » i SO that a; =x; for i=1,2,3,..., k.
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This definition may be rephrased in terms of systems of distinct representatives
as follows. Let X=x,X,X3 - x5 €mn* and then let F(A)={A;:1<isk} be
defined by A, = {j: a; = x;}. It is easy to see thet A satisfies property P(n, k) if and
only if F.(A) has a SDR for every xen*.

Example 2. A satisfies P(5, 2) and B satisfies P(4, 3).

1 2 4
as(t 123 B=(3 5 ]
4 3

3
4
2 3 3 4

3 4
4 4)
i 2 4 O
Note that a matrix A may satisfy P(n, k) yet contain entries which are not

elements of m. We adopt thc convention of using an asterisk to denote such
entries.

W b

Example 3. A satisfies P(7, 2).

A‘(112344567*)
"\1 233 4566 * 17 O

The minimum value of t for which there exists a k Xt matrix A satisfying
property P(n. .) is denoted by f(n, k). The remainder of this paper is devoted to
the study of this function and related combinatorial problems. For each k=1, we
will provide an explicit formula for f(n, k) which holds for n sufficiently large. The
determination of the least value of n for which our formula holds leads to an
interesting extremal problem involving 1-factors. On the other hand, it appears
that a precise determination of f(n, k) is not possible when k is relatively large
compared to n. In this case we use probabilistic methods to determine a nontrivial
upper bound on f(n, k).

We begin our study of f(n, k) with some elementary inequalities and a complete
determination of f(n, k) when n<3.

Theorem 4. fin,k)=k+n—1 for each n=1, k=1.

Proof. Suppose that f(n, k)=t and let A be a kXt matrix satisfying property
P(n, k). For '=1,2,3,...,k, choose a letter x,em so that x;#a; for each
i=1,2,3,...,n—1. Then let S ={j, i, j3, . . . , i} be a SDR for lie family F,(A)
where X =x,x,X3 * - * X,.. Since x; # a; for each i=1,2,3,...,k, we observe that
Scin,n+1,...,¢t}. Since |S|=k, we couclude that k<t—n+1, and thus
fn,k)=t=k+n—-1.

Lemma 5. f(n, k)y<nk for each n=1, k=1.
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Proof. The following k X nk matrix satisfies P(n, k) and thus f(n, k)<nk

/1 2 3 e Mk kR R eee % * ok ok eee  #\
* ok K « 1 2 3 n * K % *
* & ok * Kk kK * * k% *
% ok %k eee k Kk Kk Kk ees & 1 2 3 -+ n 0

Corollary 6. f(n, 1)=n for every n=1 and f(1, - =k for every k=1.
Lemma 7. f(2,k)=k+1 for every k= 1.

Proof. We have f(2, k)=k +1 by Theorem: 4. On the other hand, the following
k x(k + 1) matrix shows that f(2, k)<k+1.

1 2 % % % -+ % %
1 1 2 = % .- % =x
111 2 % «-- % =%
11111 .- 12 O

Lemma 8. f(3,k)=k+2 for every k=1.

Proof. Theorem 4 implies that f(3, k)=k+2. On the other hand, the following
k X (k +2) matrix shows that f(3, k)<k+2.

123333 333
1 2 333 333
111233 3 33
111123 3 33
111111 ---123 (]

If A is a k Xt matrix satisfying property P(n, k), then there are three elemen-
tary operations which may be performed which produce a k Xt mairix A* also
satisfying P(n, k).

P e
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Lemma 9. Let A be a k X t matrix satisfying P(n, k). If A* is obtained from A by
any of the following three operations, then A* also satisfies P(n, k).
(i) Permute the rows of A.
(i1) Permute the columns of A.
(iii) Let o be a permutation of m and i an integer with 1<i=<k. Then permute the
entries in the ith row of A by the rule a¥ = o(ay).

Note that there is no analogue for the operation in (iii) of Lemma 9 for
columns.

Now let A be a k Xt matrix, xem, and i an integer with 1.=<<i=<k. We then
define the multiplicity of x in the ith row of A, denoted m(x, i, A), as the number
of times x appears in the ith row of A. Note that if A satisfies P(n, k), then
1=m(x, i, A)<t for each xen and every integer i with 1=<i<k. A letter x is
called a single in row i when m(x, i, A)== 1. Similarly, we will speak of doubles,
triples, . . ., and use the generic term multiple for a letter whose multiplicity is at
least two.

Lemms 10. Let A be a k Xt matrix satisfying P(n, k). Suppose a;; and a;, are
distinct entries of A with a;; a single in row i; and a,; a single in row i,. Then
1 #ja-

i (717]

Proof. The conclusion is immediate when i; =i,. Now suppose i, #i, and let
X = X1X3X3, - - X, be any word in which x; =a;; and x;,=a;,;,. Choose a SDR
S={si, 52,..., 5} for the family #,(A). Then it follows that 5, = j, and s, = j, and
thus j, #j,. O

We use the terminology ‘‘singles do not overlap” to indicate that the condition
in lL,emma 10 is satisfied.

Theorem 11. f(n, k)= [2kn/(k + 1)] for every n=1 and every k =1.

Pmof. Suppose fin, k)=t and let A be a k Xt matrix satisfying P(n, k). For each

=1.2,...,k let m; be the number of letters in m which are singles in the ith
row, and let m=min{m;: 1 <i<k}. Each row of A contains at least n —m letters
in » which are multiples. It follows that t=m+2(n—m)=2n—m, and thus
m =2n—t On the other hand, since singles do not overlap, we know that
t=my+my+rm=km=k(2n—t)=2kn - k. Therefore (k+1)t=2kn and
the desired result follows since 1 is an integer. [1

The preceding inequality for f(n, k) was derivec solely from the fact that singles
do not overlap in matrices which satisfy P(n, k). Since there are more stringent
requirements which such matrices must satisfy, one might expect that this in-
equality is quite weak. However, it will turn out to be suprisingly sirong.
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2. Graphs, cycles, and 1-factors

‘We begin this section by developing an elementary characterization of a family
% of sets which does not have a SDR in the special case where 1<|A|<2 for
every A € . We say that & is critical when % is a family of nonempty sets of size
at most two, # doces not have a SDR, but every nonempty proper subfamily of %
has a SDR.

Example 12. The following families are critical.

(a) For each m=0, let 9(m)={1}. {1,2}, {2,3}, {3,4},...,{m,m+1},
{m+1}}.

(b) For each m=1, p=1, with m=p, let E(m,p)={{1}, {1,2}, {2,3},...,
{m,m+1}, {p, m+1}}.

(c) For each m=1, p=1, q=1, with m=p and m=q, let F(m, p, @) ={{1. 2},
{2,3}, 3,4},....{mym+1}, {1,m+1-q}, {p,m+1}}. O

We now show that the three critical families constructed in the preceding
example are essentially the only critical families (up to relabeling the elements in
the sets). The following elementary result, which follows immediately from Hall’s
theorem will prove useful in cur argument.

Lemma 13. Let & be a critical feamily and let a € | j F. Then there exist distinct sets
A, AeF sothatac A, and a€ A,.

We will also find it convenient to use the concept of paths and cycles. We call
P(m)={{1,2}, 12,3}, {3,4},...,{m,m+1}} a path of length m and €(m)=
{1,2}, {2, 3}, {3, 4}, ..., {m, m+1}, {1, m+ 1} a cycle of length m. Note tnat paths
and cycles have SDR’s.

Theorem 14. Let F be a critical family.
() If # contains two singletons, then (after relabeling) ¥ = 2{(0).
(ii) If F contains one singleton, then there exist unique integers m,p =1, with
m =p, so that (after relabeling) & = €(m, p).
(iii) If F contains no singletons, then there exist unique integers m, p, q =1, with
m=p and m =q, so thai (after relabeling) ¥ =F(m, p, q).

Proof, If every set in & is a singleton, then it is clear that & = 9(0), so we may
assume that & contains at least one doubleton. Now let P#(m)={{1,2}, {2, 3},
{3,4},...,{m, m+1}} be a path of maximum length contained in #. By Lemma
13 we may choose sets A;, A,eF—P(m) so that 1€ A; and m+1e.4,. Note
that the maximality of m requires that A, UA,<{1,2,...,m+1}.

Suppose first that A, # A,. If A, and A, are both single:ons, then F = D(m). If
one of A, and A, is a singleton and the other is a doublston, say A; ={1} and
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A,={p, m+ 1} where 1<p=<m, then ¥~ &(m, p). f A, and A, are both double-
tons and A,={1,m+1—q} and A,={p, m+ 1}, then F=F(m, p, q).

Now suppose that A; = A,. Then A;={1, m+1}. Let 4= P(m)U{A}=%€(m).
Since ¢ has a SDR, ¥ is a proper non-empty subfamily of %, and it follows that
(U 9N(U (F-9) # 3. We may therefore assume without loss of generality that
there exists a set A} % —% so that 1€ A. Since A} # A%, we are back in the
preceding case and the proof is complete. [

We now turn our attention to the problem of determining f(n, k) when n=0
mod k + 1. Let n =s(k +1); then by Theorem 11, we know that f(n, k)=2ks. We
suppose thai f(n, k) =2ks and investigate the implications of this equation.

Lemma 15. For an integer k =1, let A be a k X 2ks matrix satisfying P(s(k + 1), k).
Then each row of A contains s letters of n which are singles while the remaining
n—s letters are doubles.

Proof. Following the notation used in the proof of Theorem 11, let m, denote the
number of singles in the ith row of A, and let m =min{m;: 1<i<k}. Then we
note that m=2s(k+1)—2ks =2s and 2ks=m;+m,+- - - +m = km. Therefore,
2ks=km, 2s<=m, and thus m =2s. Since 2ks=m+my+---+m, =2ks and
m; =m for each i, we conclude that m; =m =2s foreach i=1,2,3,...,k.
Now consider an arbitrary row of A. We know that 2s of the entries in this row
are singles. Withou’ loss of generality, we may assume that the letters
Y1» Y25 - - - » Yn—2s are multiples in this row with multiplicities (respectively)
di,d,,...,d,_,. 1t follows that 2ks=2s+d;+d,+ - -+d, >, =25+2(n—~2s)=
25(k+1)—2s=2sk, and thus d;=2 for i=1,2,...,n-2s. O

Now suppose that A is a k X 2ks matrix satisfying P(s/k +1), k). We may use
Lemmas 9, 10, and 15, to permute the columns of A so that for each i=
1,2,...,k, the entries a; are singles in row i and column j=(i—1)2s+r where
1=<r=2s. The matrix A is then partitioned into k blocks B,, B,,..., B,, with
each block consisting of 2s consecutive columns of A. These blocks are called
single blocks.

1 2 3 --. 25
1 2 3 --- 2

B, B,

>

\

When A is a k X2ks matrix satisfying P(s(k +1), k) and A has been trans-
formed inwo this form, we say that A is in canonical form.
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Lemma 16. Let A be a canonical k X 2ks matrix satisfying P(s(k + 1), k) and let
i1, i» be integers with 1<i,, i, <k and i, # i,. Then let x be a letter in row i, of block
B;,. Then x is a double and the other occurrencz of x in row i, of A is also in block
B,.
Proof. The fact that x is a double is immeciate. Now suppose that the other
occurrence of x is in block B, where i;# 7, Since A is in canonical form and x is
a double, we note that i; # i,. Choose the columns j,, j, in A so that q;,;, =x=
4;,;,- Then let y=y,;y,y3 * * * y, be any wora in which y; = a;, y;,, = x, and y,, = a;,,.
We observe that F,(A) contains {{j,}, {j1. j=}, {ij}} as a subfamily, but this subfam-
ily (after relabeling) is the critical family £(1). This is a contradiction and
completes the proof. [

When a letter x is a double in some row of a matrix A, it is natural to refer to
the two occurrences of x in this row as mates. In view of Lemma 16, we may also
refer to the actual positions where x appears as mates since the symbol which
occupies these positions is arbitrary.

We next show how the preceding development will allow us to characterize
those integers s for which f(s(k +1), k) = 2ks. First we want to extend the concept
of canonical form to arbitrary matrices. We say that a k X2ks matrix A (which
may or may not satisfy P(s(k+1), k)) is in canonical form when it satisfies the
foliowing properties.

(i) Foreachi=1,2,...,k and each r=1,2,...,2s, the letter r is a single in
row i and column (i—1)2s+r. Furthermore the letters 's+1,2s+2,...,na &re
doubles in each row of A.

(ii) For each i,, i, with 1<i,, i<k and i, #i,, and for each letter x which
appears in row i, of block B, the other occurrence of x in row i, is also in B,
i.e., mates occur in the same single block.

Theorem 17. Let A be a cononical k X 2ks matrix. Then -. satisfies P(n, k) if and
only if there is no word X=Xx,x, - * * X, in n* for which %,(A) contains a cycle.

Proof. Suppose first that there is some m=>1 and a word x=x;x, " * - x; so that
(after relabeling) %.(A) contains the cycle €(m)={j;,ix}, iz sk -+ >
{ivs fme1ds 41> jm+1}}. Then there exist distinct integers iy, ip, ..., 4,1 SO that
x =a, =a,, for a=1,2,...,m and x,_,,=a_., , =4a,.,,- It follows that
there is a single block B; so that the columns f,, ja, . . ., jm+1 Of A occur in dlock
B,. Furthermore i#i, fora=1,2,...,m+1. Nowlety=y,y, " * y, be any word
for which y, =x; for a=1,2,...,m+1 and y; = a; . Then F,(A) contairs the
critical family €(m, 1)=%(m)U{{j;}} and we conclude that A does not satisfy
P(n, k).

Conversely, suppse that A does not satisfy P(n, k). Then there exists a word
X=X;X " X so that F,(A) contains a critical subfamily 4. Since each critical
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family €(m, p) and F(m. p, q) contains a cycle, we may assume without loss of
generality that $=2(m)={j,}, {j1. iz} Uzish - - - » {ims fm+1}s {im+1}}. Then choose
distinct integers io, iy, iz, . - . , im+1 SO that X, =@y, X ., =@ .j..» a0d X, =a;; =
a,,. for a=1,2,...,m. Then we conclude that columns j, and j,.,, for
a=1,2,...,m, belong to the distinct single blocks B: and E,; , which is
impossible. The contradiction completes the proof. [

We will find it convenient to provide a graph theoretic interpretation of the
preceding result. Recall that a 1-factor F of a graph G =(V, E) is a partitioning of
the vertex set V into 2-element subsets so that each subset in the partition is an
edge in E. Now suppose that A is a cononical kXx2ks matrix satisfying
P(s(k+ 1), k) and let iy be an integer with 1=<iy,=<k. Then let G be a complete
graph with vertex set V =(vy, 05, ..., Uy}. For each i with 1<i<k and i#i,, we
define a 1-factor F, of G by F, ={{j,, j.}: there exist integers js, j, and a letter
xen so that a; =j,, @ =J, and a; = a,; =x.} Then let G*=(V, E¥) be the
subgraph of G comnsisting of those edges which belong to at least one 1-factor in
the collection {F;: 1<i<k, i#i,}. We note that G* has s(k—1) edges since it
follows that if distinct 1-factor, have a common edge, then there exists a word x
so that %, contains the cycle €(2). Furthermore, we conclud: from Theorem 18
that G* does not contain a cycle in which each edge com~s from a distinct
1-factor. Conversely, if G =(V, E) is a complete graph and Fy, £, ..., F,_, are
edge disjoint 1-factors of G so that G does not contain a cycle in which each edge
comes from a distinct 1-factor, then we may employ these 1-factors to construct
each of the singie blocks of a canonical k X 2ks matrix satisfying P(s(k +1), k).
We have therefore established the following result.

Theorem 18. f(s(k+1), k)=2ks if and only if there exist k—1 edge disjoint
i-factors of a complete graph G on 2s vertices so that G does not contair a cycle in
which each edge comes from a distinct 1-factor.

Example 19. Let s=3 and k =4 and consider the following 4 X 24 matrix which
satisfies P(15,4".

u

123456310 11 12 10 11 12115 13 13 14 14 15} 7 7 8 8 9 9
779%58¢9:1 2 3 4 5 6113 14 15 13 14 15: 2 10 10 11 11 12
$7 788090101 11 11 12 121 2 3 4 5 65131415131415
7897 89112 10 10 11 11 12:13 13 14 14 15 151 1 2 3 4 5 6

The first single block of this matrix produces th-ee 1-factors of a complete graph
on 6 vertices (see Fig. 1). O

In view of these results, it is natural to define the combinatorial function g(s) as
the largest integer p for which there exist p edge disjoint 1-factors of a complete
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Fig. 1.

graph on 2s vertices so that G does not contain a cycle in which each edge comes
from a distinct 1-factor.

Example 20. It follows immediately from Turan’s theorem that g(s)<s for if
g(s)>s, then there are sg(s)>s?>=(2s5)%/4 edges of G which belong to the
1-factors. Therefore G contains a triangle each of whose edges comes from a
1-factor, but these 1-factors are necessarily distinct. Note that from Example 3,
we have g(3) =3, but it is easy to show that g(4) =3 so that this 11equality is not
best possible. [

Lemma 21. Let F, F,, ..., F, be 1-factors in a complete graph G on 2s vertices so
that G does not contain a cycle in which each edge comes from a distinct 1-factor.
Then let G* be the subgraph of G consisting of those edges which come from these
1-factors. Then G* does not contain a K, 4.

Proof. Suppose G* contains a K, 4 labeled as in Fig. 2. Without loss of generality
we may assume that {a, x;}eF, for i=1,2,3,4. Now consider the 4-cycle
{a, x;, b, x,}. We must either have {b, x,} € F, or {b, x,}€ F,. If {b, x,} € F;, consider
the 4-cycle {a, x,, b, x3}. We must have {b, x;}€ F,, but this implies that the
4-cycle {a, x,, b, x,} has edges from distinct 1-factors. A similar argument holds
when {b, x,}e F,. O

Fig. 2.
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Theorem 22. g(s)<|-2++v1+8s].

Proof. Let g(s)=p and let F, F,, ..., F, be edge disjoint 1-factors of a complete
graph on 2s vertices so that G does not contain a cycle in which ¢ach edge comes
from a distinct i1-factor. Then let G* be the subgraph of G consisting of those
edges contained in the 1-factors. Note that G* is a regular graph of degree p.
Choose an arbitrary vertex vo€ G and let vy, v,, ..., v, be the neighbors of v,.
Note that no two vertices in the set {v,, v, ..., v,} are adjacent since G* does not

contain a triangle. Now let v,,,, V.2, .. ., U5,-; be the neighbors of v, other than
vo. Sir .« G* has no K, ,, v, has at least p~3 aeighbors which do not come from
the set {vg, vy, ..., Vy,—1}. Lubel these “ertice, vy, Vaps1s . - - 5 U3p—4. Similarly, v,

has at least p—5 neighbors which do not come from the set {vy, v;,. .., Us,_4}.
LLabel these vertices v3,_3, V3p_2, . . ., Usp—o. Continuing in this fashion, we con-
clude that G* must contain at least 1+p+(p—1)+(p—3)+(p—5)+- - - vertices,
and thus p<|-2+v1+8s|]. O

Corollary 23. g(-)=|1+log, s].

Proof. Let p=:+log, s}. For each integer i=1,2,..., p, let F; be the 1-factor
on{l,2,...,2s} defined by F, ={{j,j+2' —1}: 1<j=<2s5-1, j odd, with j+2' -1
interpreted cyclically}. Suppose that G* contains a cycle vy, v, ..., v, of length
m so that each of the edges {v, v;,,}, for i=1,2,...,m, and {v,, v,,} come from
distinct 1- factors. Since each edge consists of an odd integer and an even integer,
we know that m is even, say m=2q. Now suppose that {v, v, }€F,,
for i=1,2,...,m-1, and {v,,v,}eF, . Then it follows (2*:~1)—(2%:~1)+
(2%—-1)—(2%—1)+-+ -~ (2% ~ 1) =0 which is impossible.

Although we have not been able to obtain better inequalities for g(s), we rote
that we have at least proved the following resuit.

Corollary 24. For each k=1, there exists a constant s, so that if s=s, and
n=s(k+1), then f(n, k)= [2kn/(k +1)] = 2ks.

Hereafter, we will use the short phrase “the cvcle condition is satisfied” to
mean that a particular collection {Fy, F,, ..., F,} of 1- factors of a graph (equival-
ently, locations for mates in rows of a matrix) satisfies the hypothesis given in
Lemma 21 and Theorem 22, specifically that the graph determin.d by the edges
in these 1-factors does not contain a cycle in which the edges come from distinct
1-factors.

We now turn our attention to the general problem of determining f(n, k) when

n is large compared to k. Surprisingly enough, most >f the work has already been
done.

Theorem 25. For each k=1, there exists a conctant n, so that if n=n, and
n=s{k+1)+r where 0sr<}(k+1), then f(n, k)= [2kn/(k +1)] = 2ks +2r.
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Proof. The case r=0 was treated in Corollary 24, so we may assume that
0<r<i(k+1). Also note that the conclusion holds for all values of n when k =1
or k=2, so we may assume that k =3. We observe that [2kn/(k + 1)] =2ks +2r
so that f(n, k)=2ks+2r. To show that f(n, k)<2ks+2r we simply construct a
k x{(2ks+2r) matrix A satisfying P(n, k). We assume that k —1<g(s) and that
k—1<g(-+r).

We consider the matrix A as being partitioned into k+1 blocks
By, B,, ..., By,. Each of the blocks B,, B,, ..., By is called a single block and
contains 2s columns of A. Block B; contains the first 2s columns of A, B,
contains the next 2s columns, etc. Block B, ., contains the last 2r columns of A
and is called the “dump”.

Foreachi=1,2,...,k, the symbols 1,2,...,2s are singles in rwo i of A and
occur consecutively in single block B;. Each of the remaining n —2s symbols of n
will be a double in every row of the matrix A so that in orde’ to complete the
construction of A, it suffices to describe the location of mates. Blocks
B,, B,, ..., B,_, are constructed as in the proof of Theorem 18, i.e., the location
of mates in one of the rcws in these blocks (except the row of singles) is viewed as
a 1-factor chosen so that the cycle condition is satisfied. Note that we have
assumed that k —1=<g(s) so that this construction is possible. Also note that for
eachi=1,2,...,k—2, the symbols {(i —1s+2s+j: 1<j=<s} are doubles in each
row of block B; other than row i.

We need only construct the blocks B,_;, By, and B, ;. We begin by placing the
letters n—2r+1, n—2r+2,...,n in the first 2r position 1n the last row of B, _;.
Similarly, we place these same letters in the last row of B, ;.

To complete the coustruction of B, _,, we choose locations for mates in the first
k —2 rows of B, _, and the last 2s — 2r positions in row k of B, _. so that the cycle
condition is satisfied. Note that we permit ihe mate of a letter in block B, to be in
block By .-

In order to conclude that the matrix we have constructed satisfies P(n, k), we
must show that no %, contains a critical subfamily. To the contrary, suppose that
xen* and that ¥, contains a critical subfamily %. Since singles do not overlap in
A, 7 2(0). Since the mate of a double in a row in B; is also in B; for
i=1,2,...,k—1, and the mate of a double in a row in B, UB,,, is also in
B, UB,.,, it follows that & # @(m) for every m = 1. On the other hand, since the
cycle condition is satisfied, ¥ cannot be one of the critical families £€(m, p) or
%(m, p, q); and with this observation we have completed the argument that A
satisfies P(n, k). Thus f(n, k):<2ks+2r=[2kn/(k+1)] and the proof of our
theorem is complete. [

Theorein 26. For each k=1, there exists a constant n, so that if n=n, and
n=s(k+1)+r, where 3(k+1)ssr<k—1, then

f(n, k) =1+ [2kn/(k +1)| =2ks+2r.

Proof. Note that when n=s{k+1)+r and ik+1)sr<k-1, we have
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[2kn/(k+1)] =2ks+2r—1, so that f(n, k}=2ks+2r—1. Suppose first that
f(n, k)=2ks+2r—1, and let A be a k x(2ks+2r—1) matrix satisfying property
P(n, k.

Then it follows that each row of A contains at least 2n —(2ks+2r—1)=2s+1
singles. Since k(2s+2)=2ks+2k>2ks+2r—1, we may assume that the first a
rows (where a >0) of A contain exactly 2s+ 1 singles, and the last k — o rows of
A contain at least 25 +2 singles. Note that 2s+1+(k—1)(2s+2)=2ks +2k—1>
2ks+2r—1 so that « =2. We may then assume that A has been partitioned into
blocks B,, B,, ..., By, B,, with the blocks B,, B,, ..., B, being singie blocks,
having single letters in row i of bleck B; for i=1,2,...,k, and By, be the
dump. We also assume that B,, B,,..., B, each contain 2s+1 columns and
B,.1, Bo+2, . .., Be each contain at lzast 25 +2 columns.

Since 2s+ 1 is odd and no %, can contain the critical subfamily & (1), it follows
that foreach i=2,3, ..., o, there is at lcast one double in the first row of A with
one appearance in B; and the other in the dump. This requires that the dump
contain at least —1 columns, and thus A must contain at least a(2s+1)+
(k—a)2s+2)+a—-1=2ks+2k—1 columns. This is a contradiction since k>r.

On the other hand it is strightforward to show that f(n, k)<2ks+2r by
constructing a k X (2ks +2r) matrix A satisfying P(n, k). We begin by partitioning
A into blocks By, B,, ..., B,,, with B,, B,,..., B, being single blocks each
containing 2s columns and By, being designated as the dump. For each i=
1,2,..., k-1, we construct the block B; as in the proof of Theorem 26, i.e., we
treat the i —1 rows of B; (other than row i where the letters in B; are singles) as
1-factors of a graph on 2s vertices chosen so that the desired cycle condition is
satisbed.

To construct B, and By, we choose k 1-factors of a graph on 2s +2r vertices
so that the cycle condition is satisfied. Clearly we may assume that the last of
these 1-factors satisfies the additionai requirement that the mate of any vertex in
the last 2r vertices s also in the last 2r ver:ices, i.e., the restriction of this 1-factor
to the last 2r vertices is also a 1-factor. We then use the first k—1 of these
1-factors to determine the location of matss in the first k —1 rows of B, UB, ;.
Finally, we use the last 1-factor to determine the location of mates in the last row
of B, ;. It is easy to see that A satisfies P(n, k), and therefore f(n, k) <2ks+2r=
1+[2kn/(k+1)]. O

Note that the first part of the argument in the prcof of Theorem 26 fails when
r = k. Although we do not include the details of the construction, we note that if n
is sufficiently large and n = s(k + 1)+ k, then f(n, k) = [2kn/(k +1)] =2ks +2k—1.
In this case, a k X(2ks +2k — 1) matrix A catisfving P(n, k) can ve constructed by
partitioning A into single blocks B, B,, . .., B, whzre B, contains ?s + 1 columns
and B,, B, .. ., B, each contain 2s +2 coiumns. The odd entry in each row of B,
other than row 1 is an asterisk.

We summarize the preceding results as follows.
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Theorem 27. For each k=1, there exists a constant n, so that if n=n, and
n=s(k+1)+r, wherz2 0=<r<k, then

2k
‘-k+nl] when O0<r<3(k+1) and when r=k,

f(n, k)= ol
1+ [———;1] when Mk+1)sr<k.

It is interesting to comment that the second part of Theorem 27 never applies
when k =2. In fact it is easy to establish the first few cases in order to derive the
following result.

Corollary 28. For each n=1, f(n,2)=[4n].

Although we do not include the devails here, the reader may verify that
f(1,3)=3, f(2,3)=4, f(3,3) =S5, f(4,3)=17, and that the formula in Theorem 27
holds for f(n, 3) when n=5.

3. Probabilistic methods

In the preceding section, a precise formula for f(n, k) which kolds when n is
sufficiently large comparcd to k was given. The situavion is more complicated
when k is large comparcd to n. First note that the inequality f(n, k)=
[2kn/(k +1)] is weaker than the inequality f(n, k)= k +n—1 when k is large. In
fact, 2kn/(k+1)<k+n—1 when k=n—1. In this section we use probabilistic
methods to determine an upper bound on f(n, k) when k is large compared to r.
Precise determination of f(n, k) appears to be extremely difficult.

Theorem 29. If f(n, k):>t, then

S k t (t—a+1)  kt—a(t-a+1) ke
Z nu (n___ 1)01 —o h a a =n"
1 a o~ 1

o=

Proof. Let # be the collection of all k xt matrices with entries from n. If
f(n, k)>t, then every matrix in ¢ fails to satisfy property P(n, k), i.e., for every
A € M, there exists a word xem* for which the family #,(A) does not have a
SDR. If % (A)={A;:1<i<k}, then there is a subfamily Fy(A)=
{Ai, A, ..., AL} with 1<i,<i,<---<i,<k so that #(A) does not have a
SDR, but every proper nonempty subfamily of #4(A) has a SDR. The subfamily
F.(A) and the subword x'=x,, x, - - - x,_are said to be minimal for A. Not that it
follows immediately from Fail’s theorem that || Fi(A)|l=a—1.

Now let x be any werd from m* and let x' = x, x,, - - - X, be a subword of x. Then
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let 4i(x') = {A e M: F,(A) does not have a SDR and x' is minimal for A}. We next
obtain an upper bound on [#(x')| in terms of n, k and a.

Let R={i,,i2...,ia}. Then let C={j: there exists i€ R so that x; = a;}. Nete
that |R|=a and {C|=a—1. To obtain an upper bound on |[#(x")|, we then note
that if i € R and j¢ C, then a; can be any letter except x;. On the other hand, it is
a generous estimate to allow all other entries in A to be any letter in n. Since C is
an a — 1 element subset of {1,2, ..., t} and there are a(t—a + 1) entries a; where
i€ R and j¢ C, it follows that

Mt(x’)‘ < ( { )(n _ l)a(t—a+l)nkt—a(t--a+l).
T la-1

Since R is an « element subset of {1, 2, ..., k} and the: - are n choices for each
of the letters in ¥/, it follows that

k
n"'=|.;ﬂtl$ z na(z>( t )(n_1)a(x—a+l)nkt—-a(t—a+l)_ ]

a=1 a—l

In order to obtain an upper bound on f(n, k) it suffices to show that if k is
sufficiently large compared to n and if t is suitably large, then the inequality in the
preceding theorem fails. Aithough we do not include the details here, the
following bound can be establised by this method.

Theorem 30. For each n=1, there exists a constant k, so that if k =k,, then

f(n,k)sk+logn+n+o(n).

It would be interesting to provide a constructive upper bound for f(n, k) when k
is large as well as to provide some information on f(n, k) when n and k are of
comparable size. However, such results are not likely to be easy.

4. Some comments on the origin of the problem

The problem of computing f(n, k) surfaced originally in attempts to settle 2
tantalizing combinatorial problem involving partially ordered sets. In the interests
of brevity we provide only the basic definitions necessary to discuss this problem
and refer the reader to [3] and [6] for additional material. Recall that a partially
ordered set is a pair (X, P) where X is a finite set and P is a reflexive,
antisymmetric, and transitive relation on X. The dimension of (X, P), denoted
Dim(X, P), is the least positive integer ¢ for which there exists a function f which
assigns to each point x € X a sequence f(x)(1), f(x)(2,,..., f(x)(t) of real numbers
so that (x, v)€ P if and only if f(x)(i)<f(y)(i) for i==1,2,...,t. One of the best
known inequalities for the dimension of posets is Hiraguchi's inequality:
Dim(X, P)=<3}|X| when | X|=> 4 (see [3] and [4]). In view of this inequality it seems



A combinatorial problem involving graphs and matrices 101

reasonable to co'.jecture that every poset (of at least 3 points) contains a pair of
points whose removal decreases the dimension at most one, and in fact, there are
numerous conditions under which this is true (see [1] and [5]).

On the other hand, if one attempts to construct a poset for which the conjecture
fails, it is natural to consider the following family of posets. For an integer n=1,
let (X,, P,) be the poset with n maximal points a,, a,, ..., a,, n minimal points
by, by, ..., b, and n? other points {x;: 1<i<n,1<j<n} so that x;<a, if and
only if i# a and bg <x; if and only if j# 3. It is then straightforwara to establish
the following result which relates the computation of dimension to the determina-
tion of f(n, k).

Theorem 31. For n=1, Dim(X,, P,) = f(n, 2} =4{a].

While this family of posets does not settle the cornjecture, it comes close as one
can establish the following resuii.

Theorem 32. If n=2 and n=1 (mod 3), then the removal of any two maximal
points, any two minimal points, or a maximal point and a minimal point decreases
the dimension of (X, P,) by two.

We leave it to the reader to find an appropriate pair of points in (X, P,) whose
removal decreases the dimension by one (such a pair exists). However, the
original conjecture remains unsettled.
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