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In this paper we discuss a combinatorial problem involving graphs and matrims Our problr::m 
is a matrix analogue of the classical problem of finding a system of distinct representatilYes 
(transversal) of a family of sets and relates closely to an extremal problem involving l-f actors 
and a long standing conjecture in the dimension theory of partially ordered sets. For an integer 
n 3 1, let II denote the n element set (1,2,3,. . . , n}. Then let A be a k x t matrix. We say t?tat 
A satisfies property .P(n, k) when the following condition is satisfied: For every k-ttiple 
(x+2,. . . ,x&ok., there exist k distinct integers jr, j2,. . . , jk so that xi = aiji for ‘i = 
1,2,..., k. The minimum value of t for which there exists a k x t matrix A satisfying property 
P(n, k) is denoted by f(n, k). For each k > 1 and n sufficiently large, we give an explicit formula 
for f(n, k); for each n * 1 find k sufficiently large, we use probabilistic methods to provilde 
inequalities for F(n, k). 

Let * = (Ai : 3 s i 2s k} be an indexed family of sets. .4 ser S = (sl: s2, . . . , sk} of 
k distinct elements is called :i system of distinct representatives (SDR) of 9 when 
SiEAifori=l,2,..., k. The following well-known theorem of F*. Hall [2] gives a 
necessary and sufficient condition for the existence of a SDR o!! a family 3. 

Theabrem 1 (Hall). A family $ = (Ai : 1 s i G k} has a SDR if and 0~1~ if 1 IJ 31 a 
I%!?1 for every wbfamlily 9% 9. 

In this paper we consider a combinatorial problem involving the determination 
of systems of distinct representatives for families of sets formed by selecting 
subsets of the entries in the rows of 2 matrix. For an integer n 2 1, let 
the n element set jl, 2,3,. . . , n). We refer to the elements’ of 

consequently, it is natural to refer to a k-tuple (x,, x2, x3,. . . , xk) 

word and use the notations and ~1~2x3 Q l l Xk for this word. When X1X2X3 l l l $ 

is a word and I++<- < i,,, s k, we call q,q2Xi3 l l l xim a d~word. We tk:n 

say that the k x t matrix A = (qj) satisfies property P(n, k) when the following 
condition holds: 

For every word ~1~2x3 l l l xk E k, there exist k istinct integers (columns) 
jl, j2, j3, l l s 3 jk SO that &j, = Xi for r’ = I, 29 39 a a s 9 k. 
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This definition may be rephrased in terms of systems of distinct representatives 

as follows. Let =X1X2X3 l ’ l Xk E ’ and then let 9,(A) ={Ai: 1 c i s k} be 

dlefined by Ai = ,[i: CQ = Xi}. It is easy to see thst A satisfies property P( PZ, k j if and 

only if 9,JA) has a SDR for every XE 

. A satisfies P(3,2) and B satisfies, P(4,3). 

A=(; ; ; ;), B= 

Note that a matrix A. may satisfy P(n, k) yet contain entries which are not 
We adopt th- convention 01’ using an asterisk to denote such 

entries. 

Ie 3. A satisfies P(7,2). 

A= 
112344567* 

12334566*7 

The minimum value of t for which there exists a k X t matrix A satisfying 
property f(n. _ ) is denoted by f(n, k). The remainder of this paper is devoted to 
the study of this function and related combinatorial problems. For each k a 1, we 
will provide an explicit formula for f(n, k) whj.ch holds for n sufficiently large. The 
determination of the least value of n for w:hich our formula holds leads to an 
interesting extremal problem involving l-factors. On the other hand, it appears 
that a precise determination of f(n, k) is not possible when k is relatively harge 
compared to n. In this case we use probabilistic methods to determine a nontrivial 
upper bound on f(n, k). 

We begin our study of f(n, k) with some elementary inequalities and a complete 
determination of f(n, k) when y1 s 3. 

. f(n., k)ak+n-1 for each nal, kal. 

Supp 3se that f(n, k) = t and let A be a k x ma&ix satisfying property 
P(n, k). For * = 1,2,3, . . . , k, choose a letter Xi E so that q# aii for each 

1. Then let S=(j*,j2,j3,. . , , jk} be a SDR for tile family 9,(A) 
l xk. Since Xi p qj, for each i = 1,2,3, . . . , k, we observe that 

SCdn,n+l,..., t}. Since ISI = k, we comlude that k s t-n + 1, and thus 
f(n, k)- tak+n-1. C3 
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. The following k x nk matrix satisfies P(n, k) and thus f(n, k) c nk 

c~d!,prp 6. f(n, 1) = n for every n 3 1 ~rtd f(1, k; = k for* every k 3 1. 

%e a7. f’(2,k)=:k+l forelvery kal. 

of, We have f(2, k) > k + 1 by Theorem 4. On the other hand, the following 
k x (k + 1) matrix shows that f(2, k) s k + 1. 

12 * * * -9. * * 

1 12 * * l ** * * 

1 1 12 * l ** * * 
. 

. 

. 

1 1 1 1 1 l -• 

. f(3, k)= k+2 for every kal. 

oof. Theorem 4 implies that f(3, k) 2 k +- 2. On the other hand, the following 
k X (k + 2) matrix shows that fi(3, k) s k + 2. 

1 1 1 1 

. . . 

. . . 

. . . 

. . . 

0 . . 1 

If A is a k x t matrix satisf)ring property P(n, k), then there are three elemen- 
tary operations which may be: pe uce a k X t matiiX * also 

satisfying P(a, k). 
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Let A be a k x 4 matrix satisfying Pfn, k). If A* is obtained from A by 
cony of fhi following hree operations, then A* also satisfies P(n, k). 

(i) Permute the rows of A. 
(ii) Permute the columns of A. 

(iii) ht CT be a permutation of and i an integer with 1 s i s k. Then permute the 
enties in the ith row of A by the de a$ = a(qj). 

Note that there is no analogue for the operation in (iii) of Lemma 9 for 

columns. 
NW let A be a k x t matrix, x EBB, and i an integer with 16 i G k. We then 

define the multiplicity of x in the it31 row of A, denoted m(x, i, A), as the number 
of times x appears in the, ith row of A. Note that if A satisfies P(n, k), then 
1~ nt (x, i, A) G t for each x E a and e\*ery integer i with 1 s i s k. A letter x is 
called a single in row i when m(x, i, A) == I. Similarly, we will speak of doubles, 
triples, . . . ) and use thr= generic terni multiple for a letter whose multiplicity is at 
least two. 

ci. Let A be a k x t matrix satisfying P(n, k). Suppose q,j, and Q, are 
distincr entries of A wirh q,jl a single In row il and aid2 a single in row i2. Then 
il P j2* 

roof. ‘The conclusion is immediate when i, = i2. Now suppox il # iz and let 
X = X1X2X3, ’ ’ l xk be any word in which $, := q,j, and xi2 = qziz. Choose a SDR 
S=(s1,5?2,. . . , Sk} for the family 9,(A). Thea it follows that Si, = jl and Si, = j2 and 
thus jr # j2. q 

We use the terminology “singles do not overlap” to indicate that the condition 
in Lemma 10 is satisfied. 

1. f(n, k)~~[2kn/(k+l)l for every nH and every IC‘M. 

f. Suppose f (n, k) = t and let A be a k x t matrix satisfying P(n, k). For each 
, L . . , k, let mi be the number of letters in n which are singles in the ith 

row, :md let m = min{lni : 1 s i s k}. Each row of A contains at least n - m letters 
in which are multiples. It follows that t > m +2(n - m) = 2n -m, and thus 
m a 2n - t. On the other hand, since singles do not overlap, we know that 
t~mlfrn2+ l 0 l + ml, 2 km 2 k( 2n - t) = 2 kn - ICE Therefore (k + 1) t 3 2 kn and 
the desired result follows since I is an integer. C’1 

The preceding inequality for j’(n, k) was derivec solely from the fact. that singles 
do not overlap in matrices which satisfy P(n, k). Since there are more stringent 
requirements which such matrices must satisfy, one might expect rbat this in- 
equality is quite weak. owever, it will turn out to be suprisingly srrong. 
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We begin this section by developing an elementary characterization of a family 
s of sets which does not have a SDR in the special case where 1 =G IAl s 2 for 
every A E ,*. ‘We :say that 3 is ctitical when g is a family of nonempty sets of size 
at most two, $ does not have a SDR, but every nonempty proper subfamily of g 
has a SDR. 

Example 12. The following families are critical. 
(a) For each m 20, let 9(m) =={{l}., (1,2), {2,3}, .{3,4),. . . , {m, mf 1}, 

{m + 1.)). 
(b) For each mM, pal, with map, let E(m,p)=({l}, {1,2}, (2,3} ,..., 

If% n-I -+ 11, (P, m + 18 
(c) For each mal, paI, 4 al, with map and maq, let s(m,p,q)={(f,2}, 

{2,31,{3,41, l l l T (m,m+l),{l,~+I-q),{p,m+1}}. 0 

We now show that the three critical families constructed in the preceding 
example are essentially the only critical families (up to relabeling the elements in 
the sets). The following elementary result, which follows immediately from Hall’:; 
theorem will prove useful in our argument. 

emma 13. Let S be a critical family 2nd let a E U $9. Then there exist distinct sets 
A,,A,E~ so that UEA, and afA2. 

We will also find it convenient to use the concept of paths and cycles. \Ve call 
9(m) = Q&2), 1% 31, 13,4), * - * 9 (m, m + 1)) a path of length m and %(m) = 

w, 21,R 3),13,41, - l l ? (m, m + 11, { 1, m + 1) a cycle of length m. Note that paths 
and cycles have SDR’s. 

. Let S bc a critical family. 
(i) If ZF contains two singletons, then (after relabeling) 9 = 9?(Oj. 
(ii) If S contains one singleton, then there exist unique integers m, p 2 1, with 

m 2 p, so that (after relabeling) 9 = a(m, p). 
(iii) If S contains no singletons, then there exist unique irztegers m, p, q 5 1, with 

m 3 p and rn 2 4, so tdzai (after relabeling) 9 = @(m, p, 4). 

me 
If every set in g is a singleton, then it is clear that .!P = 9(O), so we may 
that 9 contains at least one doubleton. Now let 9(m) = ({I, 2}, {2,3}, 

13,4), l * ’ , (m, m + 1)) be a path of maximum length contijined in 9. i3y Lemma 
13 we may choose sets Al, AZ&F-P(m) so that 1 EA: and m + 1 E &. Note 
that the maximality of m req res that AIUA~~~~,2,...,m+~~. 

Suppose first that A1 # Aa. Al and A2 are both single~igns, then 9 =: 9.J (m). If 
one of A1 and A2 is a singleton and the other is a oubleton, say f% =U) and 
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A2 = (p. yn + I) where 1 c p s ~1, then 3’; -- ~(HI, p). If AI and A2 are both double- 

tons and A, = :l,m+l-q) and A2 = {p‘, m + l), then 9 = S(m, p, q). 

Now suppose that AI = AZ. Then AI ={l, m+l}. Let %=~(m)U{AI}=%(m). 

Since % has a SDR, % is a proper non-empty subfamily of 9, and it follows that 
( U 3) n (LJ (% - %)I # $3. We may therefore assume without loss of generality that 
there exists a set A{ E ~9 - % so that 1 E A{. Since A’, # A$, we are ba.ck in the 
preceding case and the proof is complete. c1 

We now turn our attention to the problem of determining f(n, k) when IZ = 0 
mod k + 1. Let yt = s(k + 1); then by Theorem 11, we know that f(n, k)a2ks. We 
wppose that f( ~1, k) = 2ks and investigate the implications of this equation. 

5. For are integer k 2 1, let A be a k x 2ks matrix satisfying P(s(k + l), k). 
7len each row of A contains s letters of n which are singles while the remaining 
n - s letters are doublesa 

Proof. Following the notation used in the proof of Theorem 11, let ml denote the 
number of singles in the ith row of A, and let m = min{q: 1 s i s k). Then we 
note that m 3 2s(k + 1) - 2ks = 2s and 2ks S= ml + rn*+ l l l + mk 2 km. Therefore, 
2ks > km, 2s S m, and thus m = 2s. Since 2ks 3 ml + mz-t-* l l i- mk Z=2ks and 
mi2:m for each i, we conclude that m, = m = 2s for each i = 1,2,3,. . . , k. 

Now consider an arbitrary row of A. We know that 2s of the entries in this row 
are singles. Withouf loss of generality, we may assume that the letters 

Yl, Y29 l l l 9 yn-2s are multiples in this row with multiplicities (respectively) 

4, 4, . . . , cl,_ Tt follows that 2ks 2 2s + d, + d2 +. l 0 + d,,_2s 3 2s +2(n -2s) = 
2s(k+l)-2s=2sk, and thus di=2for i=1,2,...,n-2s. 5 

Now suppose that A is a k x 2ks matrix satisfying P(s!lc + 1), k). We may use 
Lemmas 9, lo,, and 15, to permute the columns of A so that for each i = 
w T . . . , k, the entries aij are singles in row i and column j = (i - 1)2s + r where 
1 s Y 6 2s. The matrix A is then partitioned into k blocks Br, Bz, . . . , & with 
each block con:;isting of 2s consecutive columns of A. These blocks are called 
single blocks. 

A =-_ 

2 3 . . . 

B1 

2s : 

2 3 * . . 

82 

2 

Bk 

3 . . . 2: 

‘%~n A Is a k x 2ks matrix satisfying P(s(k + l), k) and A has been trans- 
into thi5 form, we sa!! t at A is in c~n8ni~~l form. 
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Let A be a canonical k x 2ks matrix satisfying P(s(k f I), k) and let 
il, i2 be integers with 16 il, i2 s k and il # iz. 7hen let x be a letter in row i2 of block 
Bi,. Then x is a double and the other occu&ence of x in row i2 of A is also in block 

Bi,- 

roof. ‘The fact that x is a double is immediate. Now suppose that the other 
occurrence of x is in block Bi, where. i, f ii. C;*oO A ;c in canonical form and x is “&i..titi 1 s IJ 

a double, we note that i3 # ii. Choose the columns iI, j2 in A so that qzi, = x = 
;&,. Then let y = yjy2y3 l l l Yk be any worck in which yi, = a,,, yiz = X, and yi3 = q,jz. 
We observe that 9,(A) contains (cl}, (il, j2}, {j2}} as a subfamily, but this subfam- 
ily (after relabeling) is the critical family B(1). This is a contradiction and 
completes the proof. Cl 

When a letter x is a double in some row of a matrix A, it is natural to refer to 
the two occurrences of x in this row as mates. n view of Lemma 16, we may also 
refer to the actual positions where x appears as mates since the symbol which 
occupies these positions is arbitrary. 

We next show how the preceding development will allow us to characterize 
those integers s for which f(s(k + l), k) = 2ks. First we want to extend the concept 
of canonical form to arbitrary matrices. We say that a k x 2ks matrix A (which 
may or may not satisfy P(s( k + l), k)) is in canonical form when it satisfies the 
folIowing properties. 

(i) Foreachi=1,2,...,kandeachr-l,2,...,2s,theletterrisasinglein 
row i and column (i - 1 j2s + r. Furthermore the letters !s + 1,2s + 2, . . . , n ate 
doubles in each row of A. 

(ii) For each iI, i2 with 1 =S il, i,s k and il # i2, and for each letter x which 
appears in row i2 of block Bi,, the other occurrence of x in row i2 is also in H,,, 
i.e., mates occur in the same single block. 

Theorem 17. Let A be a canonical k x 2ks matrix. Then 1: satisfies P( n, k) if aGd 
only if there is no word x = x1x2 l l l xk in nk for which 9,(A) contains a C:&!. 

Of. Suppose first that there is some m 3 1 and a word x = x1x2 l l l xk so that 
ter relabeling) 9,(A) contains the cycle %fl) = Hil, iz), (iz, j31.r * * 1 , 

cjnt, j,,,+l}, (iI, j,,,+l}}. Then there exist distinct integers iI, il, . . . , i,_:.z so that 
XL = & = a’ ai&+l for CY = 1,2,. . . , m and xi,+, =L+~+,~~,_ 1 = ~n,+,j,e It follows that 
there is a single block Bi so that the columns i,, j3_, . . . ? j,,,+* of A occur in ,slock 
Bi.Furthermoreifi,forcy=1,2,...,m+1.Nowlety=y,y2*~.~~beanyword 
for which yk = Xi* for CY = 1,2, . . . , WI + 1 and yi = aq,. Then 9,(A) contairs the 
critical family 8(m, 1) = Z(m) lJ {{jr}} and we conclude that A does not satisfy 

P(n, k). 
Conversely, suppl>se tha does not satisfy P(n, 0 Then there exists a word 

=x1x2 l l l 
s a critical subfamily 93. Since eat 



94 W.T. Trcmzr, Jr. T. R. Monroe 

family 8( m, p) and S(m, p, q) contains a cycle, we may assume without loss of 
generalitv that 9 = 9(m) = (&}, &, j& &j3), . . . , {i,, j,,,+I}* ~,,,+I}}~ Then choose M 
distinct integers iO, iI, iz, . . . , im+* SO that xi, = sj,, +,+l = qm+,jm+,, and x = ahi, = 

%LCl for at = 1,2,. . . , m. Then we conclude that columns j, and ja+l, for 
cu = 1,2,. . . , m, belong to the distinct single blocks I%, and I$,,: which is 
impossible. The contradiction completes the proof. r] 

We will find it convenient to provide a graph theoretic interpretation of the 
preceding result. Recall that a l-factor F of a graph G = (V, E) is a partitioning of 
the vertex set V into 2-element subsets so that each subset in the partition is an 
edge in E. Yaw suppose that A is a canonical k x 2ks matrix satisfying 
P(s( k + l>, k) and let iO be an integer with 1 s iO s k. Then let G be a complete 
graph with vertex set V= (u,, v2,. . . , I.I~~}. For each i with 1 g i s k and if iO, we 
define a l-factor .& of G by Fi = {&, j*}: there exist integers j3, ja and a letter 
x E II SO that abij = jI, Q~ = jz, and Cl<jj = Q = x.} Then let G* = (V, E*) be the 
subgraph of G consisting of those edges which belong to at least one l-factor in 
the collection [Fi : 1 s i s k, i # io). We note that G* has s(k - 1) edges since it 
follows that if distinct l-factor ., have a common edge, then there exists a word x 
so that SI contams the cycle (e(2). Furthermore, we concludr: from Theorem 18 
that G* does not szntain a cycle in which each edge corn&as from a distinct 
l-factor. conversely, if G = (V, E) is a complete graph and F,, r’,, . . . , I$-* are 
edge disjoint 1-fsctors of G so that G does not contain a cycle in which each edge 
comes from a distinct l-factor, then *we may employ these l-factors to construct 
each of the single blocks of a canonical k x 2ks matrix satisfying P(s(k -I- l), k). 
We have therefolre established the following result. 

G?mmT@ f(s(k + f), k) = 2ks if and only if there exist k - 1 edge disjoint 
I-f’actors of a complete graph G on 2s vertices so that G does not contain a cycle in 
which each edge comes from a distinct l-factor. 

Let s = 3 and k = 4 and consider the following 4 x 24 matrix which 

‘1 2 3 4 5 6 : 10 11 12 ICI 11 12 : 15 13 13 14 14 15 7 7 8 8 9 9 1 1 

770,6S9;1 2 3 4 5 6 1 13 14 I.5 13 14 15 ; 2 10 10 11 11 12 

f 7 7 8 8 9 ; 10 10 11 11 12 12 i 1 2 .J 4 5 6 i 13 14 15 13 14 15 

8 9 7 8 9 i 12 10 10 11 11~ 12 i 13 13 14 14 15 15 i 1 2 3 4 5 6 

The first single block of this matrix produces th -ee l-factors of a complete graph 
on 6 vertices &ee Fig. 1). 0 

ural to define the combinatorial function 
ge disjoint l-factors of a CO 
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“2 vb 

Fig. 1. 

graph on 2s vertices so that G does not contain a cycle in which each edge comes 
from a distinct l-factor. 

Example 20. It follows immediately from Turan’s theorem that g(s)&s for if 
g(s) > s, then there are sg(s)> s2 = (2~)~/4 edges of G which belong to the 
l-factors. Therefore G contains a triangle each of 
l-factor, but these l-factors are necessarily distinct. 
we have g(3) = 3, but it is easy to show that g(4) = 3 
best possible. Cl 

whose edges comes from a 
Note that from Example 3, 
so that this inrequality is not 

Lemma 21. Let F1, F,, . . . , Fp be 1 -tattom in a complete graph G on 2s vertices so 
that G does not contain a cycZe in which each edge comes from a distinct l-factor. 
Then let G” be the subgraph of G consisting of those edges which come from these 
I-factors. Then G* does not contain a I&. 

roof. Suppose G* contains a KzV4 labeled as in Fig, 2. Without loss of gknerality 
we may assume that (a, X~)E Fi for i = 1,2,3,4. Now consider the 4-cycle 
{a, x1, b, x2}. We must either have {b, X~}E F1 or {b, X~}E F2. If {h, Q}E F1, consider 
the 4-cycle (a, x2, b, x3}. We must have {b, x3} E F,, but this implies that the 
4-cycle ,:a, x2, b, x4} has edges from distinct l-factors. A similar argument holds 
when (b, X~}E F,. 0 
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g(s)< \p2+Jl +Ss]. 

Let g(s) = p and let F,, Fz, . . . , Fp be ed;ge disjoint 1-fa,ctors of a complete 

graiph on 2s vertices so that G does not contain a cycle in which each edge comes 
from a distinct l-factor. Then let G* be the subgraph of G consisting of those 
edges contained in the 1 -factors. Note that G * is a regular g,raph of degree p. 

Choose an arbitrary vertex v. E G and let vl, IJ~, . . . , up be the neighbors of 2ro. 
Note that no two vertices in the set {II,, v2, . . . , I+.,) are adjacent since G* does not 

contain a triangle. Now let I.+,+~~ I+,+~, . . . , v2P-1 be the neighbors of v1 other than 

vO. Sir .:. G* has no K2,4r u2 has at leas: p - 3 ;leighbors which do not come from 

the set (v,, vl, . . . , v~~__~). Lribel these *:ertice. 21~~, v~~+~, . . . , v~~___~. Similarly, v3 
has at [east p - 5 neighbors which do not come from the set {v,, ul, . . . , v3+). 

Label theae vertices v3P-3, ~3~~2, . . . , v4p-g. Continuing in this fashion, we con- 

clude that G* must contain at least 1 + p + (p - 1) + (p - 3) +(p - 5)+ l l l vertices, 
and thus ps1--2+m]. Cl 

0181uary 23. g(-P 11 +log, sj. 

roof. Let p = 1.i +log, sJ . For each integer i = 1,2, . . . , p, let Fi be the l-factor 
on {I, 2,. . . ,2s) defined by Fi = ((j, j + 2’ - I}: l<js2s-I, j odd, with j+2’-1 
interpreted cychcally}. Suppose that G* contains a cycle vl, v2, . . . , v, of length. 
m so that each of the edges (vi, vi+*}, for i = 1,2, . . . , m, and (II,, v,} come from 
distinct l- factors. Since each edge consists of an odd integer and an even integer, 
we know that m is even, say m = 2q. NOW suppose that {Vi, Vi+l} E Fai, 
for i=l,2,...,m-1, and (v~,v,}EF~~. Then it follows (2Ll+-I)-(2~2-l)+ 
(2”3 - i)r-(2a4- I)+. . . -(2am - 1) = 0 which is impossible. El 

Although we have not been able to obtain better inequalities for g(s), we note 
that we have at least proved the following result. 

For each k 2 1, there exists a Constant sk so that if s 2 Sk and 
n = s(k +- I), ihen f(n, k) = [Zcn/(irc + 1)1 = 2ks. 

Hereafter, we will use the short phrase “the rvcle condition is satisfied” to _., 
mean that a particular collection {F,, F,, . . . , Fp) of l- factors of a graph (equival- 
ently, locations for mates in rows of a matrix) satisfies the hypothesis given in 
Lemma 21 and Theorem 22, speci$cally that the graph determind by the edges 
in these l-factors does not contain a cycle in which the edges come from distinct 
1 -factors. 

We now turn our attention to the general problem of determining f(n, k) when 
r. is large compared to K.. Surprisingly enough, most 3if the work has already been 
done. 
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The case r = 0 was treated in Corollary 24, so we may assume that 
0 < r ; $(k + 1). Also note that the conclusion holds for all values of n when k = 1 
or k = 2, so we may assume that k 3 3. We observe that [2knl(k + i-)1 = 2ks +2r 
SO that f(n, k) a 2ks + 2r. To show that f(n, k) s 2ks + 2r we simply construct a 
k X (2ks + 2r) matrix A satisfying P(n, k). We assume that k - I G g(s) and that 
k - 1~ g(,- + Y). 

We consider the matrix A as being partitioned into k + 1 blocks 

B1, B 2, l l l 9 Bk+l. Each of the blocks B,, Bz, . . . , Bk is called a single block and 
contains 2s columns of A. Block B1 contains the first 2s columns of A, B2 
contains the next 2s columns, etc. Block B k +l contains the last 2r columns of A 
and is called the “dump”. 

For each i = 1,2,. . . , k, the symbols I, 2, . . . ,2s are singles in rwo i of A and 
occur consecutiveIy in single block Bi. Each of the remaining n - 2s symbols of n 
will be a double in every row of the matrix A so that in order- to complete the 
construction of A, it suffices to describe the location of mates, Blocks 

B1, B2, . . . , Bk-2 are constructed as in the proof of Theorem 18, i.e., the location 
of mates in one of the rows in these blocks (except the row of singles) is viewed as 
a l-factor chosen so that the cycle condition is satisfied. Note that we have 
assumed that k - 1 s g(s) so that this construction is possible. Also note that for 
each i=l,2,. . . , k-2, the symbols ([i-Is+2s+j: l~j~s} are doubles in each 
HOW of block Bi other than row i. 

we need only construct the blocks Bk-r , Bk, and Bk +l. We begin by placing the 
letters n--r+ 1, n-2r+2,. . . , n in the first 2r position m the last row of Bk__*. 
Similarly, we place these same letters in the last row of BI,+ 1. 

To complete the construction of Bk_+ we choose locations for mates in the first 
k - 2 rows of Bk_-l and the last 2s - 2r positions in row k of Bk_, so that the ,:ycne 
condition is satisfied. Note that we permit the mate of a letter in block Bk to lbe in 

block Bk+l. 
In order to conclude that the matrix we have constructed satisfies P(n, k), we 

must show that no 9x contains a critical subfamily. To the contrary, suppose that 
xc nk and that & contains a critical subfamily 9. Since singles do not overlap in 
A, $F _7!: 9(O). Since the mate of a double in a row in Bi is also in Bi for 

i=l,2 %,..., k - 1, and the mate of a double in a row in Bk U Bk+* is alslo in 

Bk hl&+l, it follows that S+ 9(m) for every m - p 1. On the other hand, since the 

cycle condition is satisfied, 9 cannot be one of the critical families g(m, ~1) or 
s(m, Q, 4); and with this observation we have completed the argument that 14 
satisfies P(n, k). Thus fin, k) -S 2ks + 2r = [2kn/(k + l)j and the proof of our 

theorem is complete. q 

. For each. k 3 1, there exists rx constant nB, so that if n 2 nk and 
n=s(k+l)+r, where $(k+l.)=srsk-1, then 

f(n, k) = 1 + [2kn/(k + I)1 = 2ks +2r. 

. Note that when PI = s(k + I)+ r an $~+l)<r~k-l, we ave 
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[2kn/(k + I)1 = 2ks + 2r - 1, so that f( n, k) a 2ks + 2r - 1. Suppose first that 
f( n, k) =: 2rk.s + 2 r - 1, and let A be a k x (2ks + 2r - 1) matrix satisfying property 
P(n, k). 

Then it follows that each row of A contains at least 2n - (2ks + 2t - 1) = 2s + 1 
singles. Since k(2s+2!)=2ks+2k>2ks+2r - 1, we may assume that the first ar 
rows (where a! r 0) of A contain exactly 2s + 1 singles, and the last k -(x rows of 
A contain at 1e:ast 2s + 2 singles. Note that 2s + 1 + (k - 1)(2s + 2) = 2ks + 2k - 1 > 
2ks + 2r - I so that u 3 2. We rn8.y then assume that A has been partitioned into 
blocks &, B2+ . . . , I&, Bk+l with the blocks B1, &, . . . , Bk being single blocks, 
having sin@e letters in row i of block Bi for i = 1,2, . . . , k, and Bk +1 be the 
dump. We also assume that I&, &, . . . , B, each contain 2s+ 1 columns and 

&+I, &+Zt l l l 9 Bk each contain at Bzast 2s +2 columns. 
Since 2s + 1 is odd and no & can contain the critical subfamily !B( 1), it follows 

thatforeachi=2,3,..., ac, there is at least one double in the first row of A with 
one appearance in Bi and the other in the dump. This requires that the dump 
contain at least a! - 1 columns, ancii thus A must contain at least ~(2s -t- 1) + 
(k - ar)(2s + 2) + cw - I. = 2ks + 2k - 1 columns. This is a contradiction since k > r. 

On the other hand it is strightforward to show that f(n, k) s 2ks + 2r by 
constructing a k x (2ks + 2r) matrix A satisfying P(n, k). We begin by partitioning 
A into blo& BI , EC,, . . . , Bk+l with BP, B2, . . . 9 Bk being single blocks each 
containing 2s columns and B k+l being designated as the dump. For each i = 

1,2,..., k - 1, we construct the block Bi as in the proof of Theorem 26, i.e., we 
treat the i - 1 rows of Bi (other than row i where the letters in Bi are singles) as 
l-factors of a graph on 2s vertices chosen so that the desired cycle condition is 
satisGed. 

To construct & and Bk+1 we choose k l-factors of a graph on 2s + 2r vertices 
so that the, cycle condition is satisfied. Clearly we may assume that the l,ast of 
thr:se l-factors satisfies t&z additiona’; requirement that the mate of any vertex in 
the last 2; vertices is also in the 1aLt 2r vertices, i.e., the restriction of this l-factor 
to the last 2r vertices is also a l-factor. We then use the first k - 1 of these 
l-factors to determine the location of mates in the first k - 1 rows of & U &+l. 

Finally, we use the last l-factor to determi;?e the location of mates in the last row 
of Bk+P* It is easy t$D see that A satisfies P(n, k), and therefore f(n, k) s 2ks + 2r = 
l+ [2knl(k+l)l. 0 

Note that the first part of the argument in the: proof of Theorem 26 fails when 
r = k. Although we do not include the details of the r:onstruction, we note that if n 
is sufficiently large and n = s(Fc: + l)+ k, then f(n, k) = [2kn/(k +- I)1 = 2ks +2k - 1. 
In this case, a k x (2ks + 2k - 1) matrix A satisfying P(n, k) can tie constructed by 
partitioning A into single blocks &, .&, . . . , Bk wh zre B1 contains ?s + 1 columns 

Bk each contain 2s + 2 columns. The odd entry in each row of BI 
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7, For each k 3 4, there exists a constant nk so that if n 2 nk and 
n==s(k+l)+r, wherg Wr~k, then 

rvhen Wr<$(k+l) and M/hen r=k, 

when j!k-tljs:r<k. 

It is interesting to comment that the second part of Theorem 27 never applies 
when k = 2. In fact it is easy to establish the first few cases in order to derive the 
following result. 

28. For each n a 1, f( n, 2) = [$I. 

Although we do not include the details here, the reader may verify that 

f(l,3) = 3, f(2,3) == 4, fc3,3) = 5, f(4,3) = 7, and that the formula in Theorem 27 
holds for f(n, 3) when n 2 5. 

3. sbabilistic methods 

In the preceding section, a precise formula for f(n, k) which holds when n is 
sufficiently large comparr,d to k was given. The situakitin is mo.re complicated 
when k is large compared to n. First note that the inequslity f(n, k)a 
[2knl(k + I)1 is weaker than the inequality f( n, k) 3 k + n - 1 when k is large. In 
fact, 2kn/(k + 1) c k + n - 1 when k 2 n - 1. In this section we use probabilistic 
methods to determine an upper bound on f(n, k) when k is large compared to n. 
Precise determination of f(n, k) appears to be extremely difficult. 

eorem 29. If f( n, k) a t, thlen 

Let J%? be the collection of all k x t matrices with entries from n. If 
n every matrix in ~$2 fails to satisfy property F(n, k), i.e., for every 

A E 4, there exists a word K for which the family &(A) does not have a 

SDR. If S,(A) = (A, : 1 s i ), then there is a subfamily 9:(A) = 

(Ai,, Aiz, l l l 3 A&} with %i,<i,<** *<ia =S k so that 9:(A) does not have a 

SIR, but every proper nonempty subfamily of 9;(A) has a SiX’C The subfamily 
5&(A) and the subword ’ = -Yi,* Xi2 l * l qGi, are said to be minimal for A. 
follows immediately fro. I-Ml’s theorem that \ U S:(Aj\ = CL! - 1. 

‘= h,Xi2 . ’ * Xi_ be a S 
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let J,J (11’) = 54 E 4: Z&(A) does not have a SDR and ’ I is minimal for A}. We next 

obtain an upper bound on ‘)I in terms of vt, k and a!. 
Let R = {I,, i& . . . ) ia]. Then let C = G: there exists i E R so that q = qi}. Ncte 

that (I!\=a! and ICl=c - 1. To obtain an upper bound on l&(x’)\, we then note 

that if i E R and j# C, then aij can be any letter except q. 0n the other hand, it is 
a generous estimate to allow all other entries in A to be any letter in n. Since C is 
an a - 1; element subset of {1,2, . . . , t) and there are cy (t - 4y + 1) entries a, where 

i E R and j$ C, it follows that 

\&(x”,‘,_+ (, f. l)(n _ l)a(t-u+l)nkt-a(*--u+l). 

Since R is an cu element subset of {1,2, . . . , k) and the] .- are n choices for each 
of the letters in x’, it follows that 

nk* = ld,sj* ff)(, t l)(n - l)u(t-u+l)nkt-a(r-a+l). q 

In order to obtain an upper bound on f(n, k) it suffices to show that if k is 
sufficiently large compared to n and if t is suitably large, then the inequality in the 
preceding theorem fails. Although we do not include the details here, the 
following bound can be establised by this method. 

eorrem 30. For each n a 1, tlzere exists a constant k, so that if k 2 I&, then 

f(n, k)sk+logn+n+o(n). 

It would be interesting to provide a constructive upper bound for f(n, k) when k 
is lar;;~: as well as to provide some information on f(n, k) when n and k are of 
comparable size. However, such results are not likely to be easy. 

ome co otigin of the problem 

The problem of computing f (n, k) surfaced originally in attempts to settle 2 
tantalizing combinatorial problem involving partially ordered sets. In the interests 
of brevity we provide only the basic defimtions necessary to discuss this problem 
and refer the reader to 133 and [S] for additional material. Recall that a partially 
ordered set is a pair (X, P) where X is a finite set and P is a reflexive, 
antisymmetric, and transitive relation on X. The dinnension of (X, P), denoted 
Dim(X P), is the least positive integer i fair which tl ere exists a function f which 
assigns to each point x E X a sequence f (x)( 11, f (x)(2 i, . . . , f(x)(t) of real numbers 
so that (x, 7)~ P if and only if J(x)(i) < f(y)(i) for i -= 1,2,. . . , t. One of the best 
known inc-:qualities for the dimension of posets is IIiraguchi’s inequality: 

(see [3] and [J]). n view of this inequality it seems 
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re.asonable to co*,jecture that every poset (of at least 3 points) contains a pair of 
points whose removal decreases the dimension at most one, and in fact, there are 
numerous conditions under which this is true (see [l] and [S]). 

On the other hand, if one attempts to construct a poset for which the conjecture 
fails, it is natural to consider the following family of posets. For an integer n 2 1, 
let (JX,,, P,,) be the poset with n maximal points a,, a2, . . . , a,,, n minimal points 

61, b 2, . . . , b,,, and n2 other points (qi : 1 - 1 <*sn, 16+n} SO that xijCa* if and 
only if i # a and bp < qj if and only if i # p. It is then straightforward to establish 
the following result which relates the computation of dimension to the determina- 
tion of f(n, k). 

Theorem 31, For n 3 1, Dim(X,, P,) = f(n, 2) = [$ill. 

While this family of posets does not settle the cocjzcture, it comes close as one 
can establish the following result. 

Theorem 32. If n > 2 and n = 1 (mod 3), then the removal of any two maximal 
points, cony mo minimal points, or a maximal pon’nt and a ntininzal point decreases 
the dimension of (X,, P,)) by two. 

We leave it to the reader to find an appropriate pair of porn??? in (X,, P,) whose 
removal decreases the dimension by one (such a pair exists). However, the 
original conjecture remains unsettled. 
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