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EVERY ¢ IRREDUCIBLE PARTIAL ORDER IS A SUBORDER
OF A t +1-IRREDUCIBLE PARTIAL ORDER

William T. TROTTER, Jr.* and Jeffrey A. ROSS*"

Department of Mathematics and Statistics, University of South Carolina, Columbia,
South Carolina 29208, USA

The dimension of a partial order (X, <) is the least integer t for which there exist linear
extensions X, X,,..., X, of X so that x,<x, in X if and only if x,<x, in X, for each
i=1,2,...,t For aninteger ¢ = 2, a partial order is said to be t-irreducible if it has dimension
t and every proper nonempty subpartial order has dimension less than . We answer a natural
question concerning dimension by proving that for each t =2, every t-irreducible partial
order is a subpartial order of a f + l-irreducible partial order.

1. Introduction

In this paper, we answer one of the most natural questions that can be asked
concerning the dimension of partially ordered sets. Utilizing a construction
whose origins lie in chromatic graph theory, we prove that for each r = 2, every
t-irreducible partial order can be embedded in a ¢ + 1-irreducible partial order.
The construction also relies on two fundamental concepts in dimension theory:
the structure of nonforced pairs and realizers of irreducible partial orders.
Nevertheless, for the reader who is familiar with little more than the most basic
concepts concerning partial orders, the paper is entirely self contained, and it is
only necessary to present a few definitions and preliminary lemmas before
proceeding to the principal result. The reader who desires additional back-
ground material on the dimensional theory of posets is referred to the survey
article [4] which also contains an extensive bibliography of papers on this
subject.

A partially ordered set (poset) is a set X equipped with a reflexive anti-
symmetric and transitive binary relation <. If x,,x, € X, x, % x, and x, % x,,
then x, and x, are incomparable and we write x, | x,. For each point x, € X, we
let Dx(xi)={x:EX:x,<x}, Ux(x)={x,€X:x,<x5}, and I«(x))=
{x: € X 1 x1||x,}. We let Iy ={(x1, x2) : x| x.}. We say X is a linear order if Iy = 0.

* Research supported in part by NSF Grant ISP-8011451.
* Research of this author supported in part by a Grant from the USC Research and Productive
Scholarship Fund.
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614 W.T. Trotter, Jr., J.A. Ross

If X, and X, are partial orders on the same set and x, < x, in X, whenever
x1<x; in X, we say X, is an extension of X,; if X, is a linear order and an
extension of X,, X, is called a linear extension of X,. Dushnik and Miller [1]
defined the dimension of a poset X, denoted dim(X), as the least positive integer
t for which there exist ¢ linear extensions X1, Xa,..., X of X such that x; < x,in
X if and only if x;<x, in X; foreach i =1,2,... ¢t

If X, and X are posets and the point set of X is a subset of the point set of X,
the poset X, is called a subposet of X, when x, < x, in X; if and only if x, <x, in
X, for all x,, x, € X;. For each point x € X, we let X —{x} denote the subposet
of X whose point set contains all points in X except x. Of course, dim(X —{x}) <
dim X for each x € X. For an integer =2, a poset X is t-irreducible if
dim(X) =t and dim(X —{x}) < for each x € X. A poset has dimension one if
and only if it is a linear order (a chain) so the only 2-irreducible poset is a two
point antichain. There are infinitely many 3-irreducible posets, and a complete
listing of these posets has been made by Trotter and Moore [7] and by Kelly [3].
These posets can be conveniently grouped into 9 infinite families with 18 odd
examples left over.

An incomparable pair (xi, x,) € Ix is called a nonforced pair if x < x, implies
X3 < x; and x, < x4 implies x, < x, for all x;, x, € X. We let Ny denote the set of
all nonforced pairs. For the poset X shown in Fig. 1, Nx ={(2,3), (3,2), (6,1),
(,6), (2,4), 3,4)}.

It is customary to consider Nx as a directed graph whose vertex set is the point
set of X. When (x,, x,) € Nx, we draw an edge from x, to x,. For the poset X in
Fig. 1, we have the digraph shown in Fig. 2.

The properties of the digraph Nx are central to the theory of rank for partial
orders and we refer the reader to [5] and [6] for additional material on this
subject. In this paper we will need only a few basic facts concerning Ny. We state
these elementary results without proof. The reader may enjoy providing the
arguments, although full details are given in [5].

Lemma 1. As a binary relation X U Ny is transitive, thatis, if {x,: 1<i<m}isa
subset of X and foreach i =1,2,...,m — 1, either x; < X4y in X or (i, X;11) € Nx,
then either x, <X, in X or (xi,X,) € Nx.

1
4 1
3 4
: 6
2 3 5
5 6

X
Fig. 1. Fig. 2.
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If ¢ = 3, a t-irreducible partial order is
sum [2] so in particular, it never contains
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Lemma 2. IfA ={ay, a,...,a.} is a subset of X and Nx contains a directed cycle
{(a:, @i+1): 1< i <n}U{(a., a1)}, then the set A is an antichain in X. Furthermore,
if x EX — A, then x > a; if and only if x > a; for each i, j with 1<i<j<n.
Dually, x < a; if and only if x <a; for each i, j with 1<i<j=<n.

If t =3, a t-irreducible partial order is indecomposable with respect to ordinal
sum [2] so in particular, it never contains an antichain satisfying the conclusion of
the preceding lemma. A 2-irreducible poset (a two point antichain) is itself such
an antichain and has a directed cycle of length two for its digraph of nonforced
pairs.

However, when ¢ =3 the digraph of nonforced pairs of a t-irreducible poset
contains no directed cycles. In this case, we abuse terminology somewhat and
write X U Nx to denote the set X equipped with the binary relation defined by
1 <X, in X U Nx if and only if x; < x, in X or (xi, x2) € Nx.

Lemma 3. If t =3 and X is a t-irreducible partial order, then X U Nx is also a
partial order.

We illustrate the preceding lemma for a 3-irreducible poset (Fig. 3).
A set R ={X, Xs,...,X,} of linear extensions of X is called a realizer of X

when x;<1x, in X if and only if x,<x,in X, for i=1,2,...,¢

Lemma 4. A set R ={X,,X,,...,X.} of linear extensions of a poset X is a
realizer of X if and only if for each nonforced pair (x,, x2) € Nx, there exists some
i <t for which x,<x; in X.

Note in the preceding lemma that the emphasis is on a linear extension X; with
x, < x, in X, so it is natural to say that X; reverses the nonforced pair (x1, x,).
The dimension of a partial order X is then the minimum number of linear
extensions of X required to reverse the nonforced pairs of X. It is therefore

*7
%, X6
Xg X4
Xg X, X, x,
%3 *1 *2 x
1
X XU NX

Fig. 3.
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natural to associate with a partial order X a hypergraph Hy whose vertices are
the nonforced pairs in Nx. A subset N C Nx is an edge in the hypergraph Hy
when there is no linear extension of X which reverses all the nonforced pairs in
N, but if N' is a nonempty proper subset of N, then there is a linear extension of
X reversing the nonforced pairs in N'. It follows immediately that the dimension
of X is the chromatic number of the hypergraph Hy, that is, the least number of
colors required to color the vertices of Hx so that no edge of Hy has all of its
vertices assigned the same color. For the posets in Figs. 1 and 3, the associated
hypergraphs are illustrated in Figs. 4a and 4b, respectively. Note that the graph
in Fig. 4a is 2-colorable and that the graph in Fig. 4b is 3-colorable as it contains
an odd cycle on seven points.

Example 5. For the poset X shown in Fig. 3, the following three linear
extensions realize X:

X ={x< 2 < x0< x5 < X3 < X6 < X7},
X2={x3<xl<X6<x5<xZ<x4<x';},
Xs={x1 <X, < X3 < X0 < X7 < X5 < Xg}

Note that X, reverses the nonforced pairs in {(xs, xs), (xs,xs), (x1, %)}, Xo
reverses {(xs, Xe), (X1, X3), (X2, Xe), (X2, xs)}, and X; reverses {(xs, x7), (xs, x7)}. Also
note that deleting x, from X; and X, leaves two linear extensions which realize
X - {X7}.

Hiraguchi [2] proved that removing a point from a poset decreases the
dimension by at most one. Here we will require a specialized version of this
result. '

Lemma 6. Let X be a t-irreducible poset where t =3 and let x be a maximal

element of X U Nx. Then there exists a linear extension X, of X U Ny in which x is
the largest element and x, < x, in X, for every x, € Dx (x) and x, € Ix(x).

(2,3) (6,1)

(3,2) (2,4 (3,4) (5,6)

Fig. 4a.
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proof. It suffices to observe that if x; € Dx(x) and x, € Ix(x), then x, £ x, in
XUNx. O

Let X be an irreducible poset of dimension at least 3. A maximal element of
X U Ny is called a strongly maximal element of X, and a linear extension X, of
X U Nx satisfying the conclusion of Lemma 6 is called a consistent linear
extension of X (with respect to the maximal element of X,). If Xo={x,<x,<
x; < -<x,} is a consistent linear extension of X, so that Dx(x.)=
{x1, X2, ..., %} and Ix(x,)= {Xs+1, X425 . - -, Xu—1}, then the linear order X§ =
(<X <X <o <Xy <X < X1 <Xy <0 < X,_1} is called the reverse of the
consistent linear extension X,. Note that X§ is a linear extension of X but not of
X U Nx. The linear order X§ will play an important role in the proof of our
principal theorem. At this point, we note that X 7§ can be used to form a realizer

of X.

Lemma 7. Let X be a t-irreducible poset, where t =3, and let x be a strongly
maximal element of X. Also let X, be a consistent linear extension with respect o x.
Furthermore, let {X| X5, ..., X/} be a realizer of X —{x}, and for each
i=1,2,...,t—1, let X; be the linear order formed by adding x to X' as the largest
element. Then {X%, X, Xs,..., X1} is a realizer of X.

For the 3-irreducible poset X shown in Fig. 3, the linear extension X, =
{x, < x,< -+ < x5} is consistent with respect to the strongly maximal element x-.
The linear extensions {Xi, X3, X} defined in Example 5 illustrate Lemma 7.
Note that X5 is the reverse of X.

2. The émbedding theorem

In this section, we use the concept of a consistent linear extension of a
t-irreducible partial order X to construct a ¢+ l-irreducible partial order
containing X as a subposet. The reader who is familiar with chromatic graph
theory will recognize the flavor of the construction, since its roots lie in that

subject.

Theorem. If t =2 and X is a t-irreducible poset, then there exists a t+1-
irreducible poset containing X as a subposet.

Proof. The result is trivial when ¢ = 2 s6 we assume that ¢ = 3. We then let X be
an arbitrary t-irreducible poset and choose a consistent linear extension
Xo={x1<x,<x:5<--+<x,}. As in Section 1, we let Dx(x,)={x1,x,..., %}
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and Ix (x,) = {X,+1, Xc+2, . . ., Xa_1}. We now construct a ¢ + 1-dimensional poset §
containing X as a subposet. In general, § will not be irreducible, but we will
prove that S contains a ¢ + 1-irreducible subposet R with X a subposet of R.

When ¢ = 3, the point set of S is the union of four sets X, Y, U, and V. The
subposet determined by U is an isomotphic copy of X with Up = {u, < u, < u, <
"+ < u,} the corresponding consistent linear extension of U, Each point of X is
incomparable with each point of U. The subposets determined by Y and V are
n —1 element chains labeled {y; < y,<y,<-:--<y,.} and {vi<v,<vs< - <
a1}, Tespectively. Each point of Y is incomparable with each point of V.
Furthermore x <v and u < y forevery x€X, u€ U, vE YV, y €Y. Also,
X <y; and w; <w; if and only if i <j. This completes the description of S when
t =3. We pause to illustrate the construction of S for the poset X shown in Fig.
3. For clarity, only the subscripts are displayed (Fig. 5).

When ¢ >3, S also contains two antichains A ={ai, as,...,a,;} and B =
{bi,bs,...,b_s}. Each point of B is less than every point in YUV and
incomparable with every point in X U U. Every point in A is incomparable with
every point of YU V and greater than every point of X U U. Also b; < a; if and
only if i#j for all i, j. This completes the definition of the poset S.

We now show that dim(S)= ¢+ 1. Suppose to the contrary that dim(S) =<1«
We know that dim(S)= ¢ since S contains the t-dimensional poset X, so we
assume that {S,, S,,..., S} is a realizer of S. Then these ¢ linear orders reverse all
the nonforced pairs in Ns. We are particularly interested in the following sets of
nonforced pairs: Ny ={(xi1,y:):1<i<n -1}, N,={(u.,, v):lsisn-1}
and N;={(b;,a;): 1<i=<t-3}. It is easy to see that any linear extension of 5§
cannot reverse nonforced pairs from two or more of these three sets. Further-
more, a linear extension can reverse at most one nonforced pair from Ni. It

Fig. 5.
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follows that either there is some i, < t so that S reverses every nonforced pair in
N; or there is some i; < ¢ so that S, reverses every nonforced pair in N,. Since X
and U are isomorphic, we may assume without loss of gnerality that S, reverses
N.. We now show that S, cannot reverse any nonforced pairs in Ny C Ns. To see
that this is true, let (x;, x;) € Nx. Since X, ={x; <x,<---<x,} is consistent, we
know that i <j and thus i <j — 1. Thus x; < y;_ in S, (%;, ¥j-1) € Nx, $0 ¥j-1 < X;
in S,, and therefore x; <x; in S. It follows that if we restrict each S;, where
i# io, to X we obtain t — 1 linear extensions of X which reverse Nx. But this is
impossible since the dimension of X is & The contradiction shows that
dim(S)=1+1.

We now show that if x €X, then the removal of x from S leaves a
t-dimensional poset. To accomplish this we provide an explicit construction for a
realizer {81, 85,...,S} of § —{x}.

First we choose a realizer {Xi, X5, ...,X/.i} of X —{x}. Then Ilet
{U%, Uy, Us, ..., U} be the realizer of U produced by Lemma 7. In particular,
U#% is the reverse of the consistent linear extension

U={u <u,<us <> <u},

and u, is the largest element of U, for each i =1,2,...,t—1. Let (X U Y), be
the linear extension of X U Y defined by

(Xu Y)oz{xl<)’1<x2<}’2<x3<)’3<"'<xn-1<yn_1<xn}.

Note that the restriction of (X U Y), to X is the consistent linear extension X,
and that (X U Y), reverses N;. Then let (U U V)§ be the linear extension of

U U V defined by

(UUVi={u <o, <up <0, <+ <ty <05 <ty < Uy < Vg <00
<un~1<vn—1}-

Note that the restriction of (U U V)§ to U is U¥, the reverse of the consistent
linear extension U, and that (U U V)§ reverses all nonforced pairs in N, except
(Un, Uni)-

In order to present the construction in general form, we will also include the
antichains A and B in the linear extensions Si, 83,..., 8 0of S —{x}. The reader
should note that when ¢ = 3, these points are not in S and are to be deleted from
the definition. For convenience, we define linear orders A, and Bo,on A and B
by Ao={a:<a,<:--<a-s} and Bo={b,<b,<---<b,3}.

We then define

S(=Bo< U1<(XU Y)o_{x}'< V<A0,
Sé‘_‘_ U2<X§<B0"{b1}< a1<b1<A0—{al}< Y< ‘/,
Si= U3<X‘;<Bo_._{b2}<a2< b2<A0——{a2}< Y <V,
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S,;= Us< X5<Bo—{bs}<a;<b;<Ay—{as}< Y <V,

2= U< X/, <Bo— {bt~3}<at-3<bt—3<A0_{az—3}< Y<V,
SL=B<X | <U-—{}< V<u, <Y<A,
SI=By<X;<(UUV);<Y<A,.

In order to verify that these linear extensions form a realizer of S —{x}, we
make the following observations:

(1) Each S is a linear extension of § —{x}.

2) B<U<X-{x}and Y<V<A in S

@) B<X-{x}<Uand V<Y<A in S'.

@IHt>3, U<X—{x}<Band A<Y<V in S,

G) Ifx'€X—{x}, yE€ Y, and x'||y, then y <x’ in S..

(6) S/-, and S| reverse N,.

(7) If t >3, (b, a:) is reversed in S;., for i = 1,2,...,t—3. :

It follows that {S],S;,...,S} is a realizer of § —{x}. Thus dim(S —{x})=1¢
and dim $ =t +1. By symmetry, we conclude that dim(S —{u}) =t for every
uel.

As noted previously, the poset S may not be irreducible but we may remove
points from § — (X U U) until we obtain a ¢ + 1-irreducible subposet R of S so
that X U U C R. Although we do not need to be concerned with the details, the
reader may note that if r > 3, then the poset R will also contain A U B. With this
observation the proof of our principal theorem is complete. []

Although we do not include the details here, the reader may enjoy the task of
verifying the following examples.

Example 8. If S is the 4-dimensional poset shown in Fig. 5, then the poset
R =8 —{y,, y4, ys, 02, v, v} is a 4-irreducible poset containing the three irreduc-
ible poset X shown in Fig. 3.

Example 9. For each ¢ =3, the standard example of a ¢-irreducible poset is the
set of all one-element and n —1 element subsets of an n element set partially
ordered by inclusion. Let X be this poset with the points labelled {x,, x,, . . ., X2}
so that x; < x,; if and only if i # j. Then the subposet R of S whose point set is
XUUUAUBU{y,uv}is t + 1-irreducible.

Example 10. In the proof of our principal theorem, it is easy to see that U need
not be isomorphic to X. In fact U need only be another t-irreducible poset.
Therefore this construction is useful to produce posets with prescribed parame-

Every t-irreducible partial order is a subc

ters. For example, the construction prodt ’

t-irreducible poset whose height exceec
that this is impossible when ¢ = 3.
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Every t-irreducible partial order is a suborder of a t + 1-irreducible partial order 621

ters. For example, the construction produces for each t = 4 and each pair (h, w) a
t-irreducible poset whose height exceeds h and whose width exceeds w. Note
that this is impossible when t = 3.
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