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1. Introduction

Since graphs are simple and elegant structures, it is not surprising that they
have been studied intensively. In contrast, partially ordered sets have
considerably more structure and are therefore viewed by some as being less
elegant. In recent years, however, there has been a resurgence of interest in
partially ordered sets and their combinatorial properties. In something of a
reversal of roles, other mathematical structures, such as graphs, groups, and
lattices, have been used to study partial orders, rather than the ordered sets
being the tools. Results of these investigations appear to have justified this
approach, and the theory of partially ordered sets has shed hight on a number
of combinatorial problems,

In this chapter, we survey some of the theory of partially ordered sets. In
keeping with the theme of this book, we concentrate on topics related to
graphs. Using the concepts of the dimension and rank of partially ordered
sets, we explore topics involving graph colorings, planar graphs, forbidden
subgraphs, and extremal digraphs.

The next two sections provide the fundamental definitions and notation
for partially ordered sets, and introduce the concepts of dimension and rank.

¥ Research supported in part by NSF grants 1SP-8011451 and MCS-8202172.
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238 WILLIAM T. TROTTER, JR.

In Section 4, we give a construction of a hypergraph from a partially ordereq
set in such a way that the chromatic number of the former equals the
dimension of the latter. (In many cases, the hypergraph is a graph whoge
chromatic number is easily found.) In Section 5, we discuss the connectiong
between the dimension of a partiaily ordered set and the planarity of its
Hasse diagram. Section6 is devoted to the interplay between dimension and
certain intersection graphs, such as interval graphs.

In Section 7, we turn our attention to the concept of rank, and present 4p
algorithm for its determination as the maximum number of arcs in a digraph
of a particular type. For one class of partially ordered sets, this algorithm
reduces to an extremal digraph problem whose solution generalizes Turdn’s
theorem. We close the chapter with a compilation of some open problems.

The author would like to express his appreciation to his colleague Laurie
Hopkins for her many helpful conversations and assistance in the prepara-
tion of this chapter.

2. Definitions and Terminology

A partially ordered set (X, P), or poset for short, consists of a non-empty set
X and a binary relation P on X which is reflexive, anti-symmetric and
transitive. The elements of X are called points, and the relation P is called a
partial ordering on X. An example is the collection of pairs P = {(a, a), (b,b),
(¢,c), (d,d), (e, e), (a, b), (a, c), (d, c), (e, a), (e, d), (e, ¢), (e, b)} on the set X
={a,b,c,d, e},

For convenience, both xPy and x < y are used to denote (x, y)e P. In
addition, we let x < y denote that x < y and x # y, in the customary way.
If x < p, and if there is no point z such that x < z < y, then y is said to
cover z. For finite posets, it is clear that the entire relation is determined
by the covering relation. Tn  our example, this is just the set
{(a, b), (a, ¢), (d, c), (e, a), (e, d)}.

This covering relation is frequently used in representin g a poset diagram-
matically.’ A Hasse diagram of'a poset (X, P)is a drawing in which the points
of X' are placed so that if covers x,’then J is placed at a higher level than x
and joined to x by a line segment. The corresponding graph is called the

Hasse gr'a'phjb'f the IS:O_:St:*'FO"r"d"u'r'éxé"mplé, a Hasse diagram is shown in
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Two distinct elements x and y in a poset (X, P) are called comparable if
either x <y ory <x, and incomparable otherwise. We denote the fact that x
and y are incomparable by x||y. The binary relation C, consisting of all
comparable pairs ol (X, P)is called the comparability relation. It is clearly
symmetric, fmd its graph is called the comparability graph of the poset. The
incomparability relation I, and incomparability graph are defined similarly.
Figure 2 Shg:ws these graphs for the example given above. Note that the
incomparability graph of a poset is always the complement of the compar-
ability graph.

Cp Ip
Fig. 2

A poset in which wtwo elements are comparable is called a chain {or
linear order or total order), and one in which Ilgmgglements are comparable
is called an antichain (or unordered set). The size of a largest chain in a poset is
called the length of the poset, and that of a largest antichain is called its width.
Thus, the length of the poset shown in Fig. 1 is 3, and its width is 2.

At times, it is convenient to use a single symbol to denote a poset, such as X
for (X, P). In particular, we denote by

R, the real numbers with the usual order;
1, an h-chain;
and 7, an p-antichain.

The dual P of a binary relation P is the set of pairs (x,y) for which
(y, x) € P. When P is a partial ordering on X, P is also a partial ordering, and
it is natural to refer to (X, P) as the dual of (X, P). Note that il a Hasse
diagram of (X, P) is inverted, then the result is a diagram of its dual.

A subposet of a poset (X, FP) is a poset (¥, Q) in which ¥ € X and Q is
the restriction Py of P to ¥ x Y. Note that under this definition a subposet is
determined by.its set of points. |

Two-posets (X, P)and (X', P’) are called isomorphic if there is a one-to-
one. Co e's;jp:hdg:h_ce $:X — X' such that x<y in P il and only if
$(x) < ¢(y) in P’. In general, we do not distinguish between isomorphic
posets; and we frequently use equality to denote isomorphism.
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The poset (Y, @) is said to be embedded or contained in (X, P), denoted by
(Y, Q) < (X, P), if (¥, Q) is isomorphic to a subposet of (X, P).

Our next concept, which will be the basis of the definitions of dimension
and rank in the next section, is in contrast to an embedding. If P and Q are
two partial orders on the same set X, we call Q an extensionof Pif P < Q;itis
a linear extension if (in addition) Q 1s a chain.

We conclude this section with a theorem on linear extensions, due to
Szpilrajn [37]:

Theorem 2.1. (i) Every partial ordering P of a set X has a linear extension:

(i) the intersection of all linear extensions of P is P itself. |

3. Dimension and Rank

In this section we introduce two concepts which are of interest, both in their
own right and in connection with more graph-theoretic concepts (as we shall
see in later sections).

To begin with, we recall Theorem 2.1(ii) which states that every partial
ordering is determined as the intersection of its linear extensions. This result
can be restated as follows: for any two incomparable elements x and y in a
poset (X, P), there 1s one linear extension of P in which x < y, and another in
which y < x.

In general, however, one does not need all of its linear extensions to
determine a partial ozder P. A realizer of P is any collection R of linear
extensions whose intersection is P. Alternatively, a collection R =
{Ly, L,, ..., L} of linear extensions of P is a realizer of P when x < yin P
if and only if x <y in every L,. Notationally, it is convenient to let
L: [xy, X5, ..., x,] denote the linear order on {x,, x,,..., x,} in which
X; € X3 £...<5x,. For an example of a realizer, consider the poset in
Fig. 3, for which the four linear extensions indicated constitute a realizer.

The dimension dim(X, P) of a poset (X, P) is the minimum order of a
realizer of P. This definition was first made in the historic paper of Dushnik
and Miller [10]. We observe that a poset has dimension 1 if and only if it is a
chain. An example of a poset of dimension 2 is the n-element antichain 7 (for
n = 2) since, for any linear order L, {L, L} is a realizer.

1 2
L,:[3,7.8,4,5,.1,6,2]
1,:{7,4.8,5,6,2, 3, 1]
3 4 6 Ly:[8,7,5,3,4,6,1,2]
L,:[8,6,7,3,4,5,1,2]
7 8

Fig. 3
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For n 2 3, we define the poset SY to consist of » maximal clements
ay, dzs v o5 o and n minimal elements by, by, ..., b,, with by <a; it i # .
This poset 1s indicated in Fig. 4, and we note that 89 is isomorphic to the
poset of the 1-element and (n — 1)-element subsets of an n-element set,

ordered by inclusion.

aj a3 ay 4y

Fig. 4

Theorem 3.1. The dimension of S, is n.

Proof. First consider the set R={L,,L,,...,L,} of linear extensions,
where

Lk: {bi" . .,bkﬂ_l, bk+i7' . .,bn, a,, bk,a,,. e Oy g s - Ldyd

We observe that, if i # j, then b; < a; < b; < a;in Ly, and b; < a; < by < a;in
L;. It follows that R o a realizer of S, and hence that dim S; < n.

On the other hand, if S is any realizer of S°, then foreachk =1,2,....n
some element of S must have ¢, < b,. Furthermore, it is easy to sec that no
linear extension L of S can have a; < b, and a; < by, for i # J. 1t follows that
dim $° > n, and the proof is complete. |

This poset Sy is known as the standard n-dimensional poset. As was shown
first by Hiraguchi [16], and later by Bogart [2], it has the minimum number
of elements among the n-dimensional posets. In this sense, it plays a role in
dimension theory analogous 10 that played by the complete graph in
chromatic graph theory. We shall say more about this analogy in the next
section.

An alternative definition of dimension, in terms of coordinates, was given
by Ore [31]. Let R’ denote the poset of all t-tuples of real numbers, partially
ordered by inequality in each coordinate—that is, (@i, -« - 4} S by, 0y)
if and only if each a; < b;. Then dim(X, P) is the minimum number ¢ such
that (X, P)<c R'. For example, consider the poset (X, P) in Fig. 5. The given
coordinates show that its dimension is at most 3. This coordinatization
corresponds to  the three linear extensions Ly:[e,b,f,d,q, cl;
L,:[e.fic,b,d als Ly [f.d,e b,c,al. You may like to show that
dim(X, P) > 2 by proving that there is no realizer of order 2: for a more
systematic-_appmach,.see Section 4.
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Fig. 5

We now turn our attention to the concept of rank, which was first defined
by Maurer and Rabinovitch [27]. A realizer R of a poset X is called
irredundant if no proper subset of R is a realizer of X. The rank of a poset X,
denoted by rank X, is the maximum order of an irredundant realizer. Clearly,
a realizer of X with order dim X is irredundant, and so the dimension of a
poset never exceeds its rank. A poset has rank I if and only if it is a chain.

a b

Fig. 6

As a further example, consider the poset X = (X, P) in Fig. 6. It has only
five linear extensions:

L,:[e,d,a,b]; L,:[d,c,a,b]; Ls:{c,d, b,al;
Ly [d c,bal; Ls:[d,b,c, a]l.

Therefore, 2 < dim X < rank X < 5. However, b and ¢ are incomparable in P
so that, since ¢ < b in each L; except Ls, any realizer must contain L,.
Furthermore, since {Ll, Ls} is a realizer, dim X = 2, and since the set of
all five 1s redundant, rank X < 4. It is not difficult to use this to verify that
rank X = 3, and that {L,, L;, L} is the only maximum irredundant realizer
of X.

Our next example, due to Maurer and Rabinovitch [27], shows that the
rank of a 2-dimensional poset can be arbitrarily large. This example is the
antichain 2n, in which we take X to be {a,, a5, ...,a,,b;, by, ..., b,}. The
family R of n® linear extensions

Lij: [al, .. .,a,-_l,at-.;.l, .. .,an, bj’ (1,-, b}, .. "bj—l’bj+l’_‘ . .,b"]

1s easily seen to be a realizer. Its irredundancy follows from the fact that,
except for L;;, a; < b; in each extension in R. The rank of 2n is therefore at
least n?.

We now turn to the rank of the standard n-dimensional poset:
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Theorem 3.2. The rank of S is n.

proof. Thatn is a lower bound for the rank of SO follows from Theorem 3.1

To see that it is an upper bound, we observe that a family R of linear
extensions of SY is a realizer if and only if, for i =1,2,...,n, there exists
L;eRin which a; < b;. |l

We note in passing that Maurer, Rabinovitch and Trotter [30] have
determined those posets X for which dim X = rank X.

These examples suggest that it would be useful to have some [urther
techniques for deciding whether or not a family of linear extensions of a
partial order P is a realizer of P. To this end, we define an incomparable pair
(x, y)of (X, P)to be a non-forced pair if P w {(x, y)} isalsoa partial order. In
other words, an incomparable pair (x, y) 18 non-forced if and only il z < x
implies z < ¥, and z > y implies z > x. The set N, of non-forced pairs can be
considered as a digraph with vertex-set X : an example is shown in Fig. 7.
Given a family R of linear extensions of a partial order P, and a subset S of
the incomparable pairs of P, we say that R reverses S if, for each pair (x, y) in
S, (y, x) € L for some L in R. Our interest in non-forced pairs is explained by
the following elementary result of Maurer, Rabinovitch and Trotter [28]:

Theorem 3.3. A family R of linear extensions of a poset (X, P)isa realizer of
P if and only if R reverses the set Np of non-forced pairs. I

a ® b

b ¢
d e f
(X.P)

Fig. 7

Another question of some interest is when a given set of incomparable
pairs can be included in a linear extension. In order to answer this,
we need some further definitions. A sequence of incomparable pairs
(ay, by), (a2, b2)s -+ (a,, b,) in Ip i called a P-alternating cycle if b, € a,,
b, < as, . ..., and b, < a,, and 1s called a strong P-alternating cycle if, in
addition; by a; for all other pairs. For example, in the poset of Fig. 8, the
five pairslabeled(a;, b,) form an alternating cycle, whereas (ay, bi)(@s, b3) is
a strong alternating cycle.
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Fig. 8

The following result was proved by Trotter and Moore [50]:

Theorem 3.4. Let (X, P) be a poset, and let § be a set of incomparable pairs.
Then the following statements are equivalent:

(1) there exists a linear extension L of P such that S < L;
(2) no subset of S forms a P-alternating cycle;
(3) no subset of S forms a strong P-alternating cycle. ||

Alternating cycles may be used to provide an alternative definition of
dimension:

Theorem 3.5.  If(X, P)is not a chain, then dim (X, P) is the least number t for
which there exists a partition of I, into t subsets, none of which contains a subset
which forms a P-alternating cycle. ||

4. Dimension and Chromatic Number

In this section we limit our attention to those posets which are not chains;
thus 7, # . We define the associated hypergraph Hy of such a poset X =
(X, P) as follows: the vertex-set of Fy is the set N, of non-forced pairs, and
a subset S of N, is an edge if and only if its dual S is a strong P-alternating
cycle. We define the chromatic number 3(H) of a hypergraph H to be the
minimum number of colors required to color the vertices of H so that no edge
of H has all of its vertices colored the same. The following result is actually a
corollary of Theorems 3.4 and 3.5:

Theorem 4.1. Let X = (X, P) be a poset and let Hy be its associated
hypergraph. Then dim X = y(Hy). ||

We now present several partial orders whose dimensions can be readily
computed using the preceding theorem, and we discuss their role in some of
the theorems in dimension theory. Our first example clarifies our previous
comment on the analogy between the standard example of an n-dimensional
poset and a complete graph on n vertices. Let n > 3, and let X be S?, the

n s
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standard n-dimensional poset. Then N, ={(b;, 4;):1<i<n}, and the
associated hypergraph is a simple graph——the complete graph K. Thus
dim Sy = x(K,) =n.

The posets S, figure in several theorems in dimension theory. Hiraguchi
[16] proved that, if {X| > 4, then dim(X, P) < 4/X|. Bogart and Trotter (4]
and Kimble [23] gave a forbidden subposet characterization of this
inequality, which can be summarized by saying that, if |X| < 2»n + 1 and
i = 4, then dim(X, P) < n, unless (X, P) contains S. Hiraguchi also proved
that the dimension of a poset does not exceeds its width, and the posets SP
show that this inequality is best possible. Finding a forbidden subposet
characterization of this inequality appears to be a difficult problem.

Kimble [23] and Trotter {41] proved a dual result by showing that, if 4 is
an antichain m a poset (X, P), and if |X — 4| > 2, then dim(X, P) <
IX — A|. Trotter [43] gave a forbidden subposet characterization of this
inequality, mvolving a family of posets whose regular structure can be
explicitly described. When [X — A| = n, this family includes S°. In [39],
Trotter constructed a family of posets called crowns, and computed their
dimension; this family also contains S°.

We next consider the poset X, previously discussed in Section 3, whose
Hasse diagram is given in Fig. 9. The associated hypergraph is again a simple
graph—the circuit graph Cs.

a

b d {b.) {dc)

e ! (1.0 (e.d)

X Hy
Fig. ¢

For n > 3, let X be the (n + 1)-dimensional poset indicated in Fig. 10,
whose associated hypergraph is the simple graph Hy. To see that y(Hy) =
n + 1, note that y(Hy) > n, since the subgraph {(ag;, ¢;): 1 <1< nj is com-
plete. Now suppose that y(Hy) = », and that fis an n-coloring. Then we may
assume, without loss of generality, that f{(a;, ¢;)) =1, for i=1,2,...,n
Since (g, b;) is adjacent to (a;, ¢;} when i # j, we must have f(q, b;) =1, for
i=1,2,..., n However, it is then impossible for f to assign a color to the
vertex (p, g). Thus y(Hy) > n. On the other hand, assigning to (p, ¢) the color
n + 1 shows that y(Hy)=n+ 1.

In [42], Trotter proved that if A is the set of maximal {or minimal)
elements in a poset (X, P), and if X — 4 # &, then the dimension of (X, P}
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Fig. 10

does not exceed one more than the width of the subposet (X — 4, P, _ ). The
posets in Figs 9 and 10 show that this inequality is best possible. Trotter [42]
also proved that il A is an arbitrary antichain in a poset (X, P), and if
X — A # (J, then the dimension of (X, P) does not exceed one more than
twice the width of (X — A4, Py _,). The posets constructed in [417 show
that this inequality is also best possible.

Next let n = I, and let X, be the (21 + 5)-element poset given in Fig. 11.

2n+4 2n+ 35

2n+2

(2n+3.20+4) {2l!+1.211+3)

m (2. 2n+ 1)
2n+4.2n+ 5)g

B (20 - 1.20)
(32n+2e

. @(2n—22n-1)
(2n+22n+3)

hz?
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When n = 1, the hypergraph associated with thjs poset i1s a 3-chromatic
hypergraph. This hypergraph has two edges, each containing three vertices.
The remaining nine edges {orm a simple graph which contains a circuit of
length seven. When n = 2, the hypergraph associated with X, 15 a 3-
chromatic simple graph containing an odd circuit of length 2n + 3.

For any integer / > 2, a poset X is said to be t-irreducible if the dimension
of X is t and if the dimension of every proper non-empty subposet of X is less
than ¢. Hiraguchi [16] proved that the removal of a point from a poset can
decrease its dimension by at most 1, so a poset X = (X, P)is t-irreducible if
dim(X, P) = tand il dim(X — {x}, Py _,,) =t — I forevery x & X. The only
2-irreducible poset is a 2-element antichain. There are infinitely many 3-
irreducible posets, and they can be conveniently grouped into nine infinite
families with eighteen odd examples left over. The complete determination of
these posets was made independently by Kelly [20] and by Trotter and
Moore [49]; Kelly’s approach was lattice-theoretic whereas Trotter and
Moore’s was graph-theoretic. We discuss this subject in greater detail in
Sections 5 and 6.

Each of the posets in the last four examples is irreducible, and other
examples of irreducible posets were given in [21], [42], [52] and [53]. Using
a construction motivated by Toft’s construction [38] of color-critical graphs
with a large number of edges relative to the number of vertices, Trotter and
Ross [52] proved that every r-irreducible poset can be embedded in a (7 -+ 1)-
irreducible poset. Using the family of irreducible posets in Fig. 11 and Kelly’s
dimension product [21], Trotter and Ross [53] subsequently proved that,
for ¢ = 3, every t-dimensional poset is a subposet of a (¢ + 1)-irreducible poset.
Note that this result is false when ¢ = 2, since no 2-dimensional poset whose
length and width both exceed 5 can be a subposet of a 3-irreducible poset.

A review of the examples presented thus far may mislead one into
believing that the hypergraph Hy always contains a subgraph which is a
simple graph with the same chromatic number. Cogis [5] and Doignon [§],
who have investigated many topics related to dimension theory, conjectured
that if we let Gx denote the graph whose vertex-set is N, and whose edge-set
contains only those edges in Hy which contain exactly two vertices, then Gy
and Hy have the same chromatic number. The next example shows that this
conjecture 1s false, and explains why we must respect edges of all sizes in
coloring the hypergraph Hy.

We let n > 3, and construct a poset X = X, which contains three disjoint
subposets Y,, Y, and Y;, each of which is a copy of S? and in which the
minimal elements of Y; are less than the maximal elements of Y; ., in a cyclic
fashion. It is easy to see that, if (x, y} is a non-forced pair in X, then x is a
minimal element and y is a maximal element. Let N, = N, U N,, where N,
contains those non-forced pairs (x, y) such that x and y come from the same
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copy of 8}/, and N, contains those pairs (x, y) such that x and y come from

different copies of SJ. Note that |[N,| = 3n, and |N,| = 3n2. We observe that
the hypergraph Hy contains »n° edges, each containing exactly three vertjceg
from N, and none of which is present in the simple graph Gy. At this point,
note that the chromatic number of the hypergraph Hy is at least 31, since no
three vertices in N, can be assigned the same color. (Of course, it is also true
that certain pairs of vertices in N, cannot be assigned the same color.) Now
consider the problem of coloring the graph Gy. It is easy to see that n colors
suffice to color N,. Furthermore, one additional color may be used to color
all of the vertices in N,, since no two of these vertices are adjacent in G,.
Thus y(Gx) < n + 1. Furthermore, when n > 4,

WGy <n+1<3n<y(H,) =dimX.

The analogies between graph coloring and dimension theory suggest many
problems for future investigation. Central among them are developing
analogues of Brooks’ theorem and Vizing’s theorem for posets, and studying
irreducible posets by classifying their associated hypergraphs.

5. Dimension and Planarity

Perhaps no topic in graph theory has attracted more attention than the sub-
ject of planar graphs and their chromatic numbers. In this section, we discuss
the relationship between the dimension of posets and the planarity of their
Hasse diagrams. In addition to some interesting mathematical consequences,
this relationship yields some tantalizing unsolved problems of intrinsic
graph-theoretic concern.

A poset (X, P)is said to be planar if it is possible to draw its Hasse diagram
in the plane without edge-crossings. If a poset is planar, then clearly so is its
Hasse graph. On the other hand, it is possible for a non-planar poset to have
a planar Hasse graph, as in the poset of Fig. 12. No plane drawing of the
Hasse graph is a Hasse diagram of the poset.

0

Hasse diagram ' Hasse Graph
Fig. 12
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Fig. 13

The planarity of a particular poset may not be obvious, however; for
example, S is planar, as shown in Fig. 13.

In order to discuss planarity for posets in a more general setting, we call a
simple graph in which each edge is assigned a direction an AO-graph (short
for acyclic oriented graph) when it contains no directed circuits. Diagrams
for AO-graphs can be presented without arrowheads by using the same
convention as for a Hasse diagram of a poset—we require that y be higher in
the figure than x whenever the AO-graph contains an arc from x to y; these
diagrams are called order diagrams. Figure 14 shows an AQ-graph and its
order diagram.

Fig. 14

Among the many unsolved problems involving AO-graphs is the charac-
terization of planar AO-graphs; these graphs should admit a Kuratowski-
type characterization. Figure 15 contains the order diagrams of some of the
forbidden subgraphs. Each order diagram in the figure is non-planar, but the
deletion of any edge leaves a planar diagram. Note that only the first diagram
can be judged to be non-planar by Kuratowski’s theorem (see Chapter 1); the
others require special arguments.

The last three posets in Fig. 15 illustrate a concept for AQ-graphs similar to
outerplanarity for simple graphs. An AO-graph G is said to be zero-join
planar if the AO-graph G, formed by adding a new vertex 0 and edges from 0
to all vertices in G is planar. These graphs should also admit a forbidden
subgraph characterization; removing the lowest point from the last three
diagrams in Fig. 15 leaves three of the AO-graphs which must appear in this
characterization.
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Y ¥

Fig. 15

The interplay between dimension and planarity begins with planar lattices.
A finite poset X is a lattice if, for each pair of points x and y, there are unique
points z and w such that, if ¢ > xand a > ythena 2z and if b < xand b <y
then b < w. The points z and w are called the join and meet of x and y, and are
denoted by x v y and x A y, respectively. (Figure 16 contains two posets
which are Iattices.) The algebraic, geometric and topological properties of
lattices have been studied extensively (see [1], for example); here we discuss
brielly some of their combinatorial properties.

B>

» Fig. 16 ‘

The following elementary results are a combination of a theorem of Zilber
(see [1, Exercise 7¢ on page 32]) and a theorem of Dushnik and Miller [10]:
Theorem 5.1. A poset X has dimension 2 if and only if its céﬁm:d('_abilii y graph
is an incomparability graph—that is, if and only if there exists a poset Y such
that x is comparable toy X ifandonlyif x|jyinY. | N

Figure 17 contains two complementary 2-dimensional posets.:
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Fig. 17

Theorem 5.2. Any planar poset with a greatest and a least element is a 2-
dimensional lattice. ||

The second poset in Fig. 16 is non-planar since it is 3-dimensional (it
contains S3).

The poset X in Fig. 18, which is a 2-dimensional non-planar poset with
greatest and least elements, demonstrates that the converse of Theorem 5.2 is
valid. One way to settle the question of planarity for this poset using only
dimension theory is to insert points on two of the edges in this diagram to
form a new poset Y. Clearly this does not affect planarity, but Y 1s 3-
dimensional (see Fig. 9) and is thus non-planar.

Fig. 18

Kelly and Rival [22] gave a forbidden subposet characterization of planar
lattices by determining the minimum collection % of non-planar (3-
dimensional) lattices so that a lattice L is non-planar if and only if it contains
4 lattice from % as a subposet. Baker (unpublished) proved that the
completion of a poset X is a lattice of the same dimension. These two results
were used by Kelly [20] to determine the collection of all 3-irreducible posets.
Kelly’s argument is quite complex and requires clever organization to handle
the nine infinite families and eighteen odd examples present in the final list of
all 3-irreducible posets. Trotter and Moore [50] investigated the dimension
of planar posets in general, and extended Theorem 5.2 to the case where only

one bound is present:

Theorem 5.3. If X is a planar poset with either a greatest or a least element,
then dim X < 3. ||
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Fig. 19

Each of the posets in Fig. 19 is 3-dimensional. Removing the least element
from the last one leaves a poset whose Hasse graph is a tree. In [50], Trotter
and Moore proved that the dimension of a poset whose Hasse graph is g
tree is at most 3; this was accomplished by showing that its Hasse diagram is
zero-join planar. They also constructed an infinite family of 4-dimensionaj
posets. (Recall from Fig. 13 that the 4-dimensional poset 87 is planar.)

For some time, we believed that there might be a theory relating the
maximum dimension of a poset to the minimum genus of a surface on which
the Hasse diagram can be embedded. This dream began to fade with the
discovery that embedding AO-graphs on the plane is different from
embedding them on a sphere, and the realization that there exist posets of
arbitrarily large dimension whose Hasse diagrams can be embedded on the
sphere (see [42]). Kelly [21] removed any lingering doubt about the viability
of such a theory with the following result:

Theorem 5.4.  There exist planar posets of arbitrary dimension.

Proof. It suffices to show that, for each »n = 3, there exists a planar poset X
containing S?. Figure 20 gives the Hasse diagram of such a poset. |

It is not known whether this result can be extended to irreducible planar
posets.

It also remains to investigate which properties of a poset are determined by
its Hasse graph. The characterization of Hasse graphs themselves remains
unsolved. (A Hasse graph is triangle-free, but Negetil (personal communi-

cation) has shown that there exist graphs of arbitrarily large girth which are
not Hasse graphs.)

6. Dimension and Forbidden Subgraphs

Any subgraph of a planar graph is also planar, so it is possible {o characterize
planar graphs by providing a minimum list of forbidden subgraphs (as
Kuratowski did in his famous theorem). In this section, we discuss several
other properties of graphs which admit forbidden subgraph characteriza-
tions. These characterization problems involve families of “intersection
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Fig. 20

graphs, and are related to the problem of determining the collection of all 3-
irreducible posets. ‘

Recall from Chapter 3 that a graph G is called an interval graph if it is the
intersection graph of a family of intervals on a line. For example, the graph G
in Fig. 21 is an interval graph, as indicated; for clarity, the intervals in the
representation have been displaced vertically. Interval graphs belong to the
family of rigid-circuit graphs (also called ¢riangulated graphs) in which every
circuit of length at least 4 has a chord [25]. Thus the circuit graph C, s
not an interval graph for n > 3.

Any induced subgraph of an interval graph is also an interval graph, and
so this family of graphs admits a forbidden subgraph characterization. The
following result is due to Lekkerkerker and Boland [25]:

Fig. 21
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Theorem 6.1. A rigid-circuit graph is an interval graph if and only if it does
not contain any of the graphs in Fig. 22 as an induced subgraph. ||

i 2 3 v oan+i
Ginzl

Fig. 22

Interval graphs can also be used to define a class of partial orders and a
variant of the concept of dimension, which constitute a connecting link
between dimension theory and several forbidden subgraph problems. The
discussion of this link begins with comparability graphs.” Any induced
subgraph of a comparability graph is also a comparability graph. Gallai
[13] determined the list € of forbidden subgraphs for comparability graphs.
This list is quite long and the argument is necessarily quite complicated, and
so in Fig. 23 we present only two of the forbidden subgraphs.

From Theorem 5.1, we know that a poset has dimension at most 2 if and
only if its incomparability graph is a comparability graph: It follows that if X

Fig. 23
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is a 3-irreducible poset, and if G 1s the comparability graph of X, then the
complement of G is one of the graphs in Gallai’s list. Notice, for example
that the graph G, in Fig. 23 is the incomparability graph of 8. The list ofali
3.irreducible posets can be determined by systematically examining each
graph G in €. I the comPlement of G is a comparability graph, then any
transitive orientation of G is a 3-irreducible poset. Furthermore, every 3-
irreducible poset arises in this fashion. This process is simplified considerably
by the fact that the comparability graph of an irreducible poset admits a
unique transitive orientation up to duality (see [51]).

If.# is a collection of intervals of the real line, then a partial order of .7 1s
obtained by setting [ay, b,] < [4,, b,] if and only if b, < a,. A poset which
arises in this fashion is called an interval order. A poset is an interval order 1f
and only if its incomparability graph is an interval graph. The {ollowing
forbidden subposet characterization is due to Fishburn [12]:

Theorem 6.2. A poset is an interval order if and only if it does not contain the
poset in Fig. 24 as a subposet. ||

Fig. 24

As we suggested earlier, the concept of interval order yields a natural
generalization of dimension, first defined by Trotter and Bogart. An interval
realizer of a poset (X, P) is a family {P,,P,, ..., P} ol extensions such that
each (X, P,) is an interval order and P = P, n P, n...n P. The interval
dimension of (X, P), denoted by dim/({X, P), is the minimum number of
extensions in any interval realizer. Since every linear order is an interval
order, it follows that dim; X < dim X for every poset X. There exist interval
orders of arbitrarily large dimension [3]; however, the dimension of a poset
of length 2 never exceeds the interval dimension by more than 1.

For = 2, a poset X is called t-interval irreducible if dim, X =1, but
dim, Y < ¢ for every proper subposet Y of X. The only 2-interval irreducible
poset is the 4-point example in Fig. 24, so we turn 1o the case 1 = 3.

Let X be a 3-interval irreducible poset of length 2, and let G(X) and G(X)
denote its comparability and incomparability graphs, respectively. Let A
denote the set of maximal elements and B the set of minimal elements of X,
and denote by G'(X) the graph obtained by adding to the comparability
graph G(X)'all edges between any two vertices in A and all edges between any
two vertices in B. Note that a vertex a € A is adjacent to a vertex b€ B in
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G'(X) if and only if « is not adjacent to b in G{X); but in both graphs, {he
subgraphs induced by A4 and B are complete.

Figure 25 shows G(X) and G'(X) for a particular poset X. Since X has
length 2, we consider a Hasse diagram for X as a diagram for the
comparability graph G(X) as well. You are encouraged to verify that X is 3-
interval irreducible in order to be convinced that such determinations can be
extremely difficult without the assistance of some general theorems.

We are now ready to discuss two important forbidden subgraph problems
closely related to dimension theory. A graph G is a circular-arc graph if it is
the intersection graph of a family of arcs on a circle. The problem of
characterizing these graphs was posed by Klee [24], and partial solutions
have been provided by Tucker [53], [54] and Hopkins [17]. Although the
general problem ol providing a forbidden subgraph characterization of
circular-arc graphs remains unsolved, the dimension theory of posets
contributes some significant partial results [497:

Theorem 6.3.  The incomparability graph of every 3-interval irreducible poset
X of length 2 is a forbidden subgraph in the characterization of circular-arc
graphs. |

The converse of Theorem 6.3 also holds, in the sense that every forbidden
subgraph with clique covering number 2 in the characterization of circular-
arc graphs arises in this fashion. In [46], Trotter used combinatorial
techniques for posets to determine completely all 3-interval irreducible posets
of length 2.

The determination of all 3-interval irreducible posets of length 2 yields a
bonus. A graph G is'called a rectangle graph if it is the intersection graph of a
family of rectangles in the plane, with the sides of the rectangles parallel to the
coordinate axes. The graph G in Fig. 26 is an example of a rectangle graph.

The graph G’(X) shown in Fig. 25 is one of the forbidden subgraphs in the
characterization of rectangle graphs. In fact, this example is an illustration of
the following theorem (see [46]):
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Fig. 26

Theorem 6.4. For any 3-interval irreducible poset X of length 2, the graph
G'(X) is a forbidden subgraph in the characterization of rectangle graphs. ||

As with Theorem 6.3, the converse of this theorem is also valid, in the sense
that every forbidden subgraph with clique covering number 2 in the
characterization of rectangle graphs has the form G’(X) for some 3-interval
irreducible poset X of length 2.

The general problem of representing graphs and posets by intervals,
rectangles and boxes has attracted considerable attention in recent years.
Roberts [34] defined the boxicity of a graph G as the minimum number ¢ for
which G is the intersection graph of boxes in R'. He showed that, for each
n = 1, the boxicity of a graph G with 2n + 1 vertices does not exceed n. Trotter
[45] gave a forbidden subgraph characterization of this inequality which 1s
very similar to the results obtained previously by Bogart and Trotter [4] and
Kimble [23] for Hiraguchi’s inequality (the dimension of a poset Xon2n+1
points does not exceed n, for n = 2). Witsenhausen [57] obtained additional
results, and Feinberg [11] considered a genéralization of boxicity involving
circular-arc graphs.

Two other areas of research involving interval graphs and interval orders
should be mentioned. The first of these involves restricting the number of
different lengths which may be used for intervals in the representation. For an
interval graph G, or an interval order X, we define the interval count to be the
least number ¢ for which the graph has a representation using intervals of
different lengths. An interval order with interval count 1 is also called a semi-
order. These posets admit a simple forbidden subposet characterization, due
to Scott and Suppes [35]:

Theorem 6.5. An interval order is a semi-order if and only if it does not
contain the poset in Fig. 27 as a subposet. |

The class of semi-orders is a class of posets which can be enumerated by a
relatively simple formula. Dean and Keller [7] showed that the number of
semi-orders on 1 points is the Catalan number (2"y/(n + 1) Roberts [34]
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o
Fig. 27

characterized interval graphs with interval count 1. Liebowitz [26] and
Couzzens [6] obtained several interesting results for the interval count, and
Fishburn (personal communication) has conjectured that the interval count
of an interval graph with 3n vertices does not exceed n. If it is true, this result
is best possible, as the example in Fig. 28 (due to Fishburn) shows: it is an
interval order with 3n 4+ | points and interval count n + 1.

Another area of interest involves multiple interval graphs. Trotter and
Harary [48] defined the interval number of a graph G to be the least number ¢
for which G is the intersection graph of a family of sets each of which is the
union of r intervals on the real line. They derived the following result:
Theorem 6.6. The interval number of the complete bipartite graph K, , is
[(mn + D)/(m + n)]. |

m.,n

Griggs and West [15] established the following upper bound on the
interval number of a graph in terms of its maximum valency p,.,,:

Theorem 6.7. The interval number of a graph G is at most [l’(’pm'“ + Dl

Griggs and West also proved that if G is regular and triangle- free then
equality holds in the preceding theorem. As a consequence, they showed that
the interval number of the n-cube is [{(n + 1)].

Griggs [14] proved the following result giving the maximum value of the
interval number of a graph, and settling a conjecture ‘made- by several
researchers: : = G TR
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Theorem 6.8. Ifn = 1,and if G is an interval graph with 4n — 1 vertices, then
the interval number of G is at most n. ||

The complete bipartite graph K,, ,, shows that this result is best possible.

The determination of the interval numbers of complete multipartite graphs
is quite complicated and has led to some interesting problems involving
Eulerian trails in directed graphs. We refer to [18] and [19] for these
results.

7. Rank and Digraphs

In this section, we present a summary of the general theory of poset rank, as
developed by Maurer, Rabinovitch and Trotter [28]. The central idea in this
theory is the conversion of the problem of determing the rank of a poset into
an extremal problem for digraphs. Graph-theoretical concepts make an
essential contribution to the development of this theory; in return, we get the
solution to a problem of independent interest in graph theory.

Recall that the rank of a poset is the maximum order of an irredundant
realizer. Since a poset has rank I if and only if it is a chain, we shall restrict
our attention to posets which are not chains. Thus, the sets I, and N, of
incomparable and non-forced pairs are non-empty.

Let X = (X, P} be a poset, let R={L,, L,,...,L,} be a realizer of X,
and let S; denote the set of non-forced pairs reversed by L; Then
Np=S8,0u8;u...uS, and R is irredundant if and only if each S; has a
pair (x;, y;) in no other §;. Just as we consider N, to be a digraph, so we use
graph-theoretical terminology for such a collection of pairs, calling it a critical
digraph [or R, or (more loosely) for X. Note that an irredundant realizer may
have more than one critical digraph, but that all must have the same number
of arcs—the number of linear extensions in the realizer.

For example, let (X, P) be the poset shown in Fig. 29, and let R be the

realizer consisting of
Ly:[f.b,c.d, e al, Ly:[f,d,e c,a,b], Lyi[e,e,d, f, b, a]l.

Fig. 29
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Then D, = {(e, b), (b, a), (f,e)} and D, = {(e, ¢), (¢, d), (d, e)} are both critj.
cal digraphs. Note that D, is a directed circuit in Ny, but that D is not, We
begin our development of critical digraphs by characterizing those which
contain directed circuits:

Theorem 7.1.  Let D be a critical digraph of an irredundant realizer of R of a
poset (X, P). If D contains a directed circuit, then it has no other arcs.

Proof. Suppose that C = v,v, ...v, is a directed circuit in D, and that D
has an arc xy not in C. If L is the linear extension in R which reverses the
non-forced pair (x, y) but no other pair in D, then in L we must have
vy <...<uv, <, which is impossible. Thus D can contain no arcs other
than those of C. ||

To illustrate this theorem, we consider the w-element antichain on
{1,2,...,n}. The n linear extensions Li: [,/ + 1,...,n,1,...,i— 1] form
an irredundant realizer, and the n pairs (1,2),(2,3),...,(n = 1,n),(n, 1)
form a critical digraph.

We know from Section 4 that the rank of a 2n-element antichain is at least
n*, so that, if n> 2, no critical digraph for an irredundant realizer of
maximum order can be a directed circuit. We now consider the circumstances
under which a critical digraph can be a directed circuit.

Given a poset X, we define a subposet Y to be partitive if it has the
following two properties:

(i) if xe X — Y, and if x > y for some ye Y, then x > y for all ye ¥;
(iYifxeX —Y,andil x < yforsomeye Y, thenx < yforall ye?.

Trivially, a single point is partitive in any poset, as is the entire poset. The 3-
element antichain {c, d, e} is a non-trivial partitive subposet of the poset X in
Fig. 29.

Theorem 7.2. Let (X, P) be a poset. Then the vertices of any directed circuir
in the digraph N of non-forced pairs form a partitive antichain in (X, P). ||

Critical digraphs also have an important property involving paths. A
digraph is called unipathic if there is at most one directed path from one given
vertex to another. Although a critical digraph need not be unipathic, it must
satisfy a weaker condition—a subgraph H of N, is called P-unipathic if the
existence of two directed paths from x to y in H implies that (x, y) is not a
non-forced pair. For example, consider the poset in Fig. 29 and the digraph
H of non-forced pairs in Fig. 30. Although H is not unipathic, it is P-
unipathic since (f, b) is not a non-forced pair. Note that, if N, has a directed

path from x to y, then (x, y) is in either P or N, since the relation P U N, is
transitive,
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S
H
Fig. 30

Theorem 7.3. Let (X, P) be a poset. Then ever v critical digraph of an
irredundant realizer is P-unipathic. |

It follows that a critical digraph is either a directed circuit on the vertices of
a partitive antichain, or it is P-unipathic and acyclic.

Corollary 7.4.  If the rank of a poset (X, P)isr, then there is either a partitive
antichain of order at least r, or an acyclic P-unipathic digraph with r ares. i

We are primarily interested in critical digraphs for irredundant realizers
with as many linear extensions as possible—that is, critical digraphs whose
arcs are equal in number to the rank of the poset. For convenience, we call
these critical rank digraphs of the poset. We further define a poset to be rank-
degenerate if it is a chain or if every critical rank digraph is a directed circuit.
We are interested in determining all rank-degenerate posets.

For disjoint posets X and Y, we let X @ Y denote the poset obtained from
the union of X and Y by putting x < y for all x e X and y € Y. Consider now
the poset X = 1 @ 2 @ k, where h and k are any positive integers, and where
the subposet 2 consists of v and w. Then X has only two linear extensions, and
the only critical digraph consists of vw and wo, Hence, X is rank-degenerate.
Similarly, consider the poset Y = h @ 3 @ k, where 3 consists of u, v and w.
Then the digraph of non-forced pairs has just the six arcs joining these three
vertices. Also, Y is 2-dimensional and has six linear extensions, and there are
two irredundant realizers of order 3, each having a directed circuit as its
critical digraph. Then Y is also rank-degenerate. In fact, it can be shown that
this completes the list of rank-degenerate posets:

Theorem 7.5. A poset is rank-degenerate if and only if it is a subposet of
h @ 3 @ k, for some positive integers h and k. |

We now consider posets X which are not rank-degenerate—that is, where
X has a critical rank digraph which is acyclic and P-unipathic. The next
theorem is powerful in that it enables one to get realizers from maximal
acyclic P-unipathic digraphs:
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Theorem 7.6. Let X = (X, P) be a poset which is not rank-degenerare, and let
D be a maximal acyclic P-unipathic digraph. Then D is a critical digraph for
X. |

We remark that the primary difficulty in proving this theorem is ip
deciding when to reverse those non-forced pairs in N, which do not belong to
D. However, once this theorem is proved, we have a graph-theoreticy]
formula for the rank as an immediate consequence:

Theorem 7.7.  The rank of a poset X = (X, P) which is not rank-degenerate is
the maximum number of arcs in any acyclic P-unipathic digraph of X. |

The computation of the rank using this theorem can often be simplified by
first getting rid of directed circuits in N,. This we do by choosing a linear
order L, and then defining the acyclic digraph N§ of non-forced pairs by

Ai;l:ﬁ {(Xs)’)ENP3(J’, x)éNP or (-Y,)’)@LQNP}-

Strictly speaking, N depends on L, but it is easy to see that any two linear
orders determine isomorphic subgraphs of N,.

Corollary 7.8.  The rank of a poset X = (X, P) which is not rank-degenerate
Is the maximum number of arcs in a P-unipathic subgraph of N#. ||

Since N§ is acyclic, it is an AO-graph, and so we can employ the
conventions introduced in Section 5 for order diagrams. For example,
Fig. 31 shows N} for the poset X of Fig. 29, with N* determined
by L:[a,b,c,d,e f]. To see this, consider the arcs in the triangle
T ={(c,d),{d,e), (¢, e)}. No P-unipathic subgraph can contain all three of
these arcs, since they form two disjoint paths from ¢ to e and (c, e} e N,.
There are six other triangles in N for which similar statements hold. The arcs
in T each belong to three of these triangles, whereas the other arcs in N%
belong to at most two triangles. It follows that no P-unipathic subgraph of

7 can contain eight of the ten arcs in N¥, and hence that rank X £ 7. On
the other hand, removing the arcs (c, d), (d, ¢) and (¢, e) from N¥ leaves a

c O ya
Fig. 31
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p-unipathic subgraph, and so rank X = 7. Note that we have just computed
(he rank of a poset without ever having built a realizer. Thus, Corollary 7.8
has reduced the computation of rank to a digraph extremal problem.

Our next example, due to Maurer and Rabinovitch, yields the rank of any
antichain. Let n > 4,and let X be the antichain on {1, 2, .. ., n} (which s not
rank-degenerate). By taking L: [1,2,...,n], we have N = ) 1<gi<
j < n}, the complete order on n elements. Now any P-unipathic subgraph H
can contain no triangles (since every arc is a non-forced pair). It follows from
Turan’s theorem that H contains at most 13n?} arcs. On the other hand, if
H={(0):1<I< in < j < n}, then H, is P-unipathic (no directed path has
length greater than 1), and has |3n*} arcs. Hence, for n = 4, the rank of 7 1s
4n%).

A natural question to ask is whether the rank of a poset is determined by its
comparability graph. Trotter, Moore and Sumner [51] proved that two
posets with the same comparability graph have the same dimension, and
Stanley [36] proved that they also have the same number of linear
extensions. It may therefore come as something of a surprise that they need
not have the same rank. You may wish to use Corollary 7.8 to verify this for
the following example, taken from [28]:

For disjoint posets X and Y, let X + Y denote the poset obtained from the
union of X and Y by taking x|y for all xeX and yeY. Now let X; =
len+(1@ 7i), and X, = (1 @A) + (7 @ 1). Then X, and X, have the
same comparability graph, but X, has rank 21(n + 1)?], while X, has rank
o+l

We now turn our attention to computing the rank of the posets in one
special class. The end result will be -a directed generalization of Turan’s
theorem.

Let m and n be positive integers withm < n, and let X(n, m) be the poset on
{1,2,...,np with pairs {(i,j): 1+ m < j}. Figure 32 shows Hasse diagrams

7
8 7 6 5 6 5
4 3
4 3 2 1
X(8.4)
2 1

X(7,2)
Fig. 32
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for X(8, 4) and X(7, 2). For a variety of reasons—Tlor example, X(2m, myis the
“split” of m (see [46]), and X(2n + 2, 2) 1s the result of removing one point
from a 3-irreducible poset shown in Fig. I 1—it is natural to consider the rank
of X(n, m). It is easily seen that it is a semi-order and thus, by a theorem of
Rabinovitch, has dimension at most 3.

We now look at our extremal problem. Let L, denote the digraph of the
usual linear order (the transitive tournament)on {1,2, ..., n}. A subgraph of
L, is said to be m-locally unipathic if its restriction to every subset of p
consecutive vertices of {1,2,...,n} is unipathic. We let u(n, m) denote the
maximum number of arcs in an m-locally unipathic subgraph of L, and we
attempt to determine this number and the corresponding extremal graphs.

Some special cases are already known to us:

(1) p(n, 1) = p(n, 2) = (§), since L, is 2-locally unipathic;

(2) u(3,3) =2, and each of the three subgraphs of L, with two arcs is
extremal: _

(3) u(n,n)=|n?), for n = 4.

Incase 3),if H, = {(i,j): 1 <i<34n<j<n},andil niseven, then the only
extremal graph is H,, whereas if n is odd, then the only extremal graphs are
H,and H,.

For the general case, there are “reasonable” conjectures for the answers,
and 1t turns out that they are correct. Let Vos Vis oo 0y V,+1, be a partition of
S,=1{1,2,...,n} such that

(i) each V; is a set of at least m — | consecutive integers;

(if) the integers in V; are less than those in Vier, for i € g;

(iif) when 1 < i< ¢, V, contains at least m — 1 integers.

Then the subgraph of L, with arc-set {(x,y):xeV, ye Vi, i <j}is m-locally
unipathic. Furthermore, the members of this family with the most arcs are
the digraphs H (m, ¢, r) defined as follows:

let ¢ and r be integers such that
(%) n=gqg{m-—1)+r, and [4(m ~ 1)) < r < [3(m - 1)),
and let H(m, g, r) be the digraph of the above type with

Vol = 13r], Vsl =411, and [Vil]=m—1, otherwise.
Maurer, Rabinovitch and Trotter [29] proved that these are indeed
extremal:

Theorem 7.9. Let nzm > 2, and let g and r satisfy (). Then the maximum
number of arcs in an m-locally unipathic subgraph H of L, is

un, my = (g) (m— 1) + gr(m — 1) + |3r?].
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Furthermore, H must be H(m,q,r) or H(m,q,r) in order to attain this
maximum. |

We consider two examples:

(i) whenn = 16 and m = 7, the only possibility is ¢ = 2 and r = 4, whence
u(16, 7) = 88, and the unique extremal graph is H(7, 2, 4),

(i) when n = 10 and m = 7, there are two choices—namely, g = 1 and
;=3, and ¢=0 and r=10; hence, 1(10,7) = 25, and there are three
extremal graphs, H(7, 1,3), H(7,1,3)and H(7,0, 10).

Any attempt to prove Theorem 7.9 here would go beyond our space
limitations, but we should like to make a few comments on our approach to
the problem. For the poset (X, P)=X(n,m), a subgraph H of N, is P-
unipathic if and only it H © P is an m-locally unipathic subgraph of L,,. Since
|P| = ("3 "), we have

rank X{(n, m) = p(n, m) — (n ; ': T 1>,

when X(n, m) is not rank-degenerate. The only cases in which X(i, m)1s rank-
degenerate occur when m = 1, in which case X is a chain, or when m = n and
n = 2 or 3, in which case X is an antichain. Since these cases can be disposed
of immediately, we can attack the problem using the theory of rank. The
principal weapons in this approach are some “‘exchange theorems” for arcs in
P-unipathic subgraphs of N¥. '

In conclusion, we note that this graph-theoretical approach to poset rank
can be used to obtain a simple proof of the formula for the rank of a
distributive lattice, first found by Rabinovitch and Rival [33]. It can also be
used to determine all posets with equal rank and dimension (see Maurer,
Rabinovitch and Trotter [30]). None the less, much work still remains to be
done in exploring the interplay between posets and digraphs.

8. Unsolved Problems

We conclude with a short list of research problems involving the topics
discussed in this chapter. As with ail such lists, there is an inherent danger
that significant problems have been omitted and that uninteresting problems
have been included. In presenting this list, it is our intention that it serve only
to foster further investigations of general areas.

(1) Isit true that if (X, P) is a poset, and if |X| = 3, then there exists a pair

x, y € X such that dim(X, P)< 1 +dim(X — {x,y}s Pxoey)?
(2) Which simple graphs are the Hasse graphs of partially ordered sets?
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(3) If H is a hypergraph, under what conditions does there exist a poset X

for which H = Hy? What happens if we also require X to be irreducible?
What happens if we require H to be critical?

(4) Under what conditions does the associated hypergraph Hy contain 4

simple graph G such that x(G) = y(Hy)?

(5) Which AO-graphs are planar? Which AO-graphs are zero-join planar?
(6) Which AO-graphs are the digraphs of non-forced pairs of a poset?

(7) To what degree does the digraph of non-forced pairs determine the

dimension and rank of a poset?

(8) Do there exist t-irreducible planar posets for all t > 3?
(9) For which posets X is it true that dim X = width X?

0) Foreach 2 1, construct a (27 + 1)-irreducible poset (X, P) containing
an antichain A4 such that r = width (X — 4, P,_,,).

1) If the maximum valency of a vertex in the comparability graph is k, is
the dimension of the poset bounded as a function of k?

2) Find a forbidden subgraph characterization of circular-arc graphs and
rectangle graphs.

3) (P. Fishburn) What is the maximum interval count of an interval order
or an interval graph with n vertices?

4) What is the maximum dimension of an interval order of length »n?
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