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Abstract. In 1941, Dushnik and Mdier iatraduced the concept of the ditaension of a poset

tX, P) as the mnimum number of tmeat extensions of ® whose intersection is exactly P Al-
though Dilworth has given a fotmuls for the dimension of distributive latlices, the general prob-
lem of determining the dimension of a poset is quite difficult. An equally dafficult problem is to
classfy thowe posets which ate dienen don izreducible, i.e., those posets for which the removal of
any pont lowers the dimension. in it is paper, we comstruct lot cach n 2 3 &k > (), a poset, cab-
led a crown and denoted 8:. for which the dimenuon is given by the formula { 2in +k)/tk + )},
Furthermore, for each 1 > 3, we show that there are imnfinitely many crowns which are itreduc-
ible and have dimension 1. We then demonstrate a method of combining a collection of wreduc-
le crowm to torm an greducibie powet whose dimension is the sum of the czowns in the collec:
tion. Finally, we construct some inlinite ctowns pos-eving combinatorial properties similar to
Yinite crowns.

1. Introduction

In 1941, Dushnik and Miller [6] introduced the conzept of the di-
mensior: of a poset (X, P) as the minimum number of linear extensions
of P whose intersection is exactly P. Equivalently, Ore [ 10] defined the
dimension of (X, P) as the smaliest positive integer & for which (X, P)
can be embedded in R¥ . Hiraguchi [ 7, 3] showed that the dimension of
(X.P)is < { 1X1and Komm {9] showca that the dimension of the poset
consisting of all subsets of an n clement set ordered by inclusion is n.
Dilworth [5] showed that the dimension of the distnbutive lattice
L = 2% is the width of X.

A posct (X, P) is said to be irreducible if the dimension of P restncted
to any proper subset of X is less than the dimension of (X, P). Hiraguchi
observed that for n > 3, the poset (denoted S? in this paper) consisting
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of the singleton wts and the # - 1 element subsets of an n clement set
ordered by inclusion is irreducibke and has dinvension . Bogart and
Trotter proved (4] that for # 2 4, any poset on 2 points with dimen-
sion » is isomorphic to Sh. Recently. Kimble and Trotter have independ-
ently proved that for n > 4. any posct on 2n + | points with dimension n
contains a subposet isomerphic to 3, . Kumble's proof of this theorem
will appear in his thesis [8]. An infinite family of irreducible posets
tlenoted S4¢ 4 > 0. in this paper) is used by Baker. Fistburn and Ro-
berts [ 1] to show that the collection ot all posets of dimension < n is
not axiotatizable by a sentence of first order logic.

For an arhatrary poset (X, P). the det-rminatior: of its dimension is
quite d:fficult. Even more difficult s the problem of determiaing an ii-
reducible subposet of (.X. P) with the sume dimension. In this paper. we
construct for cach n > 3. & > 0. a poset called a crown and denoted S
whose Jimension is given by the foranla 20 + K))(k + 2);. For each
1 > 3, we show that there are infinitely ‘nany crowna which are irreduc-
ihiv and have dimension 7. Given g coltection of irrecucible crowns. we
constiuct anarreducible poset whos dimension is the sum of the di-
mensions of the crowns in the collecuion.

Finally. wo cemtruct some infinite crow s possessing combinatorial
propreriics similar to thedgite crowns.

2. Preliminary development

For i posct (X, £}, the notations (v, 1) € Pand x < 3 are used inter-
changeasbly. If (x. 11 € Pand/or (3. V€ P, we say x and 3 are compar-
able and write xC v It aeither (x. v)nor (3. xdisin 7. we say xand v
are wncomparoblc and wnte x v If x # 3 but (x, v)€ Powesav v iy
ander © in P (alwo v s over v in P). Given a poset (X, P) and a scset
Y S X the poset (Y. PR (Y X YViris called a subposet of (X, Py and
P 7 YVoas called the restriction ¢f P to Y. A partial order L on a
set X s called g inear order when x, v € X amply (x, vy L andjor
tv.xp€ L. Fora finite set X, it is useful to visualize a linear order L
on X as simply a vertical listing of the clements of X with (x. )€ L
and ¥ 2 v iff x is uirdcr v in the listing. When spoece requires, we use the
notsfion L. ¥, Xy, vy, ... X, | touulicate the Lnear order £ on the set
X =0 o< omy defined by (v, x,) € £ iff ) < 4. ie., larger clements are
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Fig. 1.

listed first. A Exeorly ordered subposet of a poset (X, P is called a
chain.

If P and Q are partial orders on X and P € Q. then Q is called an ex-
tension of Pt Q is a linear order on X, then @ is a linear extension of
P. As first observed by Szpilrajn { 11] for every posct ¢ ¥, P), the colleg-
tion C of all lincav extensions of P is nonempty and NC = P. The di-
mension of a poset (X, P), denoted dim(X, P), is then the minimum
number of lincar extensions of P whose intersection is P. Later in this
paper some examples involving ‘nfinite posets are presented: in this cose,
obvious modifications of both our original definition and subsequent
observations are required. For the time being, we restrict our attention
to finite sets where dimd X, P) can be defined equivalently as the smal-
lest positive integer & such that (X, P) can be embedded in RY . For ex-
anole 104 = (o) ay. g, and (X, P)is the poset consisting of all
subscs F 4 ordered by inclusion, then the identification of clenmwnts
of X'tsubsets of A1) with characteristic sequences is an embedding of
ta. Prin R” and thus dimi X, P) S n,

A poset (X, £) is said to be dimension irreducible o simply irreduce-
ible if the dimension of any proper subposet of (X, P) s less than the
dimension of (X, £}. In Figs ! and 2, the Hasse diagrams CO Ntk
ivomorphic irreducible posets of dimension 3 are given.

For a posst (X, P). X is compleiely determined by P so we ay write
dim P tor dim(X. P). On the other hand . there are many posets consist-
ing ot a familiar set X with a stundard partial order P, and in such cases

l4
<

by 2
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we v te dim .Y for dimi X, P). For example, the standard partial
order O R is the product erdering and with this ordering dim R" = n.

,..u

A third formulation of the dimension of a poset (X, #) uses the ob-

servation that if C is a collection of linear extensions of P, NC =P and
x v in P, then there must exist L; and L, in C withx overyin L, and
y over x in L. On the other hand, if we have a coliection D of exten-
sions of P (not necessarily linear extensions of P) which satisfy this pro-
perty, then ND = *. And if we let C be a coliection of linear extensions
of P obtained by extending cach partial order in £ to a linear order,
then N C = P. Thus we see that dinv X, P) is the minimum number of
extensions of P whose union contains “he complement of Pin X X X.
This formnlation o7 dimension will pn ve quite useful in the arguments
appeanng in this paper.

For a finite poset, the height is deiined as one less than the maximum
number of points in a chain. For «xanple, the height of the pose: in
Fig. | is one while the height of tii2 poset in Fig. 2 is two.

3. Definition of the crown S¥

For each n> 3. k 2 0. we define the crown S¥ as the poset of height
| with n + & maximal elementsa,.4,. ....q, ., and n + k minimal ele-
ments b, . b,. ... 1,,;. Each b, is incompurable with g;.a,,,.4;,5. ...,
usex and under the remaining 1 — | maximal elesnents. Of course. 1t is
necessary to irterpret the subscripts in this definition cydacally and
hereafter such stat*ments will be made without reminder of the neces-
sary cyclic interpretation. To :llustiate this definition, the Hasse dia-
gram for S; is shown in Fig. 3.

In future arguments concesaing S¥ . we denote the set of maximal
elements by A. the minimal elements by B and use P for the partial or-
der. S is then formally the poset (4 U B, P).

For each minimal el:ment b € 3, the set of maximal elements which
zre incomparahle with b is denoted /(b). For a maximal clement a € 4,
/a) is defined duaily. For each b;, fth;) is a sequence in A : we refer to
a; as the first clement in I(b;) and call [4,.9;,,.¢,,3, ....d;,4 | the cycle
order on I(b;). For any subset D of A (or B), there is a lincar ordering
induced on D by subscnipts which we refer to as the subscript order on
0. The reverse subscript ord: on D is defined similarly. For ¢example, in
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$3.Kbs) = {a, a5, a,}: the first element in /(bg) is ag ; the cycle order
on Ithy)is lug. ag . a; | the subscript order on I(h) is lag . ug.a; ):
and the reverse subscript order in /(bg ) is [a),dg. a4 ).

4. The dimension of the crown SX

We first observe that any discussion concerning the dimension of
crowns can be simplified by constantly appealing to the following lem-
ma and its corollary.

Lemma 4.1. Let C be a collection of tnear extensions u]‘S‘,‘,. Then the
Jollowing statements are equivalen:.

() NC =P

(ii) for each b € B and a € I(b), there exists L € C with boverain L.

Proof. In view cf our earlier remarks concerning alternate definitions of
dimension, it is clea: that (i) implies (i)

On the other hand. to show that (ii) implies (i), we must prove that f
x1yvinP, then there exist L. L, € Cwithxoveryinl, and v overx
nl,. ‘

If u and &’ 2re distinct elements of 4, then l(a) - Ia’) # Q=
) Ka). Leth€ l(a) - ha') and b’ € I(a’ ) —1(a): then by statement (i),
thereexist L. L, € “withboverain i, and b’ overa’ in L,. Since
each £ € Cis an extension of P and a1 over b’ in P and o' isover b in
P.we see thatd' isoveruin L, and g isovera indl;.

This anument obviously dualizes to the situation where b and b’ are
distinct elements of B. Thus it remains only to show that if b€ B and
4 € I(h), then there exists L € C witha over b in L. Since n 2 3,
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A Mby+ B keta' € A - Ithr Then there enists L € Cwitha overd' in
[ andsincead isoverbin P oaisover ban L. The proof of Lemma 4.1 i
now complete.

In order to avoid listing all the elements of S‘f, . the following corollary
will prove useful.

Corollary 4.2. The follewimng starten ents are equivalent.

) dimSt < m:

() there existy a coliection D of m hnear extensions of subposets of
.S’,‘, such that for cach b € B and u < Iy, there ex sts L€ 1) sueh that b
s overainl,

Proof. As before, (1) implies (i) is taval. Conversely.at is casy to show
that for every poset (X, P). every Y = X and overy lincar extenuon L of
P restricted to Y, there 1s i lincar exiension M of P such that M restncted
to ¥ s . Then it is possible to form ., collection ¢ of m hincar exten-
sions of Sﬁ satisfying statement Qi) of the preceding lemma and the
proof of our corollary 15 . mplete.

Statement (i) of this corollary stegests a scheme for obtaining an
upperbound on the dimension ¢f a crown. It seenss that the oasental
feature of an efficiently chosen coliecct.on C of lirear extensions o 8
15 that the extensions in C put as many rinimal © ements over inaxamal
clements as possible. Keeping this principle in mind we consder the
lincar extension Ly of I(th ) U lta, : defined by

Ly odby oy bperdi Byt by can b oag b

Inthis st by isoverevery an ltd ) b, sovereverya infth, )
S Aeth ) and 0 on. Now it s not nevessary to put b, over a maxumal
clementan any other Sstobut A, must be overa, o b, o must he
OVerd, p and g, . and so on This saggests cosstructing a second
linear cxtension

1‘2 : 'hn"'rvbml vl hn‘ban‘.?' hmi‘ PRY I

Now we see that we have seasfied the requirements of statement ) tor
the subset Dy = b, 0 b ob, v b by s wath these two extensions
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Lyendl e the Dypanda~ by thenhisoverain Ly or L.

F urthermore, £t consists of a sequence of A + 2 minimal elements, If
we sumply add { + 2 to the subscript of each element of L and L, we
obtain two new linear extensions of subposets of S¥ If we denote these
cxtensiens by £ and L. then itis clear that the requirements of state-
ment tin) are satisfied for the set Dy = by by by oy by Lyand Ly,
Continumg this process. we obtiin a wquenee of subsets .0, . D5,
Dy whete £ a4 A + 2) - which cover B, And we have ob-
tained a collection C = L, Ly Ly L, of inear extensions of sub-
posets $3 which satistics the requirements of statement () for 8. Thus
we have establishied an upperbound on the dimension ot crowns,

Theorem 4.3. i Sh < 2uin + AViA +

Example 4.4 Dum S < 22 12:5 - = 6 and the six Lnear extensions of
subposets ot S produced by Theorem 4 3 are.
Liootby wyg bpaiay byyiayboad
Lylhy g by odgg byoay b
Ly Ubg oay by ay bguaq. byal
Ly |by us biiagbgug beugh.
Lo Ibypoas bygaay hyoap ngou
L, lhaius bag boiag by u,

I this construction process, we observe that i the first 20 2 lists
there s no duplication among the lists in accomplishing the require-
ments of statement (i) and cach of these lists appears to be constructed
10 a reason:oly efticient manner. These observations suggest that the
upperbound ca the dimension of crowns ziven in Theorem 4.3 s fairly
close to the actaal dimension. Morcover. they suggest a very natural ap-
proach for estabhishing a lower bound on the dimension of crowns.,

We begin by defining the weight of a crown SE . denoted W1 Shoas
the total number of pairs (b, ) with b < # and v € I(h). Since there are
2+ & mimmal clements and by = A 4 ] forevery A € B we see that
WSt =+ anA+ 1 Y C 4w Band Lis a linear extension of P
restricted to Y. then we define the weight ot L denoted Wil ), as the
number of pairs (0, u). where b2 B Y a € Ib) 0 ¥ and bis overa in
L. Ifhc B Y. we define the weight of han L denoted Wy (h).as the
nuinber of pairs (b, a) witha € Ith) & Y and b overaan L.
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We now make the following elementary observations concermng thew
definitions.
ract 1:

Wity= 25 W,(b).
b= B Y

Fuct 2: If C s a collection of linear extensions cf subposets of S
which satisfies the requirements of stateraent (u), then

L Wil > wish.
LsC

An easy computation shows that the weights of the linear extensions
constructed in the proof of Theorem 4.3 are all H(A + I XA + Q).
This sugpests the following resuit.

Lemma 4.8. If L is a linear extensio : o.f a subposet af Sf, then
WLy S ik + 10k +2)

Proof. We may assume without loss oof generality that L is a hncarex
tension of SX_ otherwise we extend .. to all of $¢ which cannot de-
crease the weight of L. Now L restricted to B is a linear ordenng on the
minimal elements. Let 5! b2 the largest minimal element in this order-
ing. b2 the next largest, and 3 on. Since L is a linear extension of St
ifaisunder ¥ . theng € 2y (b ) N I¥yand (b B W
€ Ia). Since Madi = k + 1, we see that Wid') = 0 for every satisfving
k+2<i<n+k Tobound F'ib')fori< k + 1, we make the following
observation. If § is a finite set of points on a line or a circle and . A+,
...v /1., are distinct subsets of § each consisting of p consecutive points,
then the number of pointsin A, 7., Y .0 4, satmostp+ 1 m
Hence it follows that W) < & + 2 - ;forevery rsuch that 1 << k+1,
Now we have

a+k 4l
W)= 20 Wohy= 25 W (b= 20 wy(b)
b8 izl iz}
) k,’ tql

S k42 -izlai=lhk+INA+ D).

i=} 1=
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Theorem 4.6 - 2tn + kv th+ 2 < dim SE < 2 m+ k) tk+2)-.

toof IfdimSY =:and 'L, L,. ... L,: is a collection of linear exten-
sion £5% which satisfy the requirements of statement {ii). then

wisihs 2 Wi, -'
=\ y

and thus e +aua + Db + Ika + and 2in + k) tk+ < ¢ The

theorem follows sinee £ 18 an integer.,

The upper and fower bounds on the dimension of crowns given sn
Theoram 4 6 are either equal or differ by one depending on the size of
the remander 7 in the equation n + & = (K + 219 +r. where 0 S r < a4 2,
7 = 0. both bounds yicld dim 8% = 2g and it (A + 2y < r < k + 2. then
we have dim St = 24 + 2. but if 0 < r < 1tk + 2), then the lower bound is
2¢ + 1 and the upper bound is 2 + 2. 1f 7 = 1, we can see that dim S¥ =
2g + T ance the last hist L, constructed by the scheme used in the proof
of Theorem 2 3 may be omatted  In fact. the only necessary role per-
tormed by s, s toput by overeverva in lth, ). We tliustrate
this argument wath the appropriate linear extensions for 53

Example 4.7,
NS 1 TN PR R AR N B
Ly {hy ay bhyiag beagl.
Ciotbhsiasia agl
However, it s clear that this hine of reasoning will not settle the
question when 257 Jeh + 20

Theorem 4.8. DimS% = 2on + kytk + 25

Proof. Let n + & = gt + 21+ 7. where 0 < r < & + 2. Then we may as-
sume that 0 < r < [$tA + 2)}. otherwise. as noted before, the bounds of
Theorem 4.6 are cqual.

We first partition the set -1 of maximal clements into ¢ + | subswets
Aoy, as tollows:

‘1 Foreach; < g, ket = ¢k + 2Kj — 1) and then define A, = {a,.y.

d,‘,,:‘d“ s e u'i‘k‘zg‘.
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(D Let 4y, =@ @tk + ) <i<n+kl,
We observe that cach 4, s an interval in A, the collection A 4, .,
A o partiions A, i) 1=y i= sk 2oand A <
L+ D).
Now we further paitition A into 27+ 1subsets /) Fy Dy dyy,
as follows:
(1 For eachj < g let /y; | be the subset of A ; containing the first
110+ ) clements as determined by the reverse subscript order on A,
{2y For each j < ¢. let /3 be the subset of 4, containing the last
Lk + 0% elements as determined by the reverse subscript order on oA,
(3 Let IZq*l =dga-
We now observe that cach /, is an iv .erval in A, the collection /) 5.
oo dyqer PaTLItioNs 4. ard most impottantly i/, U [, <A+ 2or
every j < 2g + 1.

+

e OF .
Example 49. For 53,
.‘il = %i){‘Jz\us‘d‘,(ls.&'{’,u?«‘:li = ‘dl~dz.d3:[2 = d‘.ds.ﬂb.a?f:
.s“: = tun\\ dq.uu,,(.').d|2.u‘3,&14}: 13 = '{a}i.ug.d‘“‘\
- ¥ N N .
; 14'?"11-“‘12'“13* dpk | |
.43 = ."115‘{”&"1!7‘dlg‘dl‘)‘dlﬂ‘ -‘Jn ::If! = :dls.a"}‘dl7:.
I =iy dyq. ay, ay i
Y. - . N
.'14 = ‘d:z‘azzg‘.lg = ‘dz:,dzs;.

Now we are ready to vonstruct a collection Ly Ly, . Ly, of hnear
extensions of subposets of S¥ which satisfy the requirements of state-
ment (i), If we denote tiv: el ment of /, with smallest subscript by o'
then £, will be a linear e tension of 7, U 4, | U 4. To construct £,
w2 order /, ir cubscript order, [; | in reverse subscript order and then
plice every ciement in /, | over every element of ;. Then place the mi-
nimal elements of X(a,) as high in this list of £, U ;| as the ordering P
will permit. this process produces an extension & of P restricted to
f,0 1,y v ita'). Then let ; be any linear extension of 7.

To complete the preof of Theorem 4.8, it remains only o show that
this collection of 2q + 1 linear extensions of subposets of $¥ satisfies
the requirements of statement (ii). Suppose b € & and a € Ith). Then
€ I forsomei< g + i and if b is not overa in L,. then it follows
that b will be overuin L, .

Example 4.10. For S}, the seven extensions are:
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Lyilby by dyy byyiday byiay by ay, big.ay .

Ly lay.byup.baiay byia; byidg by ag. by, a4l

Ly lag bg.ag. by ag. by uaq. byuyy byiug by ayl.

Ly:lay. by ag. by dyg. by dyg by a3 by.a1y. 060y,

st Ly bydpn byyouyy by dyg brsadyg by Byg s ]
Ly: luys b e bygaiz biyoan brsdyy big dig bzl
Lyilbyg g brgudg by ayy by dy byiiyy. byyiap |

The reader may observe that an obvious modification of the above
construction can be used to establish the upper bound (4n + k)/(k +2).
directly. We have included the apparently weaker result given in Theo-
rem 4.3 since it motivates the arguments of both Theorem 4.6 and 4.8,
and in arguments given later in this paper concerning irreducible crowns,
the construction process of Theorem 4.3 will be of value.

. Irreducible crowns

If we reconsider Exampk 4.7 given in the preceding section, we re-
member that the only requirement for L, was that it put b, over all
maximal elements in /(b,). This suggests that if we remove by from S 1{
then the hists L, and L, would be sufTicient to determine the restnction
of P10S] ib,i.ic..dimS3 - {by: = 2. However. the reader may ve-
rify that while it is true that dim S3 - {b,} = 2, some care must be
taken in producing two ‘inear exiensions of S § ~~~~~~ {b>} whose intersec-
tion is the restriction of P to S3 - (b, } since arbitrary extensions of L,
and £, may not be sufficient. For example, the linear extensions
My lagoag by ay bgoay, by ay. byl and My luy ay. by ouy by,
bg.ug by 1 of S3  iby} are extensions of L, and L,, respectively. bui
(g uy V€ W N M, However. itis casy to see that these apparent dif-
ficultics can be overcome.

Lemma 5.1. Let x € SX. Then the 1ollowing stateraents are equivalent.
t) dimS* - xi < m;
(ii) there exist mear extensions Ly, Ly Ly, ... L, of subposets of
.S‘,‘, such thatiftbe B - {x:uanda € Ith) - {x}. then b is over a in some
L,
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Proof. It is clear that statement (i) implies statement (i), We assume
now that L. L,. ... L,, satisfy the requircments of statement tit) and
that x & A Let M My My, M, bearbitran hinear extensions of
Ly L, ... L, toallof Sk - {x}. The arguments used to prove Lemma
4 | show that if « and «” are distinct elements of 4 - x. thena is overJ’
in some M, and a’ is over a in some W,. Furthermore, it » € B and
g€ I(b) - ix}.then we may choose u' € o4 (D) — (xr and if uis over
a’ it M, ais also over b in V.

Now suppose b and &' are distinet elements of B A kb - b’y < x-
# 0w HP') - I (xithen bisover b insome M, and b’ is over b in
some M,. The only difficuity aro< ther when one of the sets 1th)
b’y ixrand KRY - I(h) - x i< o oty. There are only two caws
where thn can happen. [f we assume tf at x =« . then the pairs of nini-
mai elements with which wi must be concerned are (b b, ) and
W g 0 ) Since by Loy and b~<a,~q,| inP b, isover
dyekey insome M; . Similurty, by 3y s oOvera, §  insome ‘I,,,l and
since 3i;, and ‘l,,,l are ext.nsions 011 restricted to SA - ubb,,, is
over b in .U,l and b; ; , isoverb, , n.ll,,,‘. By the argument gaven
above. there existlists 3y, . My, such that a0 soverd, in M,
anda; o pisoverby 4 inMy, Ifh isunder by in My moveat to
a position 1mmedmtel\ above b,y the resulting linear ordering of
S% - {u;} is an extension of P restrivted to Sp - wa,r. Similarly it b,
isuncer by 4y inMy,, we move it xmmedmtcl\ ahm«. b« -

Now it is clear that this collection of lincar extensicns of 8% - 1y,
intersects to give the restriction of P to S¥ - {a,:. The argument when
X € B is dual.

We can now see that Example 4.7 is merely ome example of the fol
lowing theorem.

Theorenm: $.2.Ifn+ A= ph +2)+ 1 then Sf; ox trreducible and has di-
menson 2q + 1.

Proof. We form 2y linear extensions L. Ly ... Ly, as givenan the
proot of Theorem 4.3: these usts satisfy the requirements of statement
Gy for % - {b, ;i and thusdimSh - (b, |} < . But Theorem 4.8
states that dim S% = 29 + 1. Since dim 3% - x; =dimSt  {», | ; for
every X € Sf the proof is complete.
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Example $3. Itn=3andg=1l.wehave3+A=i(A+ )+ land 4k is
arbatrary. The tamity S'; A > 0} are the original crowns as employed
by Baker, Fishburn and Roberts | 1.

Example 5.4. Whea & = 0, we obtain the stundard a:aximal dimensional
posets 8%, of odd dimension as discussed by Bogart and Trotter 4.
Itis interesting that the tamily <SY,: ¢ 2 2; was shown to be ineduce-
ible by Hiraguchi {6] but they are not iven by Theorem 5.7, However,
“thas famly will appear as a special case in Theorem 5.6.

Example 8.5, Some irreducible crowns of dimension 5. SY.SE 83000,
Se-ete of dimeasion 7255 S48, . 845, 36 ete.: of dimension 9: SY.
~S‘=: . .S‘.;\( . xg{" . bgl ot

We may eapect that other families ot irreducible crowns can be ob-
tained by caretul examinaiwn of the comstruction process in Theorem
48

Theotem $.6. Suppone n + A =gih + ¥+ [tk + )] + 1. Thea S‘,‘, is ir-
reducible it A = 00r A s odd

Proof. Suppose fist that A isodd ind let A = 2r + L then [HA+2)] =
t+ 1 and dim 3} = Z¢ + 2. We also observe that 1/,,,, 1= 1+ 1 for
7=0.1.2 ....q.and that Dager = dpogs- Inthe construction process
outlined in the pyoof of Tacorem 4.8, we make the following mou:fica-
Lions, i

In forming the extension £ place I, on top of /) instead of
15,2 ontop of /) as was originally done. Order by, V1 U Ia) as
before. The extensions Ly, Ly o Ly, are unchanged.

Now we verify that this collection Ly Ly, .. Ly, satisfies the re-
quirements ot statement G for S5 1a, c . Clearly, we need only be
concerned with mmimal elements from Ky, ., ) which are incomparable
with at least one but not all maximal elements in 5, . But any such
mininal clement & is incomparable with every maximal clemantin /.
otherwise

A+l =iih)i< Wy it 3/zq+zi* iyi-2

=(trh+l+@+l) 2=2t+1=kh.
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Hence b is over ¢ in L. This completes the argunvent for the cawe
when A is odd.

Now suppose that & is even and positive. We musi show that St isnot
irreducible. To accomplish this we show that din(St - {x}) = dim S} =
g + 2 for every x € Sk, Of course, it is sufficient to show that
dimS* — {h,} = 2¢ + 2. Suppose that dim S} ~ (b} = 29 + | and that
Ly. Ly, ... Ly, are linear orders of S}, - {, } which satisfy the re-
quirements of statement (ii). We procecd now to obtain a contradic-
tion.

Ifweletk=2:>0,thenn +k=gth+ )+ [§(k+2)] +1implies
n+k -1=2g+1I1nt+ 1) Nowthercare(n+h- IHA+ )=
(29 + (2 + 120+ 1) pairs (b, u) with } # b, and a € I(b) and for each
such pair, b must be over a in some L,. Now each list L; has weight
SHKA+ IRk +2)=(20 + 1 M2+ 1). This shows that cach L, must have
the maximum allowable weight. Henc * the lowest « in each /; must be
over b, in Psinceithas k + 1 b's over tin L, none of whichis b,.
Furthermore, if b # b, and u € j*h). tiren b is overa in exactly one 1.
Since b, is under every maximal ek nt which covers by except u,,.
we see that one o! the lists must have 2;,, as its lowest maximal ele-
ment. We may suppose that this occurs in L 2 then we see thut by must
be the highest & in L. The next highest b in L, must have veight R and
since only b, and &; have k common incomparabk: maximal elements
with b.. this b is b;. Continuing this argumen®. we se¢ that L re-
stricted to /(by) v Hag,y)is [by.a, by.az.b . aq. .. bpirdgaal.
We note that this accounts for the weight of L, compkiely. In particu-
lar. by is under a3 in Ly so by must be over ¢, 3 in some other list,
say L,. In this list. by is over only one maximal clement, 5o o,y i the
lowest maximal 2lement in L5 and all clements of ftag, 1) are overitin
L,. Now the highest b in L, has weight & + 1, is incomparable with
Gy 43008 RS than @y, 5 in £ and must clearly be by, 5. [U casy to wee
that L, restricted to Muy 32 W Jby 3018 [h o3 dagezs bpanodagen Bgay s
dagey- o byodg,y ] and again this zecounts for the weight of L.

We obscrve that in the pair of lists chosen thus far, L, and L,. the
only minimal ¢lements which are over maximal elements with which
they arc incomparable, come from the set of & + 2 minimal elements
{ba,by. by, ... by, ). Itis casy to we how this argument can be re-
peated to distinguich 2g of the lists in which only the first gih + 2) mi-
nimal elements alter &, can be over maximal elements. This fcaves only
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one list to place cach of the remaining [§(k + 2)] =t + | minimal cle-
ments over all the maximal elements with which it is incomparable. But
in any li:t there can be at most one minimal element with weight & + 1.
Since 7 + 1 2 2, this is the contradiction which completes the argument
when & i oven and positive.

When 1= 0 and & = 0. the lincar extensions L. L,. ..., L, , of
SO - {b,} defined by

AN
L‘: ldz. Ay cidyyp o iy, dy. bi*l cdivy h:. bs. ey m. ey ’-’" l
satisfy the requirements of statement (ii) and now the proof of Theo-
rem S.6 is complete.
{
Exampie 5.7. Some irreducible crowns of dimension 4: S}, 53, 53, 87,
$g. cte. of dimension 6: §3. 5}, 81 S, Sty ete.: of dimension 8:
St~ Sis- S, 85, 8% ete.

We note here that whike Theorem 4.8 could easily be modified to
include Theorem 4.3, it is not clear that Theerem 5.6 includes Theorem
$.2 as difficulty s encouatered in the construction of the first list.
However, it s easy to show that the only irreducible crowns arise from
Theorem $.2 and S.6.

Theorem SB. lrn+k=gh + D +rwiih 2<r < [}k + ). then
dimSt =dimSt - (X1 =2+ forevery xe Sk Andifn+h=qlk+2
+ A 20 +rwith 2<r < [J(k + ), then dim St =dim St - (x} =
29 + 2 forevery x € 3:‘,

Proof. In the first cas, 2q linear extensions of S§ - {x} have total
weght < 2914k + Txk + 2] =gtk + 1k + 2) but the weight of

\

{x-=mh - INA+ =gtk +2)+(n - DIk + 1)
A+ INK+ 2+ - IKA+ D> g+ IXAk+2).

The second statement is proved similarly.
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X Y XY

b 4

6. Crowus and cartesian products

If ¥and Y are posets. then dimt X > ¥)<dim X +dim ¥ Howoever.
it 1s cosy to prove (sce §21) that if X and ¥ have universal bounds, then
din ) X Yy =dine X +dim Y. Now suppose € =1C,.C, . Cyo 0l Ge s
a finite collection of irreducible crowns with universal bounds added.
Then there s an irreducible subpow: Y of C) X Gy X Cy X % ()
withdim X' =dim €, +dimC, + .. +dim G and 1t very easy to we
how to determine X, .

For collection € = (X, Py i=1.2, . 1 of posets, we define the
poset (X, Py called the dimensien product of € and denoted (X Py ) 2
(X P = (X P2 2 (X, Poby detting X be the disiont union
NyuX.u uX,and P=Pp 2 Pyu WP, U b ab s miiimal
in some X, is maximal in somz X, and § # ;. We illustrate this detine
tion with the Hasse diagrams given in Fag. 4.

We note that if some of the posets (X, £;) contain loose points, i ¢,
points which are both maxamal and minimal. then the detinition given
in the preceding paragraph may be improper. Since we do not want to
exclude such posets. we will partition the loose vertices into disgomnt sets
M, and ¥, Those pomts ia My are then treated as maxamal but not n-
nimal and those in M, are treated as ninimal but not maximal.

Suppose X', L XL X s a coliection of posets of height one amd et
Y, denote the poset formed by adding universal bounds 0, and 1, to X,
for cach i, We can now detiny an ecmbedding of the dimension producct
X, e X, 2 ... 2 X, into the cortesian product ¥y X Y, X . x ¥, as tok
lows. If @ 1s a maximal element of Xy # X', 8 2 X, thena s a maxe
mal element of some X, und we identify this element with (1, T, ...
Lvoacl o from Yy x Y, )0 ox ¥, Similarly, we identify a
minimal elersent b from X, with(0,.0,....0, . 5.0,,;..... Q). Henee
we can vonclude that
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dinkX, 2 X, 2 2 X)<dim¥; X ¥, x .. XY,
<dimY, +dimY, +.. +dimY,

=dimX, +dimX, +.. -dimX,.

Suppowe we now extend our deiinition of the crown St to include
the wawsn = LA =0und n = 2 4 2 0.5, is the disjoint union of two
chains {by.uy: aml {hy.a;} but 8§ = {). b, is a two elcment anti-
chain. Su ihat we can consider S @ 3%, we let My = {u)} and M, = ib, }.
With this convention we see that for each n > 2, S? is isomorphic to
the dimension product S & ST = ... =57 of n copies of S9.

However, it is casy to see that if & > 1, then S} s not isomorphic to
the dimemion product of two or more crowns. More generally if (X, P)
1’ somorphic to the dimension product of *wo or more crowns of which
none have upper parameter £ = 0 with 7 2 2 then this factorization is
unique up to the order of the factors.

Theorem 6.1. Suppose € = 1C,, Cy. ... C,} is a nonempty collection of
mredacible crowns Then Cy ¢ Cy € .. 2 C, is irreducible and has dimen-
ston =dim €y +dimC, + . +dm(,.

Proof. Lev (X Pr=C) 3¢, 2C; & . 2, then since each G is a sub-
poset of X for every lincar extension L of X, we can compute W (L),
the weight of L restricted to C;. But if W(L)> 0, then WAL) = 0 for
every J # i. This shows that dim X 2 dim X, +dim X, + ... +dim X,.
We have already observed that dim X < dim X, +dim X, +.. +dim X..
Furthermore, if x € X, thea x belongs to some X, and dimi X, - x) <
dim X, Since

X x=X,sX,» . 2X, ,2(X; x)9X;,,8..0X,.
it follows thut dim .Y - x < dim .Y and we conclude that X is irreducible.

Corollary 6.2. If X is the dimension prodict of a collection of irreduc-
ible crowns, then S ® X is irreducible and dim S @ X =1 + dim X.

Example 6.3. Although there are no irreducible posets of dimension 4
on 9 points [8), there are at least two on 10 points_ S} and S} e 57.
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Example 6.4. There arc at least 28 nonisemorphic irreducible posets of
dimension 8 on 50 points:
:m s‘ 28], SteSy. sSl=si. S}, =59,

S} eSles]. s)ssle %.s‘z’.

; %S‘. 53 eS8y 5325y e89.

.S an, S5, eSPVesy, SsissPeny,

sg(«, a8y, ST eS] =80, §%» 9" D

53 es? 5] o8 es) S5 s'~ ¢ 89,

Sz asil. siles) esy. 5% es" = 8Y.

53 5{*. S, @ 9‘" 53,
51 =8P, S‘}ws'g & 5.
5\ 17
5 =S,

7. Infinite crowns

When X is infinite, the dimension of (X, £} is the smallest cardnal
number X for which there exis:s a cotlection @ of linear extensions of
P such that NC =P and iCi= N, Alternately, dim(X. P) is the smal-

‘lest cardinal number ® such that (X', P) can be imbedded in the cartesian
product of R chains. In this section, we extend the definition of a crown
to infinite sets to obtain some interesting cxamples of dimension for infi-
nite sets.

Let 4 and B be disjoint copizs of R, the st of real numbers, and ket
X,=X;=X;=4UB Nowlktd={(x,x): x€ AL B and then de-
fine:

Py=au{b.a)y:be B u€EA b+

Py=avu tb.arbe B auc A agd |b. b+ 1]}

Py=AUu{thar bhe B, a€ A uc(b- 1, b}

The rcader may casily verify that dim(X . ) = ¢, dim(X,. Py) = ¥k
and dim(X 3, P31 = 3. Furthermore, these examples mirror the behavior
of finite sets since for fixed n, dim St decreases monotonically from n
to 3. Also note that (X, . P ) is isomorphic to the dimension product of
2 ™0 copies of SY.

8. Conclusions

The results of this paper shew that for each n 2 3, there exist infini-
tely many nonisomorphic irrecucible posets of dimension n. Other fa-
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milies of irreducibk posets have been discovered [ 12]. many of wikich
posacss a great deal of regulariiy in their structure.

The author intends to presnt this work and indicate the relation-
ships between dimwension and other invaniants such as width, height, and
cardinality in subsequent papers. Furthermore, the connections between
dimension theory, graph coloring and other combinatorial topics will be
oxtablished. '
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