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Abstract. Every linear extension L : [xi <x, < ... < xm] of an ordered set P on m points arises from 
the simple algorithm: For each i with 0 $ i < m, choose Xi+ 1 as a minimal element of P - {xi : j G i}. 
A linear extension is said to be greedy, if we also require that Xi+1 covers Xi in P whenever possible. 
The greedy dimension of an ordered set is defined as the minimum number of greedy linear extensions 
of P whose intersection is P. In this paper, we develop several inequalities bounding the greedy dimen- 
sion of P as a function of other parameters of P. We show that the greedy dimension of P does not 
exceed the width of P. If A is an antichain in P and ] P - A I > 2, we show that the greedy dimension 
of P does not exceed 1 P - Al. As a consequence, the greedy dimension of P does not exceed I P I /2 
when 1 P 1 > 4. If the width ofP - A is n and n z 2, we show that the greedy dimension of P does not 
exceed nz + n. If A is the set of minimal elements of P, then this inequality can be strengthened to 
2n - 1. If A is the set of maximal elements, then the inequality can be further strengthened to n + 1. 
Examples are presented to show that each of these inequalities is best possible. 
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1. Introduction 

Let P be an ordered set. Then P can be represented as the intersection of some family of 
linear orders each of which is a linear extension of P. Such a family is called a realizer of 
P. The dimension of an ordered set P is the minimum size of a realizer of P. The concept 
of dimension has proved to be a useful invariant in the study of ordered sets. A natural 
extension of this concept arises from requiring the linear orders which form a realizer of 
P to have certain additional properties. 

In this paper we consider one such property which arises in the study of the following 
scheduling problem which is known as the jump number problem: 

An ordered set P represents a set of tasks to be performed on a single processor. If 
x <y in P, then x must be performed before y. An admissible schedule is then a 
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linear extension of P. Suppose that a set-up cost is paid for each pair x, y E P with 
x incomparable to y in P and x and y occurring consecutively in the linear exten- 
sion. Find a linear extension L of P which minimizes the number of consecutive 
pairs oft which are incomparable in P. 

This scheduling problem is NP complete [8]. However, it is natural to search for 
approximate solutions using the following ‘greedy’ approach. Form a linear extension 
L of P by starting with an arbitrary minimal element x1. Then search for a minimal 
element x2 of P - xr with x2 covering x1 in P. If no such point exists, choose x2 as an 
arbitrary minimal element of P - x1 . This process is repeated in an effort to construct 
a linear extension of P avoiding consecutive pairs which are incomparable in P. 

Any linear extension constructed by this greedy approach is called a greedy linear 
extension. It can be shown [3] that among the linear extensions which provide a solu- 
tion to the scheduling problem, there is one which is a greedy linear extension. 

In [l], Bouchitte, Habib, and Jegou showed that every ordered set can be represented 
as the intersection of some family of greedy linear extensions. They defined the greedy 
dimension of an ordered set P, denoted dim,(P), as the least number t for which there are 
t greedy linear extensions of P whose intersection is just P, i.e., dim,(P) is the minimum 
size of a greedy realizer of P. In this paper, we develop inequalities which relate the greedy 
dimension of an ordered set P to both the size and the width of P - A where A is an anti- 
chain in P. In order to motivate our results, we pause to summarize some relevant facts 
from dimension theory. For more detailed information, we refer the reader to the survey 
article by Keller and Trotter [6]. 

2. The Dimension of Ordered Sets 

Let P be an ordered set. If x and y are incomparable points in P, we write x lly in P. So 
a collection Z of linear extensions of P is a realizer of P if and only if for every x, y E P 
with x lly in P, there exist L, L’ E Z with x <y in L and y <x in L’. Let X and Y be 
subsets of P, and let L be a linear extension of P. We write X/Y in L if x > y in L when- 
ever x E X, y f Y and x Ily in P. The following result completely characterizes when 
such extensions exist. 

LEMMA 1 (Rabinovitch [9]). Let X and Y be subsets ofan ordered set P. Then there 
exists a linear extension L ofP with X/Y in L if and only if there do not exist two points 
x1, x2 EXand two points yl, y2 E Y with x1 <yl, x2 <y2, x1 Ily2, andx2 Ilyl in P. 0 

The following elementary result follows immediately from Lemma 1. 

LEMMA 2 (Hiraguchi [5]). Let C be a chain in an ordered set P. Then there exist linear 
extensions L and L’ of P so that C/P in L and P/C in L’. 0 

Recall that Dilworth’s theorem [2] asserts that if the width of an ordered set P is n, 
then P can be partitioned into n chains. Let P= Cr U C2 U .*a U C, be such a partition. 
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For each i= 1, 2, . . . . n, let Li be a linear extension of P so that Ci/P in Li. Then clearly 
Z={L1,L*, . ..) L, ) is a realizer of P. This proves the following well known inequality. 

LEMMA 3 (Hiraguchi [S]). For every ordered set P, dim(P) Q width(P). cl 

Dimension is a comparability invariant, i.e., two ordered sets with the same comparabil- 
ity graph have the same dimension [ 121. In particular, an ordered set P and its dual P* 
have the same dimension. Dimension is monotonic, i.e., if P is a subordered set of Q, then 
dim(P) =G dim(Q). Furthermore, the removal of a point from an ordered set cannot 
decrease the dimension by an arbitrary amount. 

LEMMA 4 (Hiraguchi [5]). For every ordered set P and for every x E P, dim(P) < 1 + 
dim(P - {x}). 0 

Let P be an ordered set and let a = {Q, : x E P} be a family of ordered sets indexed 
by the point set of P. Recall that the lexicographic sum* of a over P is the ordered set 
whose point set is {(x, y) : x E P, y E Q, } with order given by (x1, yl) <(x2, yz) if 
x1 <x2 inPorifxr =x2 andy, <y2 inQ,,. 

LEMMA 5 (Hiraguchi [5 3). The dimension of the lexicographic sum of Ll= {Q, : x E P} 
over Pis the largerofdim(P) and max {dim(Q,) :x EP}. 

In [IS], Hiraguchi proved that the dimension of an ordered set P does not exceed 1 P I/2 
when I PI > 4. A simple proof of this inequality is obtained by combining Lemma 3 with 
the following result discovered independently by Kimble [7] and Trotter [lo]. 

LEMMA 6. Let A be an antichain in an ordered set P with I P - A I > 2. Then dim(P) Q 
[P-AI. 0 

The primary difficulty in proving Lemma 6 is the case I P -A I = 2. Once this is 
accomplished, the general result follows by induction on 1 P-A I using Lemma 4. The 
argument when 1 P - A I = 2 can be simplified considerably by appealing to Lemma 5 
(see [IO] for details). 

3. The Greedy Dimension of Ordered Sets 

Bouchitte, Habib, and JCgou [l] showed that for an ordered set P, dim(P) = dim,(P) if P 
is of dimension at most two or if P is a distributive lattice or if the diagram for P is N-free. 
These results were communicated to Trotter who observed that in fact the greedy dimen- 
sion of P never exceeds the width of P. This inequality follows immediately from the 
following lemma, which should be compared with Lemma 2. 

LEMMA 7. Let C be a chain in an ordered set P. Then there exists a greedy linear exten- 
sion L of P with C/P in L. 0 

* Unfortunately, the notation here is far from standard. 
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The inequality dim,(P)< width(P) and the proof of Lemma 7 were obtained inde- 
pendently by BouchittC, Habib, and JCgou [l] . We do not include a proof of Lemma 7 
in this section since the result is a special case of both Lemmas 10 and 11 which we 
prove in Section 5. However, we will pause here to construct a family {P, : n > 2} which 
shows that the inequality dim,(P) d width(P) is best possible even when dim(P) = 3. 
The ordered set P, is shown in Figure 1. 

b n-1 

Fig. 1. 

When n = 2, it is obvious that dim(P,) = 2. For each n > 3, dim(P,) > 3 since the sub- 
ordered set generated by {x, y, al, b, , a2, b, } is three-dimensional. On the other hand, 
dim(P,) < 3 since it is obvious that dim(P, - {x}) = 2. However, apart from a permuta- 
tion of subscripts, P, admits only two essentially different greedy linear extensions. 

Typel: [a,<bl<a2<b2<...<a,_1<b,-1<y<x] 
Type2: [a,<bl<az<b2<...<a,-1<x<b,_I<y]. 
The fact that dim,(P) > n - 1 follows easily from the observation that x 11 bi for 

i= 1,2, . ..) y1 - 1, but in any greedy linear extension L of P, _ 1 there is at most one 
valueofiforwhichx<biinL.Soifdim,(P,)=n-1 andC={L1,L2,...;L,-I}is 
a family of greedy linear extensions of P,, whose intersection is just P,, then each Li is 
a Type 2 extension. This requires x <y in Li for i = 1,2, . . . , n - 1. The contradiction 
shows that dim,(P,) > N = width(P,). 

This same family also illustrates some of the pathological properties of greedy dimen- 
sion. For the chain C = {x}, there is no greedy linear extension L of’P,, so that P/C in 
L. For each n >, 3, dimg(Pz) = 3 while dim,(P,) = n so that greedy dimension is not a 
comparability invariant. For each y1> 3, dim,(P, - x) = 2, and thus the removal bf a 
point may decrease the greedy dimension of an ordered set by an arbitrary amount. 
Furthermore, if we take a chain D so that P, CD x D x D, then diq(P,) = ?z but 
dim,(l) x D x D) = 3. Thus, greedy dimension is not monotonic. 

Greedy dimension behaves in a peculiar fashion with respect to lexicographic sums. 

LEMMA 8. Let P be arl ordered set arld let R be the lexicographic sum of the family 
s1 = {Q, : x E P} over P. Also let t = max { dims( Q,.) : x E P}. Then the greed-y dimen- 
sion of R satisfies. 

max { dim(P), t} <dim,(R) < max { dim,(P), t}. 
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Proof. Suppose first that s = max{ dim,(P), t}, and let C be a greedy realizer of P 
withIXl=s. 

Also, for each x E P, let ZX be a greedy realizer of Q, with I IZX I = s. Now let L E YZ 
and for each x E P, let 15, E I&. Then it is straightforward to verify that the linear exten- 
sion M of R defined by taking M as the lexicographic sum of {LX : x E P} over L is a 
greedy linear extension of R. Thus, dim,(R) d s. 

On the other hand, let M be any greedy linear extension of R. Then for each x EP, 
the restriction of M to the copy of Q, induced by the points in Q: = {(x, y) : y E QX } 
is easily seen to be a greedy linear extension of Qi. Thus dim,(R) > t. The inequality 
dim,(R) > dim(P) is trivial since P is isomorphic to a subordered set of R. q 

To see why we cannot strengthen the preceding lemma, consider the ordered set 
P = P, shown in Figure 1 and the ordered set R obtained from P by replacing each bi 
by a two-element antichain while all other points are replaced by one point ordered 
sets. (See Figure 2). The following three linear orders form a greedy realizer of R; thus 
dim,(R) = 3 when n > 3. 

L1: [al<b,<az<bz<...<a,_l<b,_l<x 

<c,-1<.~~<c*<cl<y] 

L2: [a1 <cl <a, <c, < . ..<a.-, <c, -1 <x 

<b,-1<~.~<b2<b,<v] 

L3: [a,-1<b,-1<c,_1<a,_2<b,-2<c,--2<... 

<a2<b2<c2<al<bl<cI<y<x]. 

a2 a3 . on-, 

Fig. 2. 

Let C = {x1 <xa < ... <xk} be a chain in an ordered set P. We say that Cis an initial 
chain of P when C = {y E P : y < xk in P}. We call C a maximal initial chain when there is 
no point x’k+r E P - C so that {x1 <x2 < ... < xk < xk + r ) is an initial chain. Although 
the removal of a point can collapse the greedy dimension of an ordered set P by an 
arbitrary amount, this is not the case for maximal initial chains. 

LEMMA 9. Let C be a maxima2 initial chain in an ordered set P. Then dim,(P) < 1 + 
dim,(P - C). 

Proof. Let dim,(P - C) = t and let Z = { L1, L, , . . , Lt} be a greedy realizer of P - C. 
Foreachi=1,2,..., t, let Mi be the linear extension of P obtained from Li by adding the 
points of C at the bottom Of Li. Clearly, each Mi is a greedy linear extension of P. Now 
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apply Lemma 7 to obtain a greedy linear extension Mt + i of P so that C/P in M,, i . 
Since P/C in Mi for each i = 1,2, . . . , t, it follows that {M, , Mz , . . . , Mt + 1 } is a greedy 
realizer of P. Thus, dim,(P) < t + 1 = 1 t dimJP - C). 0 

4. The Principal Theorems 

The primary purpose of this paper will be to develop inequalities for the greedy dimen- 
sion of an ordered set P in terms of the cardinality and width of P - A where A is an 
antichain in P with P - A f @. 

Our first major result will be to show that Lemma 6 also holds for greedy dimension. 

THEOREM 1. Let A be an antichain in an ordered set P with I P - A I > 2. Then dim,(P) < 
IP-AI. 0 

Theorem 1 is trivially true when I P - A I = 2 since an ordered set P with dim(P) G 2 
satisfies dim,(P) = dim(P). However, the general result will require a fundamentally 
different approach than the one used to prove Lemma 6 since the removal of a point 
can collapse the greedy dimension of an ordered set by an arbitrary amount. 

In [lo], Trotter proved the following inequalities for ordinary dimension. 

THEOREM 2. Let A be an antichain in an ordered set P with width (P - A) = n > 1. 
Then the following inequalities hold. 

(a) dim(P)<2n + 1. 
(b) If A is the set of minimal elements of P, then dim(P) Q n t 1. 
(c) If A is the set of maximal elements of P, then dim(P) < n t 1. 0 

Examples constructed in [lo] and [ 1 l] show that each of these inequalities is best 
possible. Of course, 1 b and lc are equivalent since an ordered set and its dual have the 
same dimension. Our second major result is the following theorem providing parallel 
inequalities for greedy dimension. 

THEOREM 3. Let A be an antichain in an ordered set P with P - A # @ and let n = 
width (P - A). Then the following inequalities hold: 

(a) dim,(P) S n2 + n when n > 2 and dim,(P) < 3 when n = 1. 
(b) If A is the set of minimal elements of P, then dim,(P) < 2n - 1 when n > 2 and 

dim,(P) < 2 when n = 1. 
(c) If A is the set of maximal elements of P, then dim,(P) < n + 1. 0 

In the next section, we will establish two technical lemmas which yield greedy linear 
extensions satisfying special properties. We use these lemmas in Section 6 to obtain the 
upper bounds of Theorem 1 and 3. In Section 7, we will construct examples to show that 
each of these inequalities is best possible. 



GREEDY DIMENSIONS OF ORDERED SETS 151 

5. Algorithmic Constructions for Greedy Linear Extensions 

Theorems 1 and 3 assert the existence of certain greedy linear extensions of the ordered 
set P. In this section we develop a general algorithmic construction for greedy linear ex- 
tensions from which we obtain two classes of greedy linear extensions satisfying special 
technical conditions. All the greedy linear extensions needed to prove Theorems 1 and 3 
will be members of these classes. 

Consider a linear order L on P constructed in the following recursive manner. Suppose 
that 1 P 1 = m. At stage 0, let P” = P. Suppose that at each stage i < m, Pi has been con- 
structed.At stageit 1 choosexi+,EP’andletPi~‘=Pi-{xi+~>.Finallysetxi<xi 
in L iff i < j. For any subset S of P, let MIN(S) denote the antichain consisting of the 
minimal elements of S. Observe that: (1) if xi+ r E MIN(P’) for all i, then L is a linear 
extension of P; and furthermore (2) if xi+ r E MIN(P’) and Xi+ r > xi in P whenever there 
exists y E MIN(P’) such that y > xi in P, then L is a greedy linear extension of P. With 
these observations in mind, let Si = {X E MIN(P’) : X’i <x}, Gi = Si if Si # 8, and Gi = 
MIN(P’) if Si = 0. In the algorithms which follow, we will use the method and notation 
introduced above. We will assure that L is a greedy linear extension by always choosing 
xi+i E Gi. We will provide that L has certain additional properties by placing further 
restrictions on the choice of xi+ 1. 

The following notation and terminology will be useful. Letters A and B will denote 
antichains, while the letters C, E, and F denote chains. Linear orders will be denoted by 
L, M, and N. Recall that for x, y E P. x collers y in P, which we denote by x :> y in P. 
if x > y in P and there is no z with x > z >y in P. We say that a subset S of P is rooted 
in a chain C if for every x ES - MIN(P), there exists y E C such that x :>y in P. Let L 
be a linear extension of P constructed as above. We write 1i to denote the chain {xi9 

xj+1, “., xi} in L where j is the least positive integer such that {xi,xi+ r, . ..,xi} is also 
a chain in P. For a subset S of P, we let U(S) = {x E P : x >y in P for some y ES}, 
D(S)={xEP:x<v in P for some yes}, U[S] =li(S)US. and D[S] =D(S)US. 
If S = {x} we may write x instead of {x} in this notation. Let Q be a subordered set of 
P and let C be a chain in Q. We say C is maximal in Q when there is no point q E Q - C 
so that C U {q} is a chain. We denote the dual of an ordered set Q by Q*, i.e.,x <J’ in 
Q iff y <x in Q*. For a subset S of P we let S’ denote S n P’. For a subset S of P let 
MAX(S) denote the set of maximal elements of P. If S is a chain. let min(S) denote the 
least element of S and max(S) denote the largest element of S. 

We now present the two technical Lemmas that are needed to prove Theorems 1 and 
3. The reader may choose to see how these Lemmas are used in Section 7 before reading 
their proofs. 

LEMMA 10. Let E be a chain in P and let B be an antichain in P with B n E = @. Suppose 
thar (B1, B2 ) is a partition of B such that B1 is rooted in E. Let N be a linear order on 
B1 such that the N-least element b of B1 satisfies (*) D(b) n E C D(b) n E for all b E B1 . 
Then there exists a greedy linear extension L = L (E, B1. B2, N) such that: 

(a) E - U(B,)/P - UIBI ] inL; 
(b) BI/P- UIBI] inL; 
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(c) L restricted to B1 is N; 
(d) for each u E B2 - MIN(P), there exists an element x E P such that u :> x in P 

and there does not exist y ED(B) with x <y < u in L. 
Proof We will use the method described above to construct L . Thus we must provide 

a scheme for choosing Xi+. i from Gi. 

Case 1: B2 n Gi # Qt. Choose xi+ i E Bz (7 Gi such that 

I u(Xi+l )l<IU(y)l forallyEB,nG,. 

Case 2: B2 17 Gi = 8 but Gi - B # (0. Choose Xi+ i E Gi - B such that 

JUIXi+,]nEI~ILi[y]nEIforaliyEGi-B. 

Case 3: Gi C B1. Choose xi+ i E Gi such that 

Xi+1 <yinN forallyEGi. 

Next we show that the greedy linear extension L constructed using this preference 
scheme satisfies (a) - (d). 

Proof of (a): Suppose that L does not satisfy (a). Choose the least i such that Xi+ t E 
E - U(B,), but there exists y EP- UIBl] withxi+illy in P andq+i <y in L. Then 
yEP’.SelectzEMIN(Pi)suchthatz<yinP.ThenzEP- U[Bi],xi+illzinP,and 
Xi+1 <Z in L. 

Let j be the least integer such that xi Eli+ r and Xi II z in P. We claim that z should 
have been preferred to xi at stage j. Clearly z E MIN(Pf-‘) since Pi - Pi- ’ = {xi, Xj+l , 
.*.,Xi+l}. If Xj-111 j x in P, then Gi -i = MIN(P”-‘); otherwise xi -1 Eli+ i and, by 
the choice of j, xi _ r < z in P. Either way z E Gi _ r, 

Since Xi <Xi+1 in P and xi+1 E E - U(B,), Xi 6? Bz . Thus, Case 1 does not hold at 
stage j. In particular, z @ B2 . Since z < y in P and y b? U [ B1 1, z & B1 . Since z E Gi - B, 
we note that Case 2 holds at stage i. Since Xi+ r E E, z 11 Xi+ i in P, and Xj <Xi+ i in P, 

IU[z] nEI<IU[xj] nEl, 

which confirms the claim that z is preferred to xi at stagej, and thus proves (a). 
Proof of(b): Suppose that L does not satisfy (b). Choose the least i such that xi+ i E 

B1 but there existsyEP- U[B,] with Xi+,IIy in P andxi+i <y inL. ThenyEP’. 
ChoosezEMIN(Pi)withz~yinP.ClearlyzEP-U[B1],xi+lIIzinP,andxi+l<z 
inL. 

Since Xi + i E B1 , Case 3 holds at stage i + 1. Thus z 4 Gi. Thus xi + i :> xi in P, but 
zllxiinP. Sincexi+iEB1,xi+i @ MIN(P), and B1 is rooted in E, there exists an element 
eEE such that Xi+r :>einP.Ifxi#e,theneIIxiinP,eEEnD(B1),andxiEP- 
UIB1 1, but e <xi in L, which violates (a). On the other hand, if xi = e, then Xi II z in P, 
xiEEnD(B,), and zEP- U[B,], but Xi<Xi+i < z in ,L, which again violates (a). 
This contradiction completes the proof of(b). 

Proof of(c): Suppose that L does not satisfy (c). Choose the least i such that xi+r E 
B1 but there exists y E B1 withy <xi+1 in N but xi+i <y in L. Then Case 3 holds at 
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stage i + 1. By (b) y EMIN( Since we preferred Xi+r to y at stage i+ 1, y 4 Gi. 
Thus, xi < xi+ i in P. Since Xi+ i @ MIN(P), there exists e E E such that xi+ i :> e in P. 
By (a) we conclude that Xi = e. By (*), Xi <i in P. Using (b) we see that b :> e, and 
thus by (a), 6 E Gi. It follows that xi+ i = i, which contradicts y <xi+ I in N and com- 
pletes the proof of(c). 

Proof of(d): Suppose that u EB2 - MIN(P). Let B, ={x EP: u :>x in P}. Then 
B, is a nonempty antichain. Let k be the largest integer such that xk E B,. We claim 
that if xk <y <u in L, then y E U[B,]. In particular, y 6% D(B). Let y = xi and xi = 
midzC n{xk+lT xk+2 , . . . ,Xi }. Then u E GZ _ i . Since u E B2 , Case 1 holds at stage j. 
Then xi E B2 and y = xi E U [B2 ] Thus xk witnesses that (d) holds for u. This com- 
pletes the proof of(d) and Lemma 10. 0 

LEMMA 11. Let E and F be disjoint chains in an ordered set P. Suppose further that 
E = @ or E is maximal in E U F. Let Be be an antichain rooted in E. l;hen there exists 
a greedy linear extension M = M(E, F, B) of P such that: 

(a) E/(P- U[B])UFinM; 
(b) B/F in M; 
(c) E - D(F)/P in M; and 
(d) For all a, b EMZN(P), if 

(i) a E B if and only if b E B; 
(ii) u(a) n F = U(b) 17 F; and 

(iii) (i(a) F V(b); 
thena<binM. 

Pro05 We shall construct M according to our general method. Thus we must provide 
a scheme for choosing Xi+ r from Gi. Below we give four preference tests Ti , T,, T3, and 
T4 for choosing Xi+ i E Gj so that if y E Gi and y is preferred to xi+ r by Ti, then there 
exists k <j such that xi+ i is preferred toy by Tk . 

T,: Let Si={bEBnGf:bIlf inPforsomefEF’}.Prefery 
ZESj. 

toz ify@Si and 

T,: PreferytozifI{eEE:y~einP}l<l{eEE:z~einP} 

T3: Preferytozifl(fEF:f <yinP)I>I{fEF:f<zinP} 

T, : Prefer y to z if U(y) $ U(z). 

I. 

We now show that the greedy linear extension M constructed using this preference 
scheme satisfies (a), (b),(c), and (d). 

The following claim will be used in the verification of (a), (b), and (c). 

CLAIM: Zf x, E E and xk EZ,, r3 F, then there exists e E E such that e 11 xk in P and 
e<xk inM. 

Proof Let 1 be the least integer such that k < 1 <n and xl E E. Then x’r EZ, and 
thus xk <xl in P. Since E # @, E is maximal in E U F. Thus xl is not the least element 
of E. Let e EE be the unique element immediately below xl in E. By the choice of 
i,e~xkinM.SinceEnF=9),efxkandthuse<xkinM.Ife<xkinP,thenEU 
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{xk} is a chain, contradicting the hypothesis that E is maximal in E U F. The contradic- 
tion requires e 11 xk in P. This concludes the proof of the claim. 

The reader should note that once (a) has been established, then we may assume there- 
after that the hypothesis to this claim is never satisfied. This remark follows from the 
observation that the conclusion of the claim contradicts E/F in M and thus contradicts 
(4. 

Proof of (a): Suppose that (a) is false and choose the least i such that xi+ r E E but 
thereexistsyE(P-U[B])UFwith~~+~llyinPandx~+~<yinM.ThenyEP’.If 
y E F we may assume without loss of generality that y = min(F’). Choose z E MIN(P’) 
with z <y in P. Then choose the least integer j such that xj Eli+r and xj 11 z in P. It 
follows that z E Gj _ r . Since xj <xi + r in P, z II xi+ r , and xi .+ r E E, z is preferred to xj 
by T2 . Thus, Xj must be preferred to z by Tl . Thus z E Sj _ r , i.e ., z E B and z II f in P, 
wheref=min(Fj-l). 

Since z E B, y E (P - U [B]) U F, and z <y in P, y E F and, thus, f<y in P. Since 
y = min(F’), we conclude that f=xk for some k such that j i k < i + 1. Thusxk Eli+ r . 
Now by the claim, with fz = i + 1, there exists e E E such that e II xk and e < xk in M. This 
contradicts the choice of i, and thus completes the proof of (a). 

Proof of(b): Suppose that (b) is false and choose the least i such that Xi+r E B, but 
there existsfE F with xi+rllfand xi+r <finM. ThusfEP’. Without loss of generality, 
assume that f= min(F’). Clearly Xi+ r ESi.ThusbyTr,GiCBandbllfinPforevery 
b E Gi. Choose z E MIN(P’) such that z <f in P. Clearly z 4 Si. Thus, by T1, z 4 Gi, 
S~i>O,zII~~inP,andxi+r:>~iinP.Since~i+r & MIN(P) and B is rooted in E, there 
exists c E E such that Xi + r :>e.SinceE/P- U[B] inMandxiEP- U[B],e=xi. 

Now let j be the least integer such that xj Eli and xj II z in P. Then z E Gj _ r and z is 
preferred to xi by Tz,. Thus xi is preferred to z by Tl . In particular, z E Sj _ r and, thus, 
~EBandzIIf’inP,wheref’=min(F~-‘).Thenf’<f.Sof’=xkforsomeksuchthat 
j <k <i. Thus xk Eli and we observe that the hypothesis to our claim is satisfied. By 
our previous remarks, this constitutes a contradiction of (a). Thus (b) holds. 

Proof of (c): Suppose that (c) is false and choose the least i so that Xi+ r E E - D(F), 
but there exists y E P with Xi + r y II in P and xi+r <y in M. Choose z E MIN(P’) with 
z<y in P. Then xi+rllz in P and xi+r <z in M. In view of (a), we may assume that 
zEU[B] -F. 

Now choose the least integer k so that xk Eli+ r and xk II z in P. It follows that z E 
ck--1. 

Since z is preferred to xk by T2, it must be the case that z loses to xk on Tl . This 
requires that z E B n Gk _ r and that there exists a point f E Fk -’ with z lifin P. Since 
~i+~ EE - D(F), we cannot have Xi+r <f in P. If f = xl for some f with k < I< i, then 
the hypothesis of the claim is satisfied. We conclude that f #xl for all 1 with k < I < i. 
However, this in turn implies that xi + r <f in L and Xi+ r II f, which again contradicts (a). 
This completes the proof of(c). 

Proof of(d): Suppose that a, b E MIN(P), (i) a E B iff b E B, (ii) U(a) n F = U(b) n 
F and (iii) Cr(a) $ U(b). Let i be the least integer such that Xi+r =U or Xi+r = b. Then 
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Gi = MIN(P’). Using (i) and (ii) we see that a E Si iff b E St. Thus, a and b tie on Tr . By 
(iii) b cannot be preferred to a by Tz. So suppose they tie on Tz . Then they also tie on 
T3. But a is preferred to b by T4. Then a <b in M. This completes the proof of (d) 
and Lemma 11. 0 

We close this section with the remark that Lemma 7 is easily seen to be a special case of 
Lemma 10 as well as Lemma 11. To see this, let C be any chain in P. Then C/P in L (C, @, 
0,0) and C/P inM(C, 0,0>. 

6. Proofs of the Principal Theorems 

In this section, we present the proofs of Theorem 1 and 3. Actually, Theorem 1 will be 
obtained as an easy corollary to the following technical result. 

LEMMA 12. Let P be an ordered set and let A denote the set of minimal elements of P. 
Suppose that P - A # 0 and 

is a partition where each Ci is a chain and each Ai is a nontrivial antichain. Then 

Proot We proceed by induction on I PI. In view of Lemma 8, it is clear that we may 
assume that P is indecomposable with respect to lexicographic sums. In particular, we 
may assume that there do not exist distinct points al, a2 E A with u(ai) = u(a,). 

We now proceed to form a family I: of greedy linear extensions of P by the following 
rules. If t > 0, then for each C’i we put two greedy linear extensions of P in 2 : 

Ifs>O,thenforeachj=1,2,...,s,welabelthepointsinAias{x~~:1~kgIAiI} 
and then define the greedy linear extension L,! of P by the rule: 

L; =M({x;},{x;+‘},A). 

(In this notation, the superscripts are to be interpreted cyclically.) 
We claim that X is a realizer of P. To verify this claim, we consider an arbitrary pair 

x, y EP with x 11 y in P. We show that there exists u E Z: so that x <y in u. Once this is 
accomplished, we may conclude by symmetry that there also exists r E Z for which 
y<xinr. 

Casel: yEP-A. 
Suppose first that y E Ci for some i. Then x < y in Lzi _ r . Now suppose y E Ai for some 
j. Choose k so that y = x,5. Then x < y in L,E. 

Case2: yEA,xEP-A. 
Suppose first that x E Ci for some i. Then x <y in Lzi. Now suppose x E Ai for some j. 
Choose k so that x = x,!‘. Then x < y in L,! -I. 
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Case3: yEA,xEA. 
If there exists a point z EP - A with z E U(x) - U(y), then there exists some u E E 
with z <y in (I. Hence, x <z <y in u. So we may assume that U(x) C U(y). Since P 
is indecomposable, we know that U(x) F U(y). 

Again, since P is indecomposable, we also know that there exists a point w EP - A 
with w > x in P. Then w > y in P. Suppose first that w E Ci for some i. Then x <y in 
L,i _ 1 =M(Ci, g, A). On the other hand, suppose w EAj for some j. Choose k so that 
w =xF. Then U(j) n {x:} = U(x) n {x:} so x <y in M,! - ‘. This completes the 
proof of Lemma 12. cl 

COROLLARY (Theorem 1). Let A be an antichain in an ordered set P with I P - A I > 2. 
Then dim,(P) < I P - A I. 

ProoJ: We proceed by induction on I PI. In view of Lemma 8, we may assume that P 
is indecomposable with respect to lexicographic sum. Also, we may assume A is a maximal 
antichain in P. 

Let I P - Al = n. If n = 2, then dim(P) < 2 and dim,(P) = dim(P) < 2. So we may 
assume n > 3. 

Now suppose P contains a maximal initial chain C so that C n (P - A) # $. Let Q = 
P - C and B = A - C. Then I Q - B I < n - 1. If I Q - B I < 2, then dimJQ) < 2 so 
dim~(P)~1tdim,(Q)~3~n.If2<~Q-B~~n-1,thendim,(P)~1tdim,(Q)~n. 

So we may therefore assume that C n (P - A) = fl f or every maximal initial chain C 
in P. Thus, A is the set of minimal points in P, and every maximal initial is a singleton. 

Suppose that n is even, say n = 2m. Partition P - A into m subsets containing exactly 
two elements of P - A. If we denote this partition as P - A = Cl U C, U ... U C, U Al U 

AZ U . ..UA.,then2ttIAlItIAzIt . ..tIA.I=nsothatdimg(P)<nbyLemma12. 
So we may assume that n is odd. 
If P - A contains a three-element chain C1, then we may partition P - A - C1 into 

two-element subsets and use Lemma 12 to conclude that dimg(P) d n - 1. So we may 
assume that P -A does not contain a three-element chain. 

If P -A contains a three-element antichain Al, then we may partition P - A - A, 
into two-element subsets and use Lemma 12 to conclude that dim,(P) d n. So we may 
assume P - A does not contain a three-element antichain. 

Now every ordered set containing five or more points contains a three-element chain 
or a three-element antichain, so it remains only to consider the case n = 3. Furthermore, 
since P is indecomposable, it is easy to see that P - A must be the union of two chains 
C~={x<y}andC~={z}withx~~zandyI~zinP.Inthiscase,weobservethat{M(C,, 
C,, A),M(&, C1, A),M({z}, {y}, A)} is a greedy realizer ofP. 0 

As previously noted, the family {P,,; n > 3) illustrated in Figure 1 shows that the 
inequality in Theorem 1 is best possible even in the class of three-dimensional ordered 
sets. Of course, since dim,(P,) = width(P,) = n, we observe that the inequality dim,(P) G 
1 P I / 2 when I P I > 4 is also best possible even in the class of three-dimensional ordered 
sets. 

We now proceed to prove Theorem 3. In order to facilitate the exposition, we prove 
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the five inequalities in a different order. In each case, we proceed by induction on 1 PI, 
so we will assume that P is indecomposable with respect to lexicographic sums. We also 
assume A is maximal. 

PART I. If A is the set of maximal elements of P, P - A # 8, and n = width(P - A), 
then dim,(P) < n + 1. 

Proofi Since P is indecomposable, A f~ MIN(P) = 8. Partition P-A into chains 

c* , G , . . . > C,.LetA,={aEA:a:>cinPforsomecEC,}.Withoutlossofgeneral- 
ity we may assume that Al # (D and Cr is maximal in P - A. Observe that Al is rooted 
in Ci . Let M = M(Cr , 0, 0). Then Ci /P in M. Let Nr be the dual of M restricted to A1 . 
Notice that the Ni -least element al of A, satisfies D(a) n C1 C D(al) n C1, for every 
aEA,. Let L, =L(C’,, Al, A-AI, NI). Let Ai=(aEA-A,: there exists CEC’ 
so that a :> c in P and there does not exist y ED(A) such that c <y <a in L}. By 
(d) of Lemma 10, {AZ, A3 , . .., A, } is a partition of A - Al . Clearly C$‘Ai in L1 , for 
j=2,3 12. , ..a> 

For each j=2, 3, . . . . n, let Nj be the dual of the restriction of Li to Ai. Then again 
the Nj-least element ai of Aj satisfies D(a) n Cj C D(aj) n Cj for every a EAi. Let Lj = 
L(Cj,Aj,A-Ai,Nj). 

We claim that 2 = {M, L r , . . . . L,} is a greedy realizer of P. To verify this, we 
must show that if x 11 y in P, then there exist u, r E E such that x <y in u and y <x 
in 7. 

Case 1. x, y E P - A. 
ChoosejandksuchthatyECjandxECk.Thenx<yinLiandy<xinLk 

Case2. xEP-AandyEAI. 
Then x <y in L r . If x E C1 , then y <x in M. Otherwise x E Ck for some k > 2 and 
y<xinLk. 

Case3. xEP-AandyEA-AI. 
IfxECjandyEAjforsomej>2,theny<xinLr andx<yinLj.OtherwisexECk 
andyEAjforkandjsuchthatk#jandj~2.Theny<xinLkandx<yinLi. 

Case4. x, yEA,. 
ThenbythechoiceofNi,x<yinMiffy<~inL~. 

Case5. x,yEAjforsomej>2. 
Then by the choice of Nj, x < y in Lj iffy <x in L1 . 

Case6 xEAjandyEAk withjfk. 
Theny <x in Lj andx <y in Lk. 

This completes the proof of Part I. 0 

PART II. If A is the set of minimal elements of P and width(P - A) = n > 2 then 
dim,(P)<2n - 1. 

F’rooJ: Partition P - A into chains Cr , C, , . . . , C,, . 
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Let C,, C,, . . . , Cn be maximal chains in P such that C’i C Ci for all i < n. Let ci = 
min Cr. Since A is a maximal antichain, each ci EA. For i = 1,2, . . ., n - 1, let Mi = 
M(C,,Ci-C,,A)andMi’=M(C,,~,~).LetM,=M(~,C,,A). 

We claim that C={M~:1~i<~}U{M~:1~i~n-1}isagreedyrealizerofP. 
To verify this claim we consider any x II y in P. 

Gzsel. x,yEP-A. 
Suppose that x E Ci, for some i < n. Then y <x in M/ . If x E C, then there exists j < n 
such that y E Cj - C,, ; so y <x in Ml. By symmetry we can also find u E Z such that 
x <y in 0. 

Case2. x,yEA. 
Since P is indecomposable we may assume without loss of generality that there exists 
z E V(y) - U(x). Suppose that z E Ci - C,, for some i < n. Then y < z <x in Mi. Other- 
wisezEC,, andy<z<xinM,,. 

Next we try to put y over x. If there exists z E U(x) - (1(y) we are done by symmetry, 
so we may suppose that U(x) 9 U(y). By (d) of Lemma 11, x <y in M/ for each i = 
1,2, . . . . n - 1. 

Case3. xEP-AandyEA. 
Let xECi. If i<n and XECi -C,, then x<y inMr. OtherwisexECn andx<y in 
M, . By Case 2 there exists u E Z such that y < ci <x in u. 

This completes the proof of Part II. Cl 

PART III. IfA = MIN(P) and P - A is a chain, then dim,(P) < 2. 
Proofi From Theorem 2, we know dim(P) =G 2. Thus dimg(P) d 2. cl 

PART IV. If A is an antichain in Pand width(P - A) = n > 2, then dim,(P) d n2 t n. 
Pro05 Partition P - A into the chains Ci, C2, . . . , C,, . For each i = 1, 2, . .., n, let 

Ci beamaximalchaininPwithCiCCi.ThenletA=P-(C,UC,U...UC,).For 
each i = 1,2, . . . . n let Ai=[An(MIN(P)] U{aEA:a :>c in P for some CECi}). 
LetEi=CinD(Ai)andFi=Ci-Ei.LetMi=M(Ei,t;;:,Ai)foreachi=1,2,...,n. 

For each i, define a partial order Qi on Al by setting a <b in Qi iff U(a) C U(b) and 
D(b) C D(a). Note that Qi is antisymmetric because P is indecomposable. If every element 
of Ai belongs to MIN(P), let A’i be an arbitrary linear extension of Qi and let ai be the 
Ni-least element of Ai. Otherwise, let xi be the largest element of Ei. Choose ai from Ai 
so that ai is a minimal element in Qi and ai : > xi in P. Then let Ni be any linear extension 
of Qi for whichai is the least element in Ni. Let Li =L(Ci, Ai, A - Ai, Ni). 

Consider integers i, j with 1 G i, j <n and i Zj. Let Aii = {a E A - Ai : there exists 
c E Ci - Ci such that a :> c in P and there does not exist x ED(A) such that c <x <a 
in Li}. Observe that any element of A which is minimal in P or which covers a point of 
Ci belongs to Ai. By (d) of Lemma 10, for each a E A - Ai, there exists x E P - ci such 
that a :>x in P and there is no point of D(A) between x and a in Li. Thus for each i, 
{Ai} U {Aii: j #i} is a partition of A. For all 1 <i, j <n with i #j, let Mii =M(q, 
q - q, Aii). 
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We claim that the n* + n greedy linear extensions in L: = (& : 1 =G i < n} U {A$ : 1 < 

i G n} U {Mij : 1 < i, J’ < n with i #i} form a greedy realizer for P. Consider an arbitrary 
pair x II y in P. We must demonstrate that there exist u, r E Z such that x <y in u and 
y <x in 7. 

easel. x,yEP- A. 
SupposexECiandyECi.Thenx<yinM~iandy<xinMji. 

Case 2. x E P - A and y E A. 
We first find a greedy linear extension in E which puts x over y. Let x E ci. If y EAi for 
some i fj then y <x in Mii since y 4 U [AiJ . Otherwise y E Aii for all i #j. Then using 
(d) of Lemma 10, y <x in Li for all i fj. 

Now we show that there is a greedy linear extension in Z: which puts y over x. Again 
let x E ci. If x E Ei and y E Ai, for some i, then x <y in Lr. So suppose that x E Fi. If 
there exists k such that x E Fk and y E Ak, then x <y in Mk. Otherwise there exists 
k#jwithyEAjkandx&ck.Thenx<yinMjk. 

Case3. x,yEA. 
IfxEAi-AiandyEAi-Ai,thenx<yinLiandy<xinLi.Otherwisex,yEAifor 
some i. First suppose that x <y in Qi. Then x <y in Lt. Also U(X) 9 U(y) or D(y) 9 
D(x). In the first case there exists u E P - A such that y <U in P and u 11 x in P. By Case 
2 there is a greedy linear extension u E 2 such that y < u <x in u. A similar proof works 
if D(y) 9 D(x). N ow suppose that x is incomparable toy in Qi. Then arguing as above we 
can use Case 2 to show that there exist u, r E I: such x <y in u and y <x in 7. •J 

PART V. Let A be an antichain in P and suppose that P - A is a chain in P. Then 
dim,(P) < 3. 

Pro05 Without loss of generality C is a maximal chain. Let Mi =M(C, @, 0). Then 
C/A in Mi . Also the Mr largest element a^ of A satisfies D(a) n CC D(h) n C for all 
a EA. Let N be the dual of the restriction ofMr to A. Then let L1 = L(C, A, @,N). Then 
A/D(A) in L1 and x <y in Mr iffy <x in Lr for all x, y EA. Finally, let M2 = M(D(A), 
C - D(A), A). Then A/C - D(A) in M2. This completes the proof of Part V and The- 
orem 3. cl 

7. The Examples 

In this section, we construct examples of ordered sets to show that each of the inequali- 
ties in Theorem 3 is best possible. We follow the same format as in the preceding section. 

PART I. For each n > 1 there exists an ordered set P such that width (P - MAX(P)) = n 
and dim,(P) > n + 1. 

Proofi Let P=P,+I where (P, +i : n > 1) is the family of ordered sets illustrated 
in Figure 1. The set of maximal elements of P,, +i is {x, y} and the width of P,, +1 - 
{x,y}isn.However,dimg(P,+i)=n+l. Cl 
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PART II. For each n > 2, there exists an ordered set Q such that width (Q - MIN( Q)) = n 
anddim,(Q)=2n - 1. 

Proofi If n = 2, then Q = Pz provides the required example. For n > 3 let Q = Q, 
where Q, is defined for n > 3 (and even n = 2) as follows. The minimal elements of Q 

are Ial, a2,...,a,lU{bl, b,..., b, }. The remaining points in Q are Q - MIN( Q) = 

lx 1, x2 > . ..> x,}U{yl,yz ,..., yn}U{zl,z2 ,..., z,}.ForeachiGn,zi:>yi:>xi:> 
bi in Q. In addition, for each i, j-<n with i#J, zi :>xj, yi :>bi, and yi :>ai. The 
ordered set Qa is depicted in Figure 3. 

Fig. 3. 

Suppose that 2 = {L, , Ls , . . , Lr } is a greedy realizer of Q. Then in particular C must 
meet the following requirements for all i, j, and k such that 1 < i, j, k < n and j # k. 

Requirement Vi: There exists L E z such that zi < ai in L. 
Requirement Vi, k : There exists L E z1 such that yj < Xk in L . 
Next we present a series of easy claims each of which will limit the number of these 

n2 requirements that can be met by any one L E E. 

CLAIM 1. There is at most one i such that L satisfies Ut. 
Proofi Ifzi<aiinLthenaj<yi<zi<ai<yj<zjinLforanyjZi. El 

CLAIM 2. If L satisfies iJi and j # i then L does not satisfy Vi, k for any k G n. 
&OO~ Ifzi<aiinLthenXk<Zi<ai<yjinLforanyj#iandanyk. q 

CLAIM 3. There exists at most one k for which there exists j such that L satisfies Vi, k . 
Proof: Let bk be the L-largest element of { bl, b2, . . . , b, }. Then for each 1 <n with 

1 # k, x, : > bt in L, since L is a greedy linear extension. Thus, xl < bk < yi in L, for any 
IZkandanyj. 0 

We now complete the proof of Part II by showing that t, the cardinality of z, must be 
at least 2n - 1. By Claim 1 we may assume that requirement Ui is satisfied by Li for 
1 < i < n. By Claims 2 and 3, at most n of the requirements Vii are satisfied by La, Lz , 
. .., L,. By Fact 3, at most (t - n) (n - 1) of the remaining n(n - 2) requirements Vii 
are satisfied by L, +1, L, +a, . . ., L,. This requires (t-n) (n - l)>n(n - 2) and 
thus t > 2n - 1, which completes the proof of Part II. cl 

We note for the record that dim,(Qz) = 2. 
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PART III. There exists an ordered set Q such that Q - MIN( Q) is a chain and dim,(Q) > 2. 
Pro05 Any nontrivial antichain will do for Q. Cl 

PART IV. For every n > 2, there exists an ordered set R and an antichain A C R such 
that width(R - A) = n and dim,(R) > n 2 + n. 

Proofi This construction is considerably more complicated than the others and 
requires some preliminary development. For an integer m, let m denote the set { 1,2, . . . , 
m} while mn denotes the Cartesian product of n copies of m. The elements of mn are 
functions from n to m so we can lexicographically order mn by defining f <g when 
f(i) <g(i) for the least integer i such that f(i) #g(i). We abbreviate this linear order 
by writingf<g in LEX. 

For integers n, m with n > 2 and m > 1, we define an ordered set R(n, m) by the 
following rules: 

(1) The point set of R(n, m) is the union of disjoint sets A U D U U. 

(2) A is a maximal antichain of R(n, m). 
(3) D = D(A) and U = U(A). 
(4) d<uinR(n,m)foreverydEDanduEU. 
(5) The points in D are labelled as {d(f, j) : fE m", j E n}. We set d(f, j) <d(g, k) 

in R(n, m) iff f<g in LEX. Thus for each j E n the elements in Dj = {d(i j) : 
fE mn } form a chain. 

(6) The points in U are labelled as {u(i, j) : i E m, j E n}. We set u(i, j) < u(k, I) 
in R(n, m) iff i <k and j = 1. Thus for each j E n the points in Uj = {u(i, j) : 
i E m] form a chain. 

(7) The points in A are labelled as {a(f, j) : ff5 mn and j E n}. We set d(f, j) < 
a(g, k) in R(n, m) iff f<g in LEX, or f=g and j=k. Furthermore, a(./; j)< 
u(i, k) in R(n, m) ifff(k) <i. 

We illustrate this definition by providing in Figure 4 a diagram of R(2,2). To simplify 
the diagram the coordinates of the various points are printed along the sides of the 
diagram. 

d 11.2) 

(2.1 I (2.21 (1.2) \ 

‘Od “d Il.11 

1 2 

Fig. 4. 

(1.11 
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The following result is a special case of the ‘Product Ramsey Theorem,’ 

THEOREM. Let n, p, and Y be positive integers. Then there exists an integer m. (depend- 
ing on n, p, and r) so that if m 2 mQ and \k: mn + r is any function, then for each j E n 
there exists a p-element subset Hi C m and there exists an integer Q E r so that ‘k(f) = (Y 
foreveryfEH, xH2 x...xH,,. 0 

For each n > 2, we apply the preceding theorem with 

t2 and r=nn2+n-1 

and let m = m. be the integer provided by the Product Ramsey Theorem. Then set 
R = R(n, m); note that R actually depends only on n. To complete the proof, we show 
that dim,(R) > n2 + II. To accomplish this we suppose to the contrary that dim,(R) < 
n 2 + n. It follows that there exists a greedy realizer X = [L 1, L2 , . . . , L,} of R where 
t=n2tn-1. 

Let f E mn ; in what follows, we refer to the n-element antichain {dif, j) : 1 =Gj G n} 
as the f-level of D. Similarly, we refer to the n-element antichain { u(f(j),j) : 1 <j Q n} 
as the f-level of U. The elements of the f-level of D always occur at the same height in R, 
but this is not the case with the points in the f-level of U. 

For each f E m“, we consider the points in the f-level of U, and we consider the 
orderings imposed on them by the linear orders in Z;. In particular, we record which 
element of the f-level of U is the lowest in L. This is accomplished by a sequence (kr , 
k2, . . ., k,) where the least element in the restriction of Li to the f-level of U is u(,f(ki), 
ki). With this convention, we have defined a function \k mapping m” to n’. We conclude 
that there is some sequence (Y = (ki, k2, . . . , k,) and n subsets HI, H, , . . . , H, of m with 

IHji=p=+ t2 foreachjEn, 
0 

sothat\k(f)=olforeveryfEHr xH,x...xH,. 
For each j En, we let I$ = {u(i, j) : i EHi} and relabel the points of Vj as {v(i, j) : 

iEq}, where v(i, j)<v(i: j) in R iff i<i’. We also let V= Vr U V2 U ...LJ V,. The 
basic purpose behind this Ramsey construction is stated in the next claim which follows 
immediately from the fact that each f E HI x H2 x ... x H, is mapped by \k to the same 
aEn’. 

CLAIM 0. For each L E Z there exists k E n such that V/V, in L. 0 

For each i E p - 1, let fi E mn be such thatfi(j) = k where u(k, j) = v(i t 1, j). Thus, 
for all j, k E n, a(fj, j) < V( I, k) in R iff i < 1. Since X is a realizer of R, X must meet the 
following requirements for each i, i’ E p - 1 with i < i’ and j, j’, k E n. 

Requirement S(i, j, k) : There exists L E Z such that v(i, k) < a(fi, j) in L. 
Requirement T(i, i’, j, j’): There exists L E X so that a(&!, j’) <a(fi, j) in L. 
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To complete the proof, we show that since 1 Z 1 = n2 + n - 1, E cannot satisfy all 
of these requirements. We begin with a series of claims which restrict the number of 
requirements that can be met by a single linear extension L E E. 

CLAIM 1. For each i E p - 1 and each j E n, there is at most one k En such that L 
satisfies requirement S( i, j, k). 

ProoJ: Suppose that L satisfies S(i, j, k). Then v(i, k) < a(fi, j) < v(p, 1) in L, for any 
lEn.ThusbyClaimO, V/V, inL.Nowsupposethat1EnandI#k.Thena(fi,j)< 
v(p, k) < v(i, I) in L, so L does not satisfy S(i, j, 1). 0 

CLAIM2. Suppose that i, i’Ep- 1, i<i’, and j, j’, kEn. If L satisfiesS(i, j, k)or 
T(i, i’, j, j’), then d(f,, j) is the L-largest element of the&level ofD. 

Proof Since L is greedy, if d(J;:, j) is not the L-largest element of the &level of D, 
thena(fi,j):>d(f;:,j)inL.Thusa(f;:,j)<d(fi,m)inL,wheredCfi,m)istheL-largest 
element of the &level of D. Since d(fi, m) < a(fit, j’) in L and d(h, m) < v(i, k) in L, 
L satisfies neither S(i, j, k) nor T(i, i’, j, j’). 0 

CLAIM3. Supposethati,i’Ep-1 withi<i’andj,j’En.IfLsatisfiesT(i,i’,j,j’), 
then L does not satisfy S(i’, j’, k) for any k E n. 

Proof. Since L satisfies T(i, i’, j, j’) we have adfi,, j’) <a(fi, j) < v(i’, k) in L for 
allkEn. 

We are now in a position to conclude the proof of Part IV. For each i E p - 1 and 
j E n let ZZi,j = {L E Z : d(fi, j) is the L-largest element of the &-level of D}. By Claim 
1, for each i E p - 1 and j E n, it takes n distinct linear extensions to satisfy S(i, j, k) 
for all k En. Thus, by Claim 2. 1 Xi,j 1 > n. Clearly &j 17 Xi, j’ = 0 if j Zj’. Since t = 
n2 t n - 1, for each i E p - 1 there exists j(i) such that 1 Zi, j(i) 1 = n. Let Zi, j(i) = I;i. 
Note that if Z meets requirements S(i, j(i), k) for some k E n, then some L E Xi satisfies 
S(i, j(i), k). Since p = (i) + 2, there exist i, i’ E p - 1 with i < i’ such that Zi = Xi’. By 
Claim 2, if L E C satisfies T(i, i’, j(i), j(i’)), then L E Xi = Zil. By Claim 3, L does not 
satisfy S(i’, j(i’), k) for any kEn. By Claim 1 the remaining n - 1 linear extensions 
in Zil cannot satisfy all of the requirements S(i’, j(i’), k) for k En. This contradicts 
the assumption that 2 is a realizer of R and completes the proof. q 

PART V. There exists an ordered set R and an antichain A C R such that R - A is a 
chain and dim,(R) = 3. 

Proof. The ordered set shown in Figure 5 is the required example. It is a well known 
example of a three-dimensional ordered set. cl 

a 
4 

Fig. 5. 
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