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ABSTRACT

In this extended abstract. we introduce a class of graphs which generalize
threshold graphs by introducing threshold tolerances. Several characterizations of
these graphs are presented. one of which leads to a polynomial-time recognition
algorithm. It is also shown that the complements of these graphs contain interval
graphs and threshold graphs, and are contained in the subclass of chordal graphs
called strongly chordal graphs, and in the class of interval tolerarce graphs. A
final paper complete with all proofs will appear at a later time.

1. INTRODUCTION

An undirected graph G =(V, E) is called a threshold tolerance graph if it is

possible to associate weights and tolerances with each vertex of G so that two
vertices are adjacent exactly when the sum of their weights exceeds either of their
tolerances. More formally, there are weights w, and tolerances t, foreachv € V
so that

ty € E <=>uw, + w, 2 min (t, t,)- (*)

If we insist that all tolerance be equal, we obtain the class of threshold graphs
[CH77]; see also [Go78; Go80, Chapter. 10; HZ77; Or77.. 1t is easy to see that we
may require that all weights and tolerances are positive, and that strict inequality
holds in (*).
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For our purposes, it is convenient to present our results in terms of the
complement of threshold tolerance graphs, which we call ¢coTT graphs. An
equivalent definition is that a graph G = (V,E)is a coTT graph if there are
numbers ¢ and b, for every v € V so that

Ty € E <=>gq, Sby and a, <b,.

To see that these definitions are equivalent, set a, =w, and b, = t, —w,. As
before we may take all of these numbers to be positive.

A graph G =(V, E) is called an interval graph BL76; FG65; GH64; Go80,
Chapter 8; LB62] if there are closed intervals I, =[L,, R (of the real line) for

each v € V so that two vertices are adjacent exactly when their intervals
intersect, that is,

zy €EE <=> I N Iy #* 0

A graph G =(V, E) is called an interval tolerance zraph ‘GM82, GMTS4] if
there are intervals I, =[L,, R] and tolerances 7, foreach v € V so that
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zy € E <=> III ni | > min (7, ,'y)

where |I| is the length of interval I. A graph G = (V,E) is called a
chordal graph [Bu74; Di64; FG65; Ga74; HS58; LB74; Ro70; Wa78] if it contains
no induced chordless cycle C, of length n > 4. We let P, denote a path on n
vertices and K denote the complete graph on n vertices.

Theorem 1.1.
(a) Every threshold graph is a coTT graph.
(b) Every interval graph is a ¢coTT graph.

(c) Every coTT graph is an interval tolerance graph. O

The example graphs in Figure 1 show that the containments in Theorem 1.1 are
all strict.

In Section 2, we obtain a characterization of coTT graphs. We also show that
coTT graphs are contained in the subclass of chordal graphs called strongly
chordal graphs Fa83] (also called sun-free [CN84| graphs). In Section 3, we
present alternate characterizations of coTT graphs, one of which leads to a
polynomial-time algorithm for recognizing coTT graphs.

'2. CHARACTERIZATION

Before presenting the characterizations of coTT graphs. We first make a few
definitions. We say that x sees y in G=(V,E) if xyeE; otherwise we say that x
misses y. An independent set is a set of vertices with each pairs missing each
other. A clique is a set of vertices with each pairs seeing each other.

The. neighborhood N(v) of a vertex v in G =(V, E) is given by the set of
vertices which v sees. The closed neighborhood N(v) of v is given by v together
with its neighborhood. A vertex v in G is called simplicial if N(z) is a clique in
G. Two vertices z and y are compatible in the graph G if N(z) € N(y) or vice
versa. A vertex v in G is simple if the vertices in N(v) are pairwise compatible.

“We note that a simple vertex is simplicial.
A graph G is called strongly chordal [Fa83] if every induced subgraph has a

simple vertex. A similar characterization holds for chordal graphs.

Theorem 2.1. Di61,LB62]

A graph G is chordal if and only if every induced subgraph of G has a
simplicial vertex. O

Chordal graphs were originally defined in terms of forbidden subgraphs, i.e.,
no C, for n > 4. Farber [Fa83] obtains a forbidden subgraph characteristic. for
strongly chordal graphs. A trampoline is a graph G = (V, E) on 2n vertices for
some n >3 whose vertices can be partitioned into W = {wy, wy, = , w, ) and |
U= {ul, Uy, u"} so that W is independent, U forms a clique, and w, is
adjacent to u, if and only if i =j or i =7 +1 (mod n). Figure 1{b) is a -
trampoline with n=3. )

188



)

G =(V,E) is called a
Ro70; Wa78] if it contains
let P denote a path on n
es.

]

nments in Theorem 1.1 are

graphs. We also show that
dal graphs called strongly
sraphs). In Section 3, we
one of which leads to a
S.

aphs. We first make a few
°; otherwise we say that x
h each pairs missing each
g each other.

, E) is given by the set of

of v is given by v together

olicial if N(z) is a clique in
L G if N(z) € N(y) or vice
v) are pairwise compatible.

ry induced subgraph has a
rdal graphs.

ced subgraph of G has a

f forbidden subgraphs, i.e.,-

subgraph characteristic for
= (V, E) on 2n vertices for
= {w, w,, .
' forms a clique, and w; Is

(mod n). Figure 1(b) is a..

“,w band.

Theorem 2.2. |Fa83]

A chordal graph G is strongly chordal if and only if G contains no induced
trampoline. O

In order to show that all coTT graphs are strongly chordal, we will need to
characterize both classes in terms of orders. We will use the symbol < to denote
a partial order on the vertices. We say that z precedes y in the order if z < y;
in this case we also say that y follows z in the order. A vertex z which has no
other vertex preceding if in the order is called initial. We extend this order to
sets of vertices S and T so that S < T means z <y for every £ €S and
yeT.

An elimination ordering [Ro70] of G = (V, E) is a (total) ordering < of V so
that for all v € V,{w € N(v):v < w} induces a complete graph in G; i.e., v
is simplicial in the subgraph induced by v and the vertices following v in the

order. A simple elimination ordering {Fa83] of G =(V, E) is a (total) ordering
< of V so that for all v € V, the vertices of {w € N( ):v < w} are pairwise

compatible; i.e., v is simple in the subgraph induced by v and the vertices

following v in the order. A strong elimination ordering [Fa83] of G =(V, E)is a

(total) ordering of V in which neither of the two ordered induced subgraphs
shown in Figure 2(a) and 2(b) occur. (The order is given by w < x < y < z.) We
note that elimination orders forbid exactly Figure 2(a).
Theorem 2.3. [FG65, Ro70]

A graph G is chordal if and only if G has an elimination ordering. Any
simplicial vertex may start the elimination ordering. O
Theorem 2.4. [Fa83]

A graph G is strongly chordal if and only if G has a simple elimination
ordering. Any simple vertex may start the simple elimination ordering.
Furthermore, a graph G is strongly chordal if and only if G has a strong
elimination ordering. O

We now present a characterization of coTT graphs based on an ordering
property which we call a proper order.
Theorem 2.5. (Characterization I)

A graph G =(V, E) is coTT if and only if there is an ordering < on V so
that whenever zy ¢ E, either z < N(y)or y < N(z).

To obtain the following corollary, we need only observe that every proper

order is a strong elimination order.

Cb'rollary 2.6.
Every coTT graph is strongly chordal.
3. Recognition Algorithm
7 Figure 2 illustrates the five forbidden configurations or obstructions which can

not occur as induced ordered subgraphs of a coTT graph; in each case
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w <z <y <z in the ordering. In configurations (a), {c) and (d) the pair of
vertices yz ¢ E violate the conditions of Theorem 2.5, and in configurations (b)
and (e) the pair of vertices zz ¢ E violate Theorem 2.5. It is a simple task to
check that these are the only forbidden configurations yielding the following
theorem.

Theorem 8.1. (Characterization II)

A graph G =(V, E) is coTT if and only if there is an ordering of the vertices
with no obstruction of the form shown in Figure 2. O

As we have previously noted, configurations (a) and (b) of Figure 2 are
precisely those forbidden by strong elimination orders. We introduce two rules
which insure that configurations (c), (d) and (e) will never arise; conversely, the
forbidden configurations imply these two rules. Thus, proper orders are exactly
strong elimination orders which obey these two rules.

Let zywz be an induced P, in G, ie., 2y, yw, w2 € E but zw, yz ¢ E. The
first rule is that z <z <=>y < w in any proper order; we call this the

P, rule.

Let zy and wz induce a 2K, in G, i.e., 1y, wz € E but zw, zz, yw, yz &€ E.
The second rule is that z < w <=> 1 <z <=>y <w <=> w <z in
any proper order; we call this the 2K, rule.

Our algorithm for determining if a graph is coTT or not proceeds as follows.
First, Farber's algorithm is used to ensure that the graph is strongly chordal.
Next, we find a partial order on the vertices such that every linear extension
satisfies the P, and 2K, rules; we call such an order conformist since it always
obeys all rules. We then show that this partial order can be extended to a strong
elimination order using a modification of Farber’s algorithm. This ensures that a
proper order is produced.

In order to simplify our discussion, we shall think in terms of orientations
rather than orders. An order < of a graph’s vertices corresponds to an acyclic
orientation U of the complete graph on the same vertex set (where @b ¢ U ~
a<b). Thus, to a given graph G we associate an order graph O which is simply
a complete graph on V(G). Thus, we actually provide acyclic orientations of O.
Orientations will be called conformist, proper or strong elimination, precisely if
the corresponding orders are. We say x precedes y (and y follows x) in an
orientation U if zy ¢ U. This formalism allows us to discuss "directed edges”

rather than "ordered vertex pairs.”

3.1 How to conform

- The purpose of this subsection is to show that a conformist partial order can
be obtained by orienting the non-singleton equivalence classes of a strongly
“chordal graph provided that all of the equivalence classes are consistent. The
reinainder of this subsection is devoted to proving the following theorem:
Theorem 8.1.1.

" Any strongly chordal graph all of whose equivalence classes are consistent has
a conformist partial order.
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In a conformist orientation of O, the orientation of one edge of O, may,
through a sequence of applications of the P, and 2K, rules, force the direction of
many other edges. In fact, the edges of O, can be partitioned into "forcing
equivalence classes” such that the direction of one edge in a class determines the
direction of every other edge in the class. More formally, we define a relation R
on the edges of O such that e, R e, if the orientations of ¢, and e, are linked
through a direct application of one of our two rules. Thus the 2K, rule yields:

(i) If ab, cd are a 2K, then acRad, acRbe, acRbd, adRbe, adRbd, bcRbd.

While the P, rule gives:
(ii) If abed is a P, then ad R be.

The transitive closure R* of R is an equivalence relation on the edges of O.
For any pair of vertices u and v we let S(uv) be the equivalence class under R* of
the edge uv. Clearly, in.any orientation obeying these rules, S(uv) has one of two
possible orientations; one containing @#, the other containing #i. Note that these
two orientations are mirror images so that one is acyclic if and only if the other
is. It follows that if either of these two possible orientations is not acyclic then the
graph is not coTT. We shall call an equivalence class consistent if this situation
does not occur. The two possible orientations of a consistent equivalence class will
also be called consistent.

We shall now divide the edge-set of O into innocuous and dangerous edges.
Call an edge uv innocuous if S(uv) is a singleton. Call an edge uv dangerous if
S(uv) contains at least one other edge. If S(uv) is a singleton then the two
consistent orientations of this class are @9 and o%. It follows that in any acyclic
orientation of O, every equivalence class consisting of an innocuous edge will
have a consistent orientation. Thus, we need only concentrate on the dangerous
edges of O. Since any acyclic orientation of the dangerous edges of O in which
each nonssingleton equivalence class has a consistent orientation will be
conformist. So, we need only find such an orientation.

A naive way of doing so would be to arbitrarily choose one of the two
consistent orientations on each large (i.e. non-singleton) equivalence class and
hope that the resulting orientation is acyclic. It turns out that any orientation
constructed in this way must either be acyclic or contain a directed triangle.
Furthermore, this directed triangle corresponds to one of two possible structures
in the graph as described in the following lemma. These structures will be used in
a decomposition approach to recursively generate a conformist orientation.

‘_L‘emma 38.1.2.

Consider a strongly chordal graph G = (V, E) all of whose equivalence classes

.are consistent. Arbitrarily choose one of the two orientations for each non-
- singleton equivalence class. One of two possible cases can occur:
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(2) The resultant order is a partial order on the vertices.

(b) The resultant order contains a directed triangle, i.e., vertices
a,bcwitha <b <c¢ <a, with one of the two possible included
subgraphs G as shown in Figure 3.

Case (a) of Lemma 3.1.2 yields the desired conformist order. The following
lemma shows that the structures in Case (b) of Lemma 3.1.2 can be used to
decompose the problem of finding a comformist order in G to one of finding a
conformist order for two smaller induced subgraphs. So the problem can be
solved recursively.

Lemma 3.1.3.

Consider a strongly chordal graph G=(V,E) all of whose equivalence classes
are consistent. Arbitrarily choose one of the two possible orientations of every
non-singleton equivalence class. If the orientation is cyclic then G can be
partitioned into smaller subgraphs G, and G, so that a conformist order for G,
and G, yields a conformist order for G.

3.2 How to be Proper

The purpose of this subsection is to show that a conformist partial order for a
strongly chordal graph can be extended to a strong elimination order. Together
these results imply that the resultant order is a proper order. This is proved in
the following theorem by an extension of Farber's algorithm.

Theorem 3.2.1

Consider a strongly chordal graph G=(V,E) all of whose equivalence classes are
consistent. Let P be a conformist order produced by Lemma 3.1.3. P can be
extended to a proper order < for G.

3.3. An End to Propriety

We note that the results of Sections 3.1 and 3.2 give two additional
characterizations of coTT graphs one of which yields a polynomial-time
recognition algorithm. Define a graph to be a PK grapk if there is an order < on
the vertices which satisfies the P, and 2K, rules.

Theorem $.8.1. (Characterization III)

A graph G is coTT graph if and only if G is both a strongly chordal graph'
and a PK graph. O

Theorem 3.8.2. (Characterization V)

A strongly chordal graph is coTT if and only if each equivalence class is
consistent. O
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The verification of Theorem 3.3.2 also yields a polynomial-time recognition
algorithm for coTT graphs:

Algorithm 1

Step 1. Check to see if G is strongly chordal by applying Farber’s Algorithm.
If G is not strongly chordal then stop; G is not coTT.

Step 2. Apply the P, and 2K, rules to form the equivalence classes. If any
equivalence class is not consistent then stop; G is not coTT.

Step 3. Arbitrarily choose one of the two orientations for each non-singleton
equivalence class. If the orientation is cyclic then partition the graph
into smaller subgraphs and apply the algorithm recursively to form a
conformist order for G as in Theorem 3.1.1.

Step 4. Extend the conformist order to a proper order as in Theorem 3.2.1.

We note that Algorithm 1 actually provides a proper order for a coTT graph
G. From this order, we can obtain weights and tolerances for each vertex which
satisfy the requirement for a threshold tolerance representation for G using
Theorem 2.5. If we only want to check if G is coTT, we need only use Farber’s
Algorithm to check that G is strongly chordal, and form the P, and 2K,
equivalence classes and check to see if they are consistent. Step 3 can be thought
of as constructing a binary decomposition tree with G as the root. Each time we
split a graph G we make two children G| and G, as described in Lemma 3.1.3.
The leaves of the tree are disjoint subgraphs and so we apply Algorithm 1 at most
2-IV1 times. It should be clear that since this partitioning can be done in
polynomial-time, so can the entire Algorithm 1.

4. Concluding Remarks

¥
We have introduced a class of graphs generalizing threshold graphs by adding
threshold tolerances. We have obtained several characterizations of these graphs
and obtained a polynomial-time recognition algorithm. We have also shown that
the complements of these graphs contain both the classes of interval graphs and
threshold graphs, and is contained in both the classes of strongly chordal graphs
and tolerance graphs.

[BHWS2| also study a generalization of threshold graphs which they call
threshold signed graphs. These graphs are incomparable to coTT graphs since C,
is in their class but not ours, and the graph in Figure 1(a) is in our class but not
theirs.

Chordal graphs [Bu74, Ga78, Wa78] and strongly chordal graphs {Fa82] are
also characterized in terms of intersection graphs of certain subtrees in a tree.
These and other classes of graphs arising as the intersection graphs of paths in a
tree are studied in [MW85]. We leave such a characterization for ¢coTT graphs as
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an open problem.

Another open problem is to characterize coTT graphs in terms of forbidden
induced subgraphs. A partial list of forbidden subgraphs is given in Figure 4.
[CH77] characteristic threshold graphs as those graphs with no induced Cy Py, or
2K,. We also leave as an open question the characterization of PK graphs.

We would like to thank Michael E. Saks of Bellcore for pointing out Theorem

2.3 to us.
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(b) 6, IS INTERVAL TOLERANCE BUT NOT COTT

Figure 1. Example Graphs
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X y 4
(c)

L a5
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Figure 2. Forbidden Configurations in Proper Orders where wx<y<z

196



b c
THRESHOLD
(a)
NOT cOTT q
,/ \\
S

(a)

(b)

Figure 4. Forbidden Subgraphs for coTT Graphs
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