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Abstract. A linear extension [xt <-x2 < 1.1 <xl] of a finite ordered set Y= (P, <) is super greedy if it 
can be obtained using the following procedure: Choose x, to be a minimal element of 9; suppose 
.Y, , . . . , xL have been chosen; define p(x) to be the largest j < i such that x, < x if such a j exists and 
0 otherwise; choose x,+i to be a minimal element of P- {xt , . . . . x,) which maximizes p. Every 
finite ordered set d can be represented as the intersection of a family of super greedy linear exten- 
sions, called a super greedy realizer of 9. The super greedy dimension of 9 is the minimum cardinal- 
ity of a super greedy realizer of 9. Best possible upper bounds for the super greedy dimension of 
9 are derived in terms of IP - Al and width (P-A), where A is a maximal antichain. 
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1. Introduction 

It is well known that every ordered set 9 can be represented as the intersection 
of some family of linear orders, each of which is a linear extension of 9. Such a 
family is called a realizer of 9. The dimension of the ordered set 9, denoted 
by dim(P), is the minimum size of a realizer of 9. The concept of dimension 
has proved to be a useful invariant in the study of ordered sets. The reader is 
referred to Kelly and Trotter [5] for a survey of this subject. A natural extension 
of the concept of dimension arises from requiring the linear extensions that form 
a realizer to have certain additional properties. Let C be a class of linear exten- 
sions of 9. A family IX of linear extensions of 9 is a C realizer of 9 if E is a 
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realizer of 9 and every linear extension in X comes from C. The C dimension 
of 9, denoted dim&?) is defined to be the minimum size of a C realizer of 
9 if one exists and is undefined otherwise. A comparison between the dimension 
and the C dimension of an ordered set can be used as a measure of the rich- 
ness of the class C. Several authors, including Bouchitte et al. [2], Kierstead 
and Trotter [7], and Rival and Zaguia [ll], have studied the G, or greedy, 
dimension of ordered sets 9, where G is the class of greedy linear extensions 
of 9. In this article we investigate the SG, or super greedy, dimension of ordered 
sets 9, where SG is the class of super greedy linear extensions of 9. We pause 
now to define the notions of greedy and super greedy linear extension. 

Let 9 = (P, <) be a finite ordered set on t elements. For a subset S of P we 
denote the set of minimal elements of P restricted to S by MIN(S). The open 
upset of S is U(S) = {x~ P: s <x for some s E S). If S= {s} we may write 
U(s) for U(S). Consider the following (non-deterministic) algorithm for con- 
structing a linear ordering [x1, . . . , x,] on P. 

ALGORITHM LIN 
SET R = P, M= MIN(R) 
FORi=O,...,t- 1 

CHOOSE xi+ i E M 
SET R = R - Ix,+, 1, M= MIN(R) 

END 

For any sequence of choices of the points x,+ 1, algorithm LIN produces 
a linear extension of 9; and every linear extension of 9 is obtained from LIN 
by a suitable sequence of choices of the points x,+ r . We can obtain a more 
restrictive class of linear extensions by further restricting the choice of the x,+ 1. 
For example a greedy linear extension of 9 is a linear extension of 9 which 
is obtained from algorithm LIN together with the additional tie breaking rule: 

Ti : Prefer elements which cover xi+ i _ i for x,+ 1. 

More precisely, a linear extension of 9 is greedy iff it is obtained from the 
following algorithm GREEDY by a suitable sequence of choices of the points 
x,+1* 

ALGORITHM GREEDY 
SET R = P, M= MIN(R), G = M 
FORi=O,...,t-1 

CHOOSE x,+ i E G 
SETR=R-{x,,,}, M=MIN(R) 
IFMn U(X,+~)#~ 

THEN SET G = Mn U(Xi+ 1) 
ELSE SET G = M 

END 
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Note that since G is always a nonempty subset of M, we do indeed get a linear 
extension of 9. 

In this paper we are concerned with the even more restrictive class of super 
greedy linear extensions of 9. A greedy linear extension of 9 is super greedy if 
it is obtained from algorithm GREEDY together with the additional tie breaking 
rules: 

T2: Prefer elements which cover x,+ i -2 for x,+ i . 

T,: Prefer elements which cover x,, r --I for x,+ 1. 

Such a tie breaking scheme is implemented according to its order, i.e., T, has 
higher priority than T/ if i < j. More precisely, a linear extension of 9 is super 
greedy iff it is obtained from the following algorithm SUPER GREEDY by a 
suitable sequence of choices of the points x,+ r . 

ALGORITHM SUPER GREEDY 
SET R = P, M= MIN(R), SG = A4 
FORi=O,...,t- 1 

CHOOSE x,+ r E SG 
SETR=R-{x,,,}, M=MIN(R), j=i 
WHILEMn U(x,)=0 AND j#O DOSETj=j- 1 
IFjfO 

THEN SET SG = Mn U(x,) 
ELSE SET SG = M 

END 

These definitions are illustrated on the ordered set 9 and three of its linear 
extensions shown in Figure 1. The linear extension 5?r is not greedy because 
c = x3 is not an element of G = {d, e} at stage i = 2. The linear extension 5!z is 
greedy, but is not super greedy. Note that c = x4 is an element of G = M= 
{e, c}, but is not an element of SG = {e}, at stage i= 3. The linear extension 
p3 is super greedy. 

e0 e9 

d ” c ” 

c ” d ” 

b ” b ‘) 

a0 a0 

P 2, 5% % 
Fig. 1. Of the linear extensions 9, , p2, and p3 of 9,2’, is not greedy, .ipz is greedy but not super 
greedy, and 4 is super greedy. 
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The original motivation for studying greedy linear extensions stemmed from 
their connection with the jump number problem. However, Bouchitte et al. [2] 
observed that every ordered set has a greedy realizer and proceeded to identify 
several classes’ of ordered sets for which the greedy dimension was the same as 
the dimension. So it was natural to further investigate greedy dimension. Kier- 
stead and Trotter [7] obtained best possible bounds for the greedy dimension of 
9 in terms of both the cardinality and the width of P - A, where A is a maximal 
antichain. Super greedy linear extensions were introduced by Pretzel [lo] as a 
natural restriction of the notion of greedy linear extension. He observed that 
every ordered set has a super greedy realizer and in fact dimsc(9) 6 width(s). 
Pretzel asked whether Kierstead and Trotter’s work on greedy dimension could 
be extended to super greedy dimension. This paper answers Pretzel’s question. 
It was later observed by Golumbic [3] and others that super greedy linear exten- 
sions are closely related to depth first search. If one adds an artificial least 
element to 9 and then does a depth first search starting at this element, and 
records each element of P the last time it is visited during this search, then 
one obtains a super greedy linear extension of 9 in reverse order; moreover 
all super greedy linear extensions of 9 can be obtained in this way. The reader 
is referred to Kierstead and Trotter [8] and Bouchitte et al. [l] for a general 
introduction to super greedy linear extensions. Some problems involving super 
greedy linear extensions with constraints are shown to be NP-complete in 
Kierstead [6]. 

In the remainder of this section we shall review our notation. The principal 
theorems are introduced in Section 2. The rest of the paper is devoted to their 
proofs. 

Let 9 = (P, <) be a fixed finite ordered set and let S be a subset of P. Then the 
set of maximal elements of 9 restricted to S is denoted by MAX(S). If S is a 
chain max(S) denotes the largest element of S and min(S) denotes the smallest 
element of S. The closed upset of S is 

U[S]={xEP:s<xforsomesES); 

the closed downset of S is 

and the open upset of S is 

D(S)={xEP:x<sforsomesES}. 

In the case that S= {s} we may write s instead of S in each of these notations. 
Wewritex<Sifx<sforallsESandS<xifs<xforallsES.Wedenotethe 
cover relations by <:, i.e., x <: y iff x < y and there does not exist z E P such 
that x < z < y. We write x ]I y if x is incomparable to y and x ] y if x is comparable 
to y. If 9 = (P, <) is a linear extension of 9, we write x < y in 9 for x + y. We 
write 9-max(S) for the greatest element of S in the linear order 9 and 5?- 
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mm(S) has a similar meaning. For T a subset of P we say that T is over S in 3, 
denoted T/S, if whenever t E T, s E S, and t I] s, then s < t in L?. 

2. The Principal Theorems 

The primary purpose of this paper is to develop inequalities for the super greedy 
dimension of an ordered set 9 in terms of the cardinality and width of P - A, 
where A is a maximal antichain in 9. This is a continuation of work begun by 
Hiraguchi [4] and Trotter [12] for ordinary dimension and continued by Kier- 
stead and Trotter [7] for greedy dimension. For the rest of this paper A will 
denote a maximal antichain in the ordered set under consideration, usually 9, 
U will be the open upset of A, and D will be the open downset of A. 

The next theorem extends a result of Trotter [ 121 and Kimble [9] for ordinary 
dimension. 

THEOREM A (Kierstead and Trotter [7]). Let A be a maximal antichain 
in an ordered set .JF= (P, <) such that ]P - A] > 2. Then dim&g) < ]P - AI. 0 

The situation is considerably more complicated for super greedy dimension. 
The following theorem details the possibilities. 

THEOREM 1. Let A be a maximal antichain in an ordered set 9 = (P, <) such 
that IP- Ala 2. Let D = D(A), U= U(A), m =lDl, and n = 1~1. Then each 
of the following inequalities (i) is true and (ii) is best possible. 

(a) ZfZI # 0 and U # 0, then dimso 6 m + n + 1. 
(b) ZfA = MZN(P), then dimso 6 n. 
(c) ZfA = MAX(P), then dims@) < m. 0 

Next we consider the effect of the parameter width(P- A). For ordinary 
dimension we have 

THEOREM B (Trotter [12]). Let A be a maximal antichain in an ordered set 
9 = (P, <) such that width(P - A) = n > 1. Then each of the following inequali- 
ties (i) is true and (ii) is best possible. 

(a) dim(p)d2n+ 1. 
(b) ZfA = MZN(P), then dim(s) d n + 1. 
(c) Zf A = MAX(P), then dim(s) 6 n + 1. 

For greedy dimension the situation is: 

II 

THEOREM C (Kierstead and Trotter [7]). Let A be a maximal antichain in an 
ordered set z?~ = (P, <) such that width(P - A) = n 2 1. Then each of the follow- 
ing inequalities (i) is true and (ii) is best possible. 

(a) dime(9) d max(3, n2 + n}. 
(b) ZfA = MZN(P) then dime(9) 6 max{2,2n - 1). 
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(c) ZfA = MAX(P) then dim&F) f n + 1. 0 

The next theorem fully describes the situation for super greedy dimension. 

THEOREM 2. (a) For every positive integer m there exists an ordered set 9= 
(P, <) with a maximal antichain A such that width(P - A) = 1, but dimso = m. 

Let A be a maximal antichain in an ordered set 9 = (P, <) such that width(P - 
A) = n b 1. Then each of the following inequalities (i) is true and (ii) is best 
possible. 

(b) ZfA = MZN(P) then dimso 6 2n. 
(c) Zf A = MAX(P) then dims@) 6 n + 1. 0 

In the next section we will provide the examples which show the upper 
bounds of Theorems 1 and 2 are best possible. This will enable the reader to 
gain some facility in working with the notion of super greedy realizer. In Section 
4 we lay the groundwork for proving the upper bounds of Theorems 1 and 2. 
In particular, we establish some technical lemmas which will provide us with 
super greedy linear extensions possessing special properties. In Section 5 these 
super greedy linear extensions will be used to construct realizers witnessing 
the upper bounds of Theorems 1 and 2. 

3. Examples 

Before beginning our constructions we note that for any ordered set 9, dim(P) < 
dimsc(9). An ordered set of the type shown in Figure 2 is called the standard 
example of width n. It is well known to have dimension n. Thus we have: 

Proof of Theorems l.b.ii, l.c.ii, and 2.c.ii. By the above observation these 
results follow immediately from the standard example and Theorem B.c.ii. Cl 

Proof of Theorem l.a.ii. For any positive integers m and n we must construct 
an ordered set 9 = (P, <) with a maximal antichain A such that 

IDI = m, ICrl= n and dim&S)> m.n+ 1. 

bl b2 b3 bn 

al a2 a3 an 

Fig. 2. The standard example of width n. 
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LetP=DuAuU,where 

D={d,, . . . . d,), 
u= {u,, . ..) u,> 

A={x,y)u{a,,:i=l,..., mandj=l,..., n}, 

are all antichains of 9. Let 9 be the transitive closure of the following cover 
relations, where i= 1, . . . . m andj, k= 1, . . . . n: 

(i) d, <: a,,j <: uk iff k #j; 
(ii) xc: uJ; and 

(iii) d, <: y. 

dl d2 
Fig. 3. An ordered set 9 such that (D( = 2,I UI = 3, and dimsc (9) > 2.3 + I. 

Next we show that dim,&?) 3 rn. n + 1. Each of the following conditions 
must be met by some linear extension .9 in any realizer of 9: 

(C,,,):u,<ai,,in9fori=l,..., mandj=l,..., n;and(c):y<xinT. 

Thus it suffices to show that at most one of these conditions can be met by any 
super greedy linear extension 9 of 9. Fix such an 9. First notice that for all 
i= 1, . ..) mandk=l,...,n: 

(*) if d, < dj in 9 then ai, k < di in 9; and 
(**) if d, < x in 9 then ai, k < x in 2’. 

This is because once di is chosen during algorithm SUPER GREEDY each 
a, k is in M and has higher priority under the tie breaking scheme than either 
dj or X. 

If 9 satisfies (C) then D < y < x < U in 9. Thus, by (**) A - {x, y> < x in 9 
and no condition (C,j) is satisfied by 9. Now suppose 9 satisfies (C,j) and con- 
sider another condition (Ch, k). If i # h we have {dh, d,) < Uj < ai,j in 9 and 
d, < uk. By (*), dh < d, in 9. Thus, using (*) again ah, k < d, < uk in 9 and (C,. k) 
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fails. Otherwise i = h and k # j. But then ah, k < Uj < ai,j < uk in Y and again 
(C, k) fails. We conclude that dims#) > in. n + 1. 0 

Proof of Theorem 2.a. Fix a positive integer m. We must construct an ordered 
set Y= (P, <) with an antichain A such that width(P - A) = 1 and dimsc(9) 3 
m. Let P=CuA, where C={dl<dZ<...dm<~~<~z<...<~m} is a chain 
inYandA={ai,az ,..., a,, u I> is a maximal antichain in 9 such that di <: 
Ui<:ui+lfori=l,...,m-landd,<:u,.Figure4shows9ifm=3. 

Fig. 4. An ordered set 9 with maximal antichain A such that width(P - A) = 1 and dim,, (9) = 3. 

We must show that dimsc(9) d m. Each of the following conditions must 
be met by some linear extension 9 in any realizer of 9: 

(C,) U,<Uiin5? fori= l,...,m. 

Thus it suffices to show that at most one of these conditions can be met by any 
super greedy linear extension 9 of 9. Fix such an 9. We will show that (Ci) 
implies not (C,) for 1 6 i <j 6 m. First notice that for all i = 1, . . . , m - 1: 

(*) if d,, I < a, in 9 then a, < a, in 9. 

This is because once d,, i is chosen aIf and di+I are in A4 and have higher 
priority in the tie breaking scheme than a,. So {a,, l , di+z} < a, in 9. But after 
di+z is chosen a,+2 and d,+3 are in M and have higher priority than ai, etc. 
Now suppose 9 satisfies (Ci). Then d,, I < U, < a, in 9. Thus by (*) a, < a, < u, 
in 9 and (C,) is false for j> i. This clearly implies that at most one of the 
conditions is satisfied by PEP. We conclude that dims#) > m. 0 

Proof of Theorem 2.b.ii. Fix a positive integer n. We must construct an ordered 
set pa= (P, <) such that width(P- MIN(P)) = n and dimso > 2n. The 
ordered set 9 consists of four layers: 

MIN(P)={ul,ui,a2,u$ ,..., a,,a&), x= Ix,, . . . . x,1, 
Y= h . . . . y,} and MAX(P)= {zi, . . ..z.}. 
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9 is the transitive closure of the following cover relations, where i, j = 1, . . . , n : 

(i) al<: Xi <: yj <: z,; 
(ii) a, <: z,; 

(iii) a, <: y, if i # j; and 
(iv) a:<: y, if i#j. 

Figure 5 shows 9 in the case y1= 3. 

a2 a3 aI , a2 I a3 
I 

Fig. 5. An ordered set 9 such that width@‘- MIN(P)) = 3 and dimsc (9) 2 2 ‘3. 

Now we show that dim,&?) 2 2n. This is surely the case if n = 1 so assume 
n > 1. Each of the following conditions must be met by some linear extension 
2 in any realizer of 9, where i = 1, . . . , n and 0 is addition modulo n: 

(C,) y, <a, in-Y’; and 
@,I z,0I <x, hp. 

Thus it suffices to show that at most one of these conditions is satisfied by 
any super greedy linear extension 2 of 9. In fact it is clear that any linear 
extension that satisfies (C,) cannot satisfy any of the other conditions. Now let 
2 be a super greedy linear extension. Then for i, j = 1, . . . , n: 

(*) if a: < a,! in 5? then x, < a; in 2’. 

This is because once a: is chosen x, E M and has higher priority in the tie 
breaking scheme than a,!. Thus if 2 satisfies (D,) then a; < a: for all j # i, since 
otherwise x, < a; < z,@ i in 9. It follows that if 2 satisfies (D,) then 2 does not 
satisfy any of the other conditions. We conclude that dims&Y) 2 2n. 



302 H. A. KIERSTEAD ET AL. 

4. Super Greedy Linear Extensions 

We begin this section by introducing some concepts that will simplify the 
construction of super greedy realizers in Section 5. Later we will prove the 
existence of super greedy linear extensions with special properties in which 
these concepts are incorporated. 

Let 9 = (P, <) be an ordered set and let 9= (~9’ : x E P} be a family of 
ordered sets indexed by the points of P, where ~2~ = (Q,, cX). The ordinal sum 
of F over 9, denoted JZ99, is the ordered set 9 = (R,<), where R = {(x, y): 
x E P and y E Q,} and (x, y) X(x: y’) iff x < x’ or both x = x’ and y cX y’. We will 
make repeated use of the consequences of the following elementary lemma. 

LEMMA D (Kierstead and Trotter [S]). Let 9 be an ordered set and let .F 
be a family of ordered sets indexed by the points of 9. Then dimsc(X9Y) 6 
max{dimsc(9), dims&@) : d E 9). 0 

An ordered set is said to be indecomposable if it cannot be expressed as a 
nontrivial ordinal sum. In light of Lemma D and the fact that all our upper 
bounds are at least 2 we may assume, without loss of generality, for the rest of 
the paper that 9 is indecomposable. In particular, we assume 

(Al) Either D(x) # D(y) or U(x) # U(y) for all x, ye P, x # y. 
(A2) There exists y E P such that x is comparable to y, for all x E P. 

We define the set IV3 of nonforced pairs of 9 by N9 = {(x, y) E P x P: x # y 
and D(x) c D( y) and U(y) c U(x)}. The set of nonforced pairs N9 has two 
useful elementary properties. Firstly, if 2 is a collection of linear extensions of 
9, then X is a realizer of 9 iff for every (x, y) E N9 there exists 9~ Z such that 
y<xin~.Secondly,ifwedefine9*=(P,<*)byx<*yiffx<yor(x,y)EN,, 
then, using (Al), it follows that 9* is an ordered set that extends 9. 

When B is a subset of the distinguished maximal antichain A of 9, we define 
a quasi-order ~9~ = (U, +) on the open upset of A by: x+ y iff D(x)n Bc 
D(y) n B. We say that a subset W of U is a B-chain if x 1 y in QB for all x, y E IV, 
and a subset S of U is a B-antichain if x 11 y in QB for all x, y E S. A linear order 
[w, < w2 < .. . < wl,] of a B-chain W is consistent if w, cB w, for all i <j. Note 
that a B-chain always has a consistent linear order, but not necessarily a unique 
one. 

An antichain B is said to be rooted in a chain E if every element of B either 
covers an element of E or is minimal; B is said to be strongly rooted in E if 
every element of B either covers the maximal element of E or is minimal. 

We now present the technical lemmas which assert the existence of super 
greedy linear extensions with special properties needed for the proofs of Theo- 
rems 1 and 2. Only Theorem 2.c uses Lemmas 6 and 7. The reader may choose 
to see how these lemmas are used in Section 5 before reading their proofs. 
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LEMMA 3. Let E be a chain contained in D and B be an antichain contained 
in A such that (*) either E = 0 and Bc MIN(P) or E # 0 and every element 
of B covers 2 = max(E). Let W be a B-chain contained in U. Then there exists 
a super greedy linear extension 9 =3(B, W, E) of 9 satisfying each of the 
following properties: 

(3.1) E/(P- U[B,]) in-F’, where BI = {be B: b 11 wforsome WE W>; 
(3.2) B/W in 2; 
(3.3) B/(A - B) in 9; 
(3.4) if x,yy~A-B, (x,Y)E%, and either x, YE MIN(P) or 2-maxId: 

d<:x}=T-max{d:d<: y),then y<xin-Y; 
(3.5) ifx,yEB,(x,y)EN9andU(x)nW=U(y)nW,theny<xin2. 

Proof: If E # 0 let E be an extension of E to a maximal chain in D[@]; 
otherwiseletE=0.Let[wr<w2<... < wk] be a consistent extension of W. For 
each x E B1 we define weight(x) to be the least j such that x 6 wj; if not x 6 w, 
for a11 j, we define weight(x) to be infinite; if x q’ B1 we define weight(x) to be 0. 
We let 9 be a super greedy linear extension constructed by adding the follow- 
ing tie breaking scheme to the algorithm SUPER GREEDY. 

T, : Prefer elements of (A u D) - (B - E). 
T2 : Minimize weight(xi+ i ). 
T3 : Avoid elements of r. 
T4 : 9*-maximize x,, I . 

In order to show that 9 satisfies property (3. l), we prove the stronger result: 

(3.1’) El(P- U[B,]) in9. 

Suppose (3.1’) is false and let stage i be the first time that (3.1’) is violated. 
Then x,+i E E and there exists ye R - U[B,] such that x,+i I] y. (At stage i, 
R=P-ix,,..., x,1.) We can, and do, choose YE M, where M= MIN(R). Since 
xl+ i E E, x1+ I is not preferred to y by T1 . Since y 9 B1, xl+, is not preferred 
to y by T2. On the other hand, y$ E, so y is preferred to x,, , by T,. We con- 
clude that ,v$ SG. Thus there exists J’ 6 i such that xj < x,, r , x, )I y, and, for 
j<k<i, xkilx,+, and xk It y. By the choice of i, x, $ E. Let xh be the greatest 
element of E that is less than x,+ i . Since x1 witnesses that x,+1 # MIN(P), such 
an element xh exists by the maximality of E. By the choice of i, h <j. By the 
maximality of E, not xh < x,, and thus xh ]I x,. Since x, < xi+, , x, $ U[B,]. But 
then h < i + 1 contradicts the choice of i and property (3.1’) must hold. 

Now suppose property (3.2) is false at some stage i. Then xi+ i E B, and there 
exists w, E R n W such that x,, , II w,. Choose HEM so that y< w,. Since x,+i E 
B, x,+ 1 is not preferred to y by T, . However, weight(y) 6 r, while weight(xi+ ,) > 
r, and thus y is preferred to x,+ r by T2. We conclude that y # SG. Thus there 
exists j < i such that x, < x1+ 1, x, 1 y, and, for-j < k < i, xk II x,+ , and q )I y. Since 
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x,+1 $ MIN(P) and B is strongly rooted in E, @ <: x,+ ,. Thus, by property (3.1), 
x,=@andycU[Br].SaybeBr suchthatb<yQw,andb]]w,.Thens<rand 
] IV] 2 2. (If, as will be the case in Lemma 4, ] WI = 1, then there is already a 
contradiction.) By (*), @ <: b. But this contradicts y II xj = E and so property (3.2) 
holds. 

Next suppose that property (3.3) is violated at stage i. Then x,+ I E B and 
there exists a E R n (A - B) such that x,+, II a. Let y E M such that y 6 a. Notice 
that ye E by (*), because if E # 0 then t <: x,+ r. Thus y E (A u D) - (B u E) 
and is preferred to x,, I by Tt . We conclude that yg SG. Thus there exists 
j < i such that x1 < x,+, , x1 ]I y, and, for j < k < i, xk ]I x,+ 1 and xk ]I y. Since Xi+ 1 9 
MIN(P), & <: x,+, . By property (3. I), x, = 6. But then Xj II y contradicts property 
(3.1), so property (3.3) must be true. 

Now suppose property (3.4) is false at stage i. Then there exists YE R such 
that Xi+, , YE A -B, (xi+1 , y) E N,, and (**) either x,+1, YE MIN(P) or 9- 
max{d:d<:x,+l}=~-max{d:d<:x,+i}. By (**) ~ESG. Since y$BuE, 
x,, r is preferred to y by neither T,, T2, nor TX. But y is preferred to x2+ I by T4. 
This contradiction shows that property (3.4) is true. 

Finally, suppose that property (3.5) is false at stage i. Then Xi+ t E B and there 
exists y E R n B such that (x,+ 1, y) E N9 and U(x,+i)n IV= U(y)n IV. By (*) 
and property (3.1) ye SG. Since x,+ r is preferred to y by neither T, , T2, nor T,, 
but y is preferred to x,+, by T4 this is a contradiction. Thus property (3.5) is 
true. 0 

LEMMA 4. Let E be a chain contained in D, B a subset of A strongly rooted 
in E, and u and w elements of U such that D(u)n Bg D(w)n B. Then there 
exists a super greedy linear extension A’= &B, O, w, E) of9 such that: 

(4.1) E/(P-~Y[B,])in.&,whereB~={b~B:bIIw); 
(4.2) B/w in 4; 
(4.3) u/P in A; 
(4.4) ifx, ye B, (x, y)~ IV,, XE MN(P) zj’-ye MN(P), and XC w iffy< w, 

theny<xinJ. 

Proof: Let IV= {w} and define 6, E, and weight as in the proof of Lemma 
3. Let 6 E B such that 6 < o, 6 II w, and 5 is pa*-minimal among all such ele- 
ments. Choose a chain F which is maximal among all chains with minimal 
element 6 and maximal element O. Let A be a super greedy linear extension 
constructed by adding the following tie breaking scheme to algorithm SUPER 
GREEDY. 

TI : Minimize weight (Xi+ i ). 
T2 : Avoid elements of E. 
T3 : Avoid elements of F. 
T, : 9*-maximize x,+ i . 



SUPER GREEDY LINEAR EXTENSIONS 305 

Properties (4.1) and (4.2) are proved just as properties (3.1) and (3.2) were 
in the previous lemma with the exception that 1 WI = 1 is used instead of (*) at 
the end of the proof of (4.2). 

To prove (4.3) we actually prove the stronger result: 

(4.3’) F/P in A’. 

Suppose that (4.3’) is false and let stage i be the first time that (4.3’) is vio- 
lated. Then x,+1 E F and there exists y E R such that y I( x,+ 1. We can, and do, 
choose ye M. First suppose x,+i = 6. Since weight (x,+1) =OO, xi+, is not 
preferred to y by Ti . If x,+ i is preferred to y by T2 then y E E and weight(y) = 0; 
thus y is preferred to x,+1 by T, . Certainly y is preferred to x,+ r by T3. We 
conclude that y 9 SG. Thus there exists j 6 i such that x, < x,+ 1, x, (1 y, and, for 
j-c k6 i, xklIx,+~ and xk II y. Thus xi+ r 9 MIN(P). Since B is strongly rooted 
in E, & <: xi+ 1 = 6, and it follows from (4.1) that xj = 6. But then y II xl contra- 
dicts (4.1). 

Now suppose x,+i # 6. By the choice of i, 6 < y. Thus weight(y) = 0 and 
ye E. It follows that x,+, is preferred to y by neither T, nor TX. Certainly T, 
prefers y to x,+ 1. Thus y+ SG. So there exists j d i such that x, < x,, 1, x, 11 y, 
and, for j< k6i, xkllx,+1 and xk II y. By the choice of i, x, 9 F. Let xk be the 
largest element of F less than x,, 1. Then k <j. If xk II x,, k contradicts the choice 
of i; if xk < x,, then x, contradicts the maximality of F. We conclude that 
property (4.3) is true. 

Finally, suppose (4.4) is false. Say x,, r E B and there exists ye R n B such 
that (x~+I,Y)E&, xi+ t E MIN(P) iff YE MIN(P), and Xi+ i < w iff y < W. We 
claim that ye SG. If x,+ r E MIN(P) then ye MIN(P) also and it follows that 
y E SG. If Xi+ r $ MIN(P) then neither is y, and since B is strongly rooted in E, 
both x,+r and y cover 6. Thus & = x, for some j d i. By property (4.1) & is the 
k-largest lower cover of x and y. Thus y E A4 and for j < k < i, xk II x,+ i and 
xk II y. We conclude YE SG. Since x,+1 < w iff y< w, weight(xi+i) = weight(y) 
and X,+I is not pr_eferred to y by T, . Clearly xi+ r is not preferred to y by Tz. 
By the choice of b, x,+1 is not preferred to y by TJ. However T4 prefers y to 
x,+ 1, which contradicts the choice of x,+ i . We conclude that property (4.4) is 
true. 

LEMMA 5. Let B be a subset of MZN(P) and let E be a chain in P - AlIN( 
Then there exists a super greedy linear extension JV= dB, E) of 9 such that: 

(5.1) E/P inJtr; and 
(5.2) ifx,y~Band(x,y)~N~,theny<xinJZ/. 

Proof Choose a 9*-minimal element & of MIN(P) such that E u (6) is a 
chain. Let E be a maximal chain containing E u (6). We let JYbe a super greedy 
linear extension constructed by adding the following tie breaking scheme to the 
algorithm SUPER GREEDY. 
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Tr : Avoid elements of E. 
T, : 9*-maximize xi+ 1. 

To show that ~“satisfies property (5.1) we actually prove the stronger result: 

(5.1’) E/P in JC 

The argument is essentially the same as the proof of (3.1’), but simpler, and 
we leave it to the reader. 

Now suppose property (5.2) is false at stage i. Say x,+ I E B and there exists 
yERnB such that (x~+,,~)EN~. Since x,+i,y~M1N(P) and x(+~ESG, 
y E SG. By the choice of C, xi+ r is not preferred to y by T, , while y is preferred 
to x,+ I by T,, contradicting the choice of x,+ 1. We conclude that property (5.2) 
is true. 0 

LEMMA 6. Let B be a subset of A. Then there exists a super greedy linear 
extension 9= Y(B) of 9 such that: 

(6.1) for all x E D and y E B with x 11 y, ifthere exists e E D such that e < x and 
yEA,={bEB:e=9max{dED:d<:b},theny<xin9 

ProoJ: Let 9 be a super greedy linear extension constructed by adding the 
following tie breaking rule to algorithm SUPER GREEDY. 

T, : Prefer elements of B. 

Suppose property (6.1) is false and let stage i be the first time that property 
(6.1) is violated. Then x,+ 1 E D and for some e E D with e < x,+ r there exists 
y E R n A, such that x,+ i 11 y. Let e = x,. Since y E A,, y E M at each stage k for 
j < k. Thus x1 < xk for j < k 6 i. By the choice of i, e <: x,+ 1 and so x,+ r II xk for 
j < k < i. Thus y E SG at stage i. But y is preferred to x,, i by T, , contradicting 
the choice of x,+ i . Thus property (6.1) is true. 0 

LEMMA 7. Let E be a chain in P-MAX(P) and let B be a subset of MAX(P) 
rooted in E. Then there exists a super greedy linear extension 9= 9(B, E) such 
that: 

(7.1) E/(P - B) in 9; 
(7.2) B/(P - B) in F; and 
(7.3) ifx, y E B and (x, y) E N9, then y < x in F. 

Proof: Let E be a maximal chain in P- MAX(P) which contains E. We 
let 7 be a super greedy linear extension constructed by adding the following tie 
breaking scheme to algorithm SUPER GREEDY. 

TI : Avoid elements of B. 
T2 : Avoid elements of E. 
T3 : 9*-maximize x,+ I . 
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Again the proof that property (7.1) holds is essentially the same as the proof 
that property (3.1) holds and is left to the reader. 

Suppose property (7.2) is false at stage i. Then x,+ i E B and there exists 
y E R - B such that x,+ i 11 y. We can, and do, choose y E M. Since y is preferred 
to &+I by Ti , y 9 SG. So there exists j < i such that x, < x,+ 1, xj 11 y, and, for 

j < k 6 i, Xk II Xi+ 1 andxklly. Thusx,<:x,+,. Since B is rooted in E and x,+ i 9 
MIN(P), x,+i covers some element e E E. By property (7.1) e = x,; but then 
e II y contradicts property (7.1). We conclude that Y satisfies property (7.2). 

Suppose property (7.3) is false at stage i. Then x,+1 E B and there exists 
Y~RCIB such that (xi+i,y ) E N9 and xi+ i II y. Note that y E M since otherwise 
there exists d E D such that d < y and d II x,+ 1, which contradicts property (7.2). 
Since y E M and D(x) c D(y), y E SG. But x is preferred to y by neither & nor 
T2, while y is preferred to x by T3. This contradiction shows that 7 satisfies 
property (7.3). q 

5. Upper Bounds 

In this section we use Lemmas 3 through 7 to construct various super greedy 
realizers of 9. Recall that we may assume that 9 has properties (Al) and (A2). 
When referring to a super greedy linear extension constructed by Lemma 3, for 
example, we will simply write 2(B, W, E). If one of the parameter sets is a 
singleton we may write the element instead of the set. 

Proof of Theorem 1 .a.i. We must show that 9 has a super greedy realizer Z of 
cardinality at most m . y1+ 1, where m = IDI and n = 1~1. We begin by intro- 
ducing some necessary and rather lengthy notation. Fix elements JE MAX(D) 
and ti E U such that D(a) is maximal. Let AO = A n MIN(P), Al = A - AO, 
PO = UIAO], and PI = P - PO. Let Y. be 9 restricted to PO and 9, be 9 restricted 
to PI. Notice that if 20 is a super greedy linear extension of 90 and 91 is a super 
greedy linear extension of 91, then 5?i +-E”o is a super greedy linear extension 
of9. 

Let Ad = {a E Al : d <: a>. Partition U- (6) into two element Ag u Ao-anti- 
chains and if necessary one Aau Ao-chain W’. Let G’ be the union of these 
Ag u Ao-antichains. For each gE G’ let g’ be the other element of the AJ u Ao- 
antichain to which g belongs. If W’u {ti} is an Agu Ao-chain, let W= W’u {ti) 
and G = G’; otherwise let W= W’ and G = G’u {zi}. Let += ti if ti E W; 
otherwise let $ be some maximal element of W in the quasi order @AJVAO. If 
fi E G, then {ti, $} is an Ag u Ao-antichain. In this case let li’= ti and $‘= ti. 

Now we begin the construction of Z. Let: z. =9, +po, where PO = -‘F(A,, 
W, 0) calculated in go and 9, = LY(Ad, 0, d) calculated in 9, . 

Note that the parameter sets of -E;b and -.Yl satisfy the hypothesis of Lemma 
3. In particular, if B’c B then any B-chain is a B’-chain. Partition A, into 
{Ad:dcD}, where A~={LzEAI:~=L?,)-max{d~D:d<:u}. Note. that this 
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definition of Ad is consistent with the previous definition by property (3.1). 
For each u E U, we define WA, u by: 

J(AduAo,u’,u,d) ifuEG 
m,u= 40,u) ifuEW-{G) 

Y’(Ad, W d) ifu=*. 

Notice that if u E G then D(u’) n (AJU A,,) q! D(u) u (AJU Ao). With this 
remark we leave it to the reader to check that the above parameter sets satisfy 
the hypothesis of the appropriate lemmas. 

Finally, for d E D - Id} and u E U, let s?~, ,, = T’(Ad, u, d). 
We claim that Z = {L%‘~} u (9’ d, U : d E D and u E U> is a super greedy realizer 

of 9 of cardinality m . n + 1. Clearly every linear extension in 2 is super greedy 
and the cardinality is as claimed. Thus it suffices to show that for every non- 
forced pair (x, y) there exists a linear extension in Z which puts x over y. We 
break the argument into four main cases: XE D, XE U, XE A and YE U, and 
x, y E A. Note that it is not possible to have x E A and y E D. 

Case 1: xED.Thenyg U[A,]. Thusycxin 

9 
1 

T(A,, W, x) ifx= d 
rC= L?(A,, G,x) ifxE:D- {(i) 

by property (3.1). 

Case 2: XE U. By the choice of li and assumption (Al) x # 6. Thus either 
X’E G or xE IV- (~9). 

Case 2.1: X’E G. Then y< x in 9d,,= J(AJ u Ao, x, x’, d) by property (4.3). 
Case 2.2: XE IV- ($1. Then y< x in 9a,.=.M(0, x) by property (5.1). 

Case 3: x E A and y E U. Then either x E Ad, where d # & x E Aa u A0 and 
yEG,xEAdandyE W,orxEAeandyE IV. 

Case3.1: x~A~,whered#~.Theny<xinS’~,~=-EP(A~,y,d)byproperty 
(3.2). 

Case3.2: XEAJUA~ and LEG. Then y<x in ~&,=L(AJuA~, y’, y, d) 
by property (4.2). 

Case 3.3: x E AJ and y E IV. Then y < x in RJ, 4 =T(Aa, IV, d) by property 
(3.2). 

Case 3.4: XE A0 and YE IV. Then y< x in 90 =~?‘r +90, where 90 =P(Ao, 
IV, 0) calculated in 90, by property (3.2). 

Case 4: x, YE A. Then either x, YE A o, x, y~Ad for some de D, xEAd and 
YEA,, where d f e, or XE A0 and ye A,. It is not possible to have XE Al and 
YEAO. 

Case 4.1: x, y E Ao. Then y < x in L%?J+ =Y(Ad, IV, d) by property (3.4). 
Case4.2: x, yEAd. Then y<x in 90=9i+-E70, where .L?l=(Ad, 0, d) 

calculated in 9i, by property (3.5) or (3.4) depending on whether or not d = d. 
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Case 4.3: XE Ad and ye A,, where d # e. Then y< x in 

L?(Ad, W,d) ifd=d 
ifd#d 
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by property (3.3). 
Case4.4: xEAcandyEAr.Theny<xin~s=~~+Pa. cl 

Proof of Theorem 1 .b.i. We must show that 9 has a super greedy realizer X of 
cardinality at most n = (UI. Define ti, g’, G, W, 4, I+: and fi’ just as in the last 
proof, but with respect to the quasi order &?;4 rather than @,+Ad. For each u E U, 
define 

I 

M(A, u’, u, 0) if u E G 
L%‘~= N(A, u) ifuE W-(G) 

%4, W 0) ifu= &. 

We claim that 2 = {su : u E U> is a super greedy realizer of 9 of cardinality 
n. Clearly every linear extension in Z is super greedy and the cardinality is 
correct. Thus it suffices to show that for every nonforced pair (x, y) there exists a 
linear extension in Z which puts x over y. We break the argument into three 
cases:xEU,xEAandyEU,andx,yEA. 

Case 1: XE U. By the choice of fi and assumption (Al) x # ti. Thus either X’E G 
or xE W- ($1. 

Case 1 .l: X’E G. Then y < x in sX,= &(A, x, x’, 0) by property (4.3). 
Case 1.2: x E W- {ti,). Then y < x in 9x = Jy(A, x) by property (5.1). 

Case2: xEAandyEU.ThenyEGoryE W. 
Case 2.1: y E G. Then y < x in .%‘,, = &(A, y: y, 0) by property (4.2). 
Case 2.2: ye W. Then y< x in s,+ =9(A, W, 0) by property (3.2). 

Case 3: x, YE A. By assumption (A2) U(y) # 0. Say y< u. Then x < u also. 
EitheruEG, U(x)n W= U(y)n Worue Wand U(y)n Ws U(x)n W. 

Case 3.1: u E G. Then y < x in &?u = &(A, u: u, 0) by property (4.4). 
Case3.2: U(x)n W= U(y)n W. Then y<x in 9,+=LF(A, W, 0) by 

property (3.5). 
Case3.3: UE W and U(y)n W$ U(x)n W. Let w~(U(x)- U(y))n W. 

Then w # ti. So y < x in ,J%‘~ = M(A, w) by property (5.2). 

Proof of Theorem 1.c.i. We must show that 9 has a super greedy realizer I: of 
cardinality at most m = IDI. For each d E D let Bd = {a E A : d <: a}. By assump- 
tion (A2) {Bd : d E D} covers A. For each d E D define: 

gld =vY(bd, 0, d). 

We claim that I: = {gd : d E D} is a super greedy realizer of 9 of cardinality 
m. Clearly every linear extension in Z is super greedy and the cardinality is 
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correct. Thus it suffices to show that for every nonforced pair (x, y) there exists a 
linear extension Z which puts x over y. We break the argument into two cases: 
xEDandxEA. 

Cusel: x~D.Theny~Bd.Thusy<xin~~=~(B,,0,x)byproperty(3.1). 

Case2: XEA. Say xeB d. Then y< x in &=-%((B,, 0, d) by property (3.5) 
or (3.3) depending on whether or not y E Bd. q 

Proof of Theorem 2.b.i. We must show that 9 has a super greedy realizer Z of 
cardinality at most 2n, where n = width(P- MIN(P)). Partition P-A into 
chains El , . , . , E,. Note that each Ei is also an A-chain. For i = 1, . . . , n define: 

9,=3(A, E,,0) and S’,+,=N(A, E,). 

WeclaimthatZ={9c:i=l,..., 2n) is a super greedy realizer of 9 of cardinal- 
ity 2n. Clearly each linear extension in Z is super greedy and the cardinality 
is correct. Thus it suffices to show that for every nonforced pair (x, y) there 
exists a linear extension in Z which puts x over y. We break the argument into 
threecases:xEU,xEAandyEU,andx,yEA. 

Cusel: x~U.Sayx~E,.Theny<xinW,+i=~~(A,Ei)byproperty(5.1). 

Case 2: x E A and y E U. Say u E E,. Then y < x in 9, =L?(A, E,, 0) by property 
(3.2). 

Case 3: x, y E A. Then y < x in gn+ I = N(A, El) by property (5.2). q 

Proof of Theorem 2.c.i. We must show that 9 has a super greedy realizer of 
cardinality at most n + 1, where n = width(P - MAX(P)). Partition P - A into 
chainsEr ,..., E,.Fori= l,..., ndefine: 

So = Y(A); 
Ai=(~EA:~~-max(dED:d<:a}EEi}; and 
sp, = FM, 4). 

Note that Ai is indeed rooted in Ei. By assumption (A2) {A, : i = 1, . . . , n} is a 
partition of A. We claim that Z = {Ri : i = 0, 1, . . . , n} is a super greedy realizer 
of 9 of cardinality n + 1. Clearly each linear extension in Z is super greedy and 
the cardinality is correct. Thus it suffices to show that for every nonforced pair 
(x, y) there exists a linear extension in ZZ which puts x over y. We consider four 
cases: x~E,andy~A,,x~E, and y+A,,x,y~Ai,andx~A,andy~A,, where 
i #j. Note that it is not possible to have x E A and y E D. 

Case 1: x E E, and y E Ai. Then y < x in 90 = 9(A) by property (6.1). 

Case 2: x E E, and y $ A,. Then y < x in 9, = F(A, , E,) by property (7.1). 

Case 3: X, y E A,. Then y < x in L%‘~ = T(Aip Ei) by property (7.3). 
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Case 4: x E A, and y E Aj, where i #j. Then y < x in Wi = F(A,, E,) by property 
(7.2). 0 
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