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Problems and Conjectures
in the Combinatorial Theory of Ordered Sets

W. T. Trotter*
Department of Mathematics

Arizona State University
Tempe, Arizona, USA

Dedicated to the memory of G. A. Dirac

49 questions from the theory of ordered sets are stated, and the
present knowledge about each is surveyed.

1 Introduction

The purpose of this article is to survey a number of combinatorial problems
and conjectures for ordered sets. This area of combinatorial mathematics is
relatively new and is experiencing rapid growth. Accordingly, it is impossi-
ble to claim that the article is exhaustive in scope. Rather, we concentrate
on problems which fall under the heading of “extremal problems”. Further-
more, we have chosen problems which exhibit the single most attractive
feature of combinatorial mathematics in that the problems can be under-
stood by nonspecialists. Throughout the paper, we consider an ordered set
as a pair (X, P) where X is a set and the partial order P is a reflexive,
antisymmetric and transitive relation on X.

2 Dimension problems

The dimension of an ordered set (X, P), denoted dim(X, P), is the least ¢
for which P is the intersection of ¢ linear orders on X. Our first conjecture
is one of the best known problems in dimension theory.

*Research supported in part by the National Science Foundation
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402 W. T. Trotter

Conjecture 1. If (X, P) is any ordered set with |X| > 3, then there exist
distinct points z,y € X so that

dlm(X> P) <1+ dlm(X - {wvy}’ P(X - {xay}))

This conjecture arises from attempts to provide a simple inductive proof
of the following basic inequality due to T. Hiraguchi [13]: dim(X,P) <
|X]|/2 when |X| > 4. We believe the first published reference to the con-
jecture is [3], but the problem is so natural that one cannot be certain. See
Kelly’s note [16] for additional background information on this problem.

Conjecture 2. For every pair m,n of positive integers, there exist ordered
sets (X, P) and (Y,Q) so that

dim((X, P) x (Y,Q)) = max{dim(X, P),dim(Y,Q)}.

This problem comes from the following elementary inequalities govern-
ing cartesian products of ordered sets:

max{dim(X, P),dim(Y,Q)} < dim((X, P) x (¥, Q)) (1)
dim((X, P) x (Y,Q)) < dim(X, P) + dim(Y, Q) (2)

In many cases, the second inequality is tight. For example, K. Baker [2]
showed that this occurs whenever the two ordered sets are nontrivial and
have greatest and least elements. However, very little is known about the
accuracy of the first inequality. In [34], Trotter showed that for each n > 3,
there exists an n-dimensional, ordered set (X, P) with the property that
dim(( X, P) x (X, P)) = 2n — 2. This ordered set is the standard example,
i.e., the family of all 1-element and (n — 1)-element subsets of an n-element
set ordered by inclusion. Perhaps it is true that for each n > 1, there exists
an ordered set (X, P) so that dim(X, P) = n and dim((X, P)x (X, P)) = n.

The standard example figures in another intriguing dimension theory
problem.

Problem 3. For each n > 1, determine the least integer f(n) so that if
(X, P) is any ordered set in which each point is comparable with at most n
other points, then dim(X,P) < f(n).

Z. Firedi and J. Kahn [10] have supplied a clever argument to show that
there exists an absolute constant ¢ so that f(n) < ¢n(logn)?. On the other
hand, the standard example provides the trivial lower bound f(n) > n+1.
Although no better bound is known, it appears likely that f(n)/n tends
to infinity.
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An ordered set (Y, Q) is called a homeomorph of (X, P) if the diagram
for (Y,Q) is obtained from the diagram of (X, P) by inserting points on
edges.

Problem 4. Is it true that if (Y,Q) is a homeomorph of (X,P), then
dim(X, P) <dim(Y,Q) < 2dim(X,P)?

There are many analogies between dimension for ordered sets and chro-
matic number of graphs. Here is a problem which comes from attempts
to see how far this analogy extends. In order for a graph to have large
chromatic number, it must contain a relatively small subgraph which has
relatively large chromatic number. To be somewhat more precise, Kier-
stead, Szemerédi and Trotter [21] proved that if G is a graph on n vertices,
and G has no subgraph H whose chromatic number exceeds ¢ and whose
radius in G is at most 2knl/*, then the chromatic number of G is at most
k(c— 1)+ 1. The special case of this theorem when ¢ = 2 was conjectured
by P. Erdos.

Problem 5. What is the mazimum value f(n,m,k) of the dimension of
an ordered set on n points in which no subordered set on m points has
dimension exceeding k?

A special case of this problem may be of particular interest.

Problem 6. What is the mazimum value f(n,k) of the dimension of an
ordered set on n points which does not contain a standard example of di-
mension k?

A solution to the preceding problem may shed some light on the follow-
ing problem which is due to B. Sands.

Problem 7. What is the least integer f(n) for which there ezists a lattice
of dimension n having f(n) points?

Of course, the distributive lattice 2" consisting of all subsets of an n-
element set ordered by inclusion has dimension n so f(n) < 2™. But in [12],
B. Ganter, P. Nevermann, K. Reuter and J. Stahl observed that the lattice
of subspaces of the projective plane of order 3 has 28 points and dimension
at least 5. More generally, they showed that f(n) < ¢" for every ¢ > 1.
This result follows from their observation that if II,, denotes the lattice of
all partitions of an n-element set, then there exist absolute constants cy, ¢
so that ¢;n? < dim(Il,,) < can?. Perhaps there is an exact answer for the
dimension of the lattice of partitions of a set. At least it should be possible
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to determine the limit of dim(Il,)/n?. As far as I know, the dimension of
the lattice of partitions of an integer has not been investigated.

These same authors also show that the lattice of subspaces of an n-
dimensional linear vector space over GF(2) also provides a subexponential
bound on f(n). For this lattice, they show that the dimension is at least
2"/n and at most 2". It should be possible to obtain a good estimate for
the dimension of this lattice.

Recently, Z. Firedi and J. Kahn [11] observed that a much better bound
on the minimum size of an n-dimensional lattice can be derived from the
lattice obtained by adding a zero and a one to the ordered set formed by
the points and the lines of a finite projective plane. They observed that if
the order of the projective plane is n, then the dimension of the lattice is
at least en where ¢ is an absolute constant. This shows that f(n) < en?.
Probably the exponent is right in this estimate.

The following problem is due to J. Ginsburg. Define the cutset number
of (X, P) as the least nonnegative integer n so that for each z € X, there
exists a subset S of at most » points with each point of S incomparable to
z so that every maximal chain contains a point from S U {z}.

Problem 8. Does there exist a function f(n) so that dim(X, P) < f(n)
whenever the cutset number of (X, P) isn?

3 Problems on linear extensions

Let E(P) denote the set of all linear extensions of a partial order P on a
finite set X. For a distinct pair 2,y € X, define PROB(z < y) as the ratio
of the number of extensions in E(P) which place z before y divided by the
total number of extensions in E(P). The following beautiful conjecture was
made by M. Fredman [9]:

Conjecture 9. If(X, P) is not a chain, there ezist distinct pointsz,y € X
so that 1/3 < PROB(z < y) < 2/3.

Linial [25] proved that the conjecture holds if the width of (X, P) is at
most two. Aigner [1] classified the width two ordered sets for which the
inequality is tight. However, the best result to date for arbitrary width
is due to Kahn and Saks [15]. They have shown that there exists z,y
so that 3/11 < PROB(z < y) < 8/11. They also make the following
conjecture.
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Conjecture 10. For every ¢ > 0, there exists an integer n so that if
(X, P) is any ordered set with width(X,P) > n, then there erist distinct
points x,y € X so that 1/2—-¢ <PROB(z <y)<1/2+e¢.

Additional conjectures of this general flavor are given in Saks’ note [31].

There are a number of interesting problems concerning the cardinality
of E(P). The following problem is relayed by J. Kahn.

Problem 11. Does there ezist an efficient algorithm which accepts an or-
dered set (X, P) as input and which outputs a number m satisfying that
m < |E(P)| < m2™, where n = | X|?

Problem 12. For integers n,k with 0 < k < (g), find the greatest in-
teger f(n,k) for which there exists an ordered set (X,P) with n = |X]|,
|E(P)| = f(n, k), and with ezactly k of the (}}) pairs of X comparable in
P.

Some information is known about the extremal ordered sets. It is rela-
tively easy to establish that if (X, P) is an ordered set with n points and
k comparable pairs and |E(P)| = f(n,k), then there exists a function g
from X to the set R of real numbers so that ¢ < y in P if and only if
g(z) +1 < g(y). Such ordered sets are called semiorders (also unit interval
orders). Here is a variant of the preceding problem posed by I. Rival.

Problem 13. For integers n,k with 0 < k < n?/4, find the greatest
integer g(n,k) for which there exists an ordered set (X, P) with |X| = n,
|E(P)| = g(n, k), and with k edges in the diagram of (X, P).

It may also be of interest to find those ordered sets with a specified
number of comparable pairs or a specified number of edges in the diagram
for which the number of linear extensions is minimum.

Let (X, P) be an ordered set. For each L € E(P), let jump(L; P) count
the number of pairs of elements which are consecutive in L and incompa-
rable in P. Then define the jump number of (X, P), denoted jump(X, P),

“by jump(X, P) = min{jump(L; P) : L € E(P)}. Call (X, P) jump critical

if jump(X — {2z}, P(X - {z})) < jump(X, P) for every z € X.

Problem 14. For each integer k > 1, find the least integer f(k) so that if
jump(X, P) = k and (X, P) is jump critical, then |X| < f(k).

El-Zahar and Schmerl [6] show that f(k) < (k + 1)!.
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Perhaps this inequality is far from best possible. The best known lower
bound comes from examples constructed by El-Zahar and Rival [5] which
yield f(k) > ck where 3 < ¢ < 4.

Let J, denote the ordered set consisting of the linear sum of n two
element antichains, i.e., points from distinct antichains are comparable.
Then let A, denote an n-element antichain. J. Schmerl [32] has proved
that an ordered set with large jump number either contains a large J,, or a
large A,.

Problem 15. For positive integers m and n, find the least integer f(m,n)
so that if (X, P) is any ordered set with jump(X, P) > f(m,n), then either
(X, P) contains J,, or A,.

4 Interval orders and generalizations

Let C' be a collection of distinct closed intervals of the real line. Define a
partial order P on C by A < B in P if and only if @ < b on the real line for
every a € A and every b € B. An ordered set isomorphic to one obtained
by this definition is called an interval order.

Let f(n) be the least integer so that if (X, P) is an interval order and
length(X, P) = n, then dim(X,P) < f(n). Rabinovitch [29] proved the
existence of f(n) and Bogart, Rabinovitch and Trotter [4] showed that there
exists a constant ¢ > 2 so that loglogn < f(n) < log,n. The upper bound
has been improved by Rédl and Trotter [30] to f(n) < (loglogn)° for some
c. Probably f(n) < (loglogn)!*® and perhaps f(n) < cloglogn.

However, there has been little work done on the dual problem.

Problem 16. Find the least f(n) so that if (X, P) is an interval order of
width n, then dim(X,P) < f(n).

Call an ordered set (X, P) dimension critical if, for every z € X,
dim(X — {z}, P(X — {z})) < dim(X, P).

Problem 17. How many dimension critical interval orders are there on n
points?

Problem 18. How many dimension critical interval orders of dimension
n are there?

Let I(n) denote the interval order determined by the set of nondegen-
erate closed intervals with integer endpoints from {1,2,---,n}.
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Problem 19. Does there exist a function f(n) so that if (X, P) ts an
interval order and dim(X, P) > f(n), then (X, P) contains I(n)?

The interval count of an interval order is the minimum number of differ-
ent length intervals required in a representation. P. Fishburn [7] discusses
many intriguing problems for interval count and we mention here two of
them.

Conjecture 20. If (X, P) is an interval order and X contains 3n points,
then the interval count of (X, P) does not exceed n.

The interval order which is defined by {[-2i—1,2:+1]:0<:<n} U
{[-21 - 1,-2i]:1 <i<n}uU{[2¢,2i +1];1 < i < n} shows that this con-
Jjecture if true is best possible.

Problem 21. Does there exist a constant ¢ so that the removal of a point
from an interval order decreases the interval count by at most ¢?

Consider an angle in the Euclidean plane as determining an infinite
region bounded by two incident rays. An ordered set isomorphic to a family
of regions formed by angles in the plane and ordered by set inclusion is
called an angle order. Fishburn and Trotter [8] proved that every interval
order is an angle order and that every ordered set with dimension at most
four is an angle order. They also proved that there exists an ordered set of
dimension 7 which is not an angle order.

Problem 22. Find the least integer t for which there exists an ordered set
of dimension t which is not an angle order.

Problem 23. If (X, P) is an angle order, is the ordered set formed by
adding a zero to (X, P) also an angle order?

Call an ordered set a circle orderif it is isomorphic to a family of circular
regions in the plane ordered by inclusion.

Problem 24. Is every three dimensional ordered set a circle order?

Problem 25. Find the least integer t for which there exists an ordered set
of dimension t which is not a circle order.

5 Ramsey theoretic problems

Let (X, P) and (Y, Q) be ordered sets. We write (Y,Q) — (X, P) when
every partitioning of the points of Y into 2 classes yield a subset X' C Y
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so that (X’,Q(X")) is isomorphic to (X, P) and all points of X’ belong to
the same class.

Problem 26. For each n > 2, find the least integer f(n) so that if (X, P)
is an ordered set of width at most n, then there ezxists an ordered set (Y,Q)
of width at most f(n) so that (Y,Q) — (X, P).

It is trivial to see that 2n —1 < f(n) < n?. In [23], H. Kierstead and
W. Trotter show that f(n) > 2n. The argument for this bound seems
to leave room for improvement, and I suspect that f(n) > en? for some
constant .

Problem 27. For each n > 1, let g(n) be the least positive integer so that
if (X, P) is any ordered set with |X| = n, then there exists an ordered set
(Y,Q) with |Y| = g(n) so that (Y,Q) — (X, P).

Again, we start with the trivial bounds 2n—1 < g(n) < n%. But in this
case, we can at least improve [23] to n%/4 < g(n) < n? —n+ 1. The reader
may naturally ask why we do not pose the analogous problems for dimension
and length. The answer is that these problems have been completely solved
by Negetfil and Rodl [26]. They proved that if dim(X, P) = n, then there
exists (Y,Q) with dim(Y,Q) = n so that (V,Q) — (X, P). Furthermore,
if length(X,P) = n, there exists (Y, Q) with length(Y,Q) = 2n—1 so that
(Y,Q) — (X, P). Clearly, these results are best possible.

It follows immediately from Ramsey’s theorem that if (X, P) is an inter-
val order, then there exists an interval order (Y, Q) so that (Y,Q) — (X, P).

Problem 28. If (X, P) is an interval order on n points, what is the least
f(n) so that there ezxists an interval order (Y,Q) so that (Y,Q) — (X, P)
and the cardinality of Y is at most f(n)?

Problem 29. If (X, P) is an interval order on n points and has length
(respectively width, dimension) k, what is the least f(n,k) so that there
exists an interval order (Y,Q) so that (Y,Q) — (X, P) and the length
(respectively width, dimension) of (Y, Q) is at most f(n,k)? In particular,
does f(n,k) depend on n?

On the other hand, it is relatively easy to see that there exists an angle
order (X, P) for which there is no angle order (Y,Q) so that (Y,Q) —
(X, P).

Problem 30. If (X, P) is a circle order, does there exist a circle order
(Y,Q) so that (Y,Q) — (X, P)?
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Define the angle dimension of (X, P), denoted Adim(X, P), as the least
t for which there exists ¢ binary relations Ay, Az,--+,A; on X so that
P=A1nA;Nn.--NAsand (X, A;) is an angle order for ¢ =1,2,---,¢.

Problem 31. Find the least f(n,t) so that if |X|= n, Adim(X, P) = ¢,
and z € X, then Adim(X — {¢}, P(X —{z})) > t— f(n,t). In particular,
does there exist a constant ¢ so that f(n,t) < ¢ for all n,t?

Problem 32. If | X| = n, what is the mazimum value of Adim(X, P)?

Problem 33. Does there exist a function f(n) so that if Adim(X,P)=n
then there exists (Y, Q) with Adim(Y,Q) < f(n) so that (Y,Q) — (X, P)?

Of course, we can also define the circle dimension of an ordered set in
the obvious fashion and rephrase the last three problems in terms of this
parameter. Needless to say, the concept of dimension is one that admits
an endless number of variations. Some of these have been explored, and
perhaps more work on this theme is worthwhile.

6 Problems from recursive combinatorics

Consider the following game theoretic setting involving two players A and
B, a class C of ordered sets and an integer ¢. It is further assumed that if
(X,P) e C,then X = {1,2,---,m} where m is some positive integer. The
players alternate moves with Player A constructing an ordered set from C
and Player B partitioning this ordered set into chains. At Round 7, where
© < m, Player A provides the binary relation determined by the restriction
of P to {1,2,---,i}. After receiving this information, Player B makes an
irrevocable assignment of ¢ to one of ¢t sets Cy,Cs,---,C; each of which is
a chain in (X, P).

The game terminates and A is the winner if at some step, say Round ¢
with ¢ < m, Player B has no admissible move, i.e., for each j=1,2,---,¢,
the assignment of ¢ to C; produces a set which is no longer a chain. If
Player B is able to make admissible assignments to chains at each Round
tfor ¢ =1,2,.---,m, then Player B is the winner.

We say that the class C' can be recursively partitioned into ¢ chains if
there exists a strategy for Player B which will enable him to defeat Player
A regardless of the strategy followed by Player A.

Problem 34. What is the least f(n) for which the class of finite ordered
sets of width n can be recursively partitioned into f(n) chains?
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It is not at all clear that f(n) exists. In a beautiful paper [19] H. Kier-
stead showed that f(n) < (5" — 1)/4. The best lower bound is due to
Szemerédi (see [17]), f(n) > ("F'). It is of particular interest to decide
whether f(n) is polynomial or exponential. This problem is likely to be
difficult since even the precise value of f(2) is not known. It is either 5
or 6.

Kierstead and Trotter [22] have shown that the class I(n) of interval
orders of width n can be recursively partitioned into 3n — 2 chains. This
result is best possible.

In an obvious manner, we can speak of recursively partitioning a class
of ordered sets into antichains, recursively coloring a class of graphs, etc.
The antichain partitioning problem has been completely solved. J. Schmerl
(see [18]) proved that the class L(n) of ordered sets of length n can be
recursively partitioned into (”;1) antichains and Szemerédi [18] has shown
that the result is best possible.

Problem 35. Does there exist a function f(n) so that the collection of all
comparability graphs in which the mazimum size of an independent set is n
can be partitioned into f(n) complete subgraphs?

Some nice results have been obtained for recursive dimension. H. Kier-
stead, G. McNulty and W. Trotter [20] showed that the family of width
three ordered sets does not have finite recursive dimension. The difficulty
comes from the class of height one ordered sets which are called crowns.
These ordered sets contain k maximal elements aq,as,---,a; and & minimal
elements by,bq,-:-,br with a; > b; and a; > b4y (cyclically) with & > 3.
Crowns are three dimensional ordered sets and they are dimension critical.
They play a key role in a number of combinatorial problems for ordered
sets.

Problem 36. What is the least f(n) so that the class of width n crown-free
ordered sets has recursive dimension at most f(n)?

A double exponential upper bound and an exponential lower bound
for f(n) is established in [20]. The proof techniques strongly support the
following conjecture.

Conjecture 37. For every k > 3 and every n > k, the class of ordered
sets of width n which do not contain a crown on 2m points for any m with
3 < m < k does not have finite recursive dimension.

We refer the reader to Kierstead’s survey article [18] for additional prob-
lems from recursive combinatorics.
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7 Planarity

An ordered set is planar if it is possible to draw a diagram for it in the
plane without edge crossings.

Problem 38. Which ordered sets are planar? Develop a good algorithm
for testing an ordered set for planarity.

It makes good sense to extend this problem to the class of oriented
graphs which do not contain directed cycles. Just as is done with ordered
sets, we can use diagrams for acyclic oriented graphs in which the orienta-
tion of edges is indicated by the orientation in the plane. In this way, an
acyclic oriented graph can be nonplanar when the underlying undirected
graph is planar.

Problem 39. Which acyclic oriented graphs are planar? Provide an ef-
ficient algorithm which tests planarity. Also characterize planarity for
acyclic oriented graphs by providing a list of forbidden subgraphs.

Some examples of forbidden subgraphs are given in [35]. One of the
original motivations for studying planarity for ordered sets comes from di-
mension theory. A planar ordered set with greatest and least elements
has dimension at most two. Trotter and Moore [36] showed that a pla-
nar ordered set with a least (or greatest) element has dimension at most
three. However, D. Kelly [17] constructed planar ordered sets of arbitrary
dimension.

Problem 40. Do there exist dimension critical planar ordered sets of ar-
bitrary dimension?

I have just learned from W. Schnyder of the following beautiful result
he has recently proved. With a graph G = (V, E), we associate an ordered
set (X, P) defined by X = VUE with 2 < e in P if and only if the vertex
z is an endpoint of the edge e. Schnyder proved [33] that the graph G is
planar if and only if the dimension of the associated ordered set is at most
three.

Problem 41. Does there exist a function f(n) so that if G is a graph of
genus n, then the dimension of the associated ordered set is at most f(n)?

Problem 42. Does there exist a function g(n) so that if (X, P) is the
ordered set associated with the graph G, and dim(X,P) = n, then the
chromatic number of G is at most g(n)?
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The preceding problem is related in spirit to the famous problem in-
volving the existence of graphs with bounded maximum clique size and
arbitrarily large chromatic number. The reverse problem is easier since it
is easy to show that there exists an absolute constant ¢ so that if (X, P) is
the ordered set associated with graph G, and the chromatic number of G
is n, then dim(X, P) < cloglogn. Apart from the value of the constant
¢, this result is best possible. This is shown by the complete graph on n
vertices.

8 Miscellaneous problems

We have not included in this paper any Sperner theory problems only be-
cause in most cases, the formulation of these problems requires additional
background material. However, we must comment that there are a large
number of important problems in this area and we refer the reader to
Griggs’ survey article [13] for a sampling. For similar reasons, we have
not discussed problems from combinatorial lattice theory.

There are a tremendous number of challenging and easily accessible
problems dealing with families of subsets of a set. Here is one of my fa-
vorites. It comes from P. Frankl.

Problem 43. Prove that there exists an absolute constant € so that when-
ever F is a family of sets closed under unions, i.e., AU B € F for every
A,B € F, then there is an element which belongs to at least ¢|F| of the
sets in F.

Actually, Frankl conjectures that the value & = 1/2 works. This value
is best possible as the family of all subsets of a set shows.
Here is another posed by D. Kleitman.

Problem 44. How many colors are required to assign colors to the subsets
of {1,2,---,n} so that for each i = 1,2,---;n, the family F; of subsets
assigned color i is completely union free, i.e., if Ay, A, -+, Ak, Ap41 € F3,
then AjUAsU---U Ay #Ak+1?

It is easy to see that n 4+ 1 colors suffice since we can assign a set A its
cardinality as a color. An easy inductive argument shows that the number
of colors required is at least n/2.

Call a graph G a cover graph if there is a drawing of G in the plane
which yields the diagram of an ordered set. It is obvious that a cover graph
has no triangles. O. Pretzel [28] has constructed a graph of girth six which
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is not a cover graph. J. Nedetfil and V. R6dl [27] have shown the existence
of graphs with arbitrarily large girth which are not cover graphs.

Problem 45. Give an explicit construction for graphs of arbitrarily large
girth which are not cover graphs.

The following problem comes from P. Erdos.

Problem 46. Let f(n) denote the minimum value of the independence
number among all cover graphs on n vertices. An old construction of Erdés
shows f(n) = o(n). Is it true that f(n) > nl=¢?

J. Nesettil asks the following question.

Problem 47. If Cy is a cover graph, does there exist a cover graph C,
so that if the edges of Cy are partioned into two classes, then there exists
an induced copy of Cy so that all the edges in this copy belong to the same
class?

There are a number of difficult problems involving the existence of
hamiltonian cycles in graphs, in particular the well known conjecture of
L. Lovasz for vertex transitive graphs. Here is a special case for ordered
sets. I am not sure who first posed the problem. I first heard about it
from I. Dejter who credits it to P. Erdés, but perhaps someone else should
be credited. D. Kelly has posed the problem at conferences in Banff and
Oberwolfach, and so has I. Havel in Prague.

Problem 48. Consider the bipartite graph formed by the vertices in the
middle two levels in the diagram for the ordered set consisting of all subsets
of a set of 2n+ 1 elements ordered by inclusion. Is this graph hamiltonian?

We close this paper with a problem of Linial, Saks and Schor [25]:

Problem 49. What is the largest integer f(n,d) so that every ordered set
on n points contains a d-dimensional subordered set on f(n,d) points?

These three authors have shown that there exists a constant ¢ so that
every ordered set on n points contains a subordered set on ¢y/n points in
which all maximal chains have the same length. Of course the existence
of ¢ is easy to establish, but they have also shown that the result is best
possible except for the precise value of the constant ¢. This problem is
representative of the type of problem which deserves more attention in the
future.
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