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Abstract. An angle order is a partially ordered set whose points can be mapped into unbounded angular 
regions m the plane such that .X is less than y in the partial order if and only if X’S angular region is 
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1. Introduction 

This paper answers the question raised in Fishburn and Trotter [5] and noted as 
Problem 23 in Trotter [ 111 of whether every finite angle order augmented by adding 
a least element below all others (a zero) is also an angle order. We answer in the 
negative. Our proof constructs a particular angle order F,, and shows that the zero 
augmentation of Fn, written as F” + 0, is not an angle order when n is large. 
Because the proof uses Ramsey theory [2,6] extensively to deduce regular patterns 
in a potentially chaotic whole, it is uninformative about the cardinality of the 
smallest angle order whose zero augmentation is not an angle order. 

Our question is motivated by recent studies [3,4, 5, 8, 10, 121 of finite partially 
ordered sets (X, cO) that are representable by closed, connected regions in the 
Euclidean plane ordered by proper inclusion. We assume that 0 < 1x1 < cc and that 
co is an asymmetric and transitive binary relation on A’. The inverse of (X, cO) is 
(X, <$) where x <$ JJ if y <o x, and the zero uugmentation of (X, < ,,) is 

(X <cJ+O=(XLJ{z}, <ou{(z,x):xEx}), z$X. 

Let 9 denote an infinite collection of closed, connected regions in the plane. Call 
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(X, <,,) an .%-order if there exists f: X -+g such that, for all x, y E X, 

and let (9) denote the class of all g-orders. We say that (9) is invertible if 

and that (g) is zero-augmentable if 

Invertibility and zero-augmentability have been studied for various &?-orders, 
including: 

circle orders [3, 10, 121: .%? is the collection of circular disks; 
regular N-gon orders [4, 8, 121: with N > 3 fixed, 5? is the collection of regular 

N-gons whose two lowest corners lie on a line parallel to the abscissa; 
N-gon orders [4, 10, 121: with N > 3 fixed, 9 is the collection of N-sided convex 

polygons; 
angle orders [ 5, 8, 121: &Y is the collection of unbounded angular regions. An 

angzdar region consists of a vertex v e LP* and all points on the rays from v 
clockwise from an initial ray r, to a terminal ray r2, with 0 -C 0 -C 2~ for the 
clockwise angle 0 from rI to r2. 

The first three cases have bounded and convex regions, but the unbounded angular 
regions are convex only if 0 < rr. The angular region is a closed half-plane when 
6’ = rc. When 0 > rr, the closure of the complement of the angular region is a convex 
angular region whose angle is 27~ - 0. 

The classes of circle orders and regular N-gon orders are invertible and zero- 
augmentable [8, 10, 121. Here, invertibility implies zero-augmentability: invert the 
order, add a large region that includes the others, then re-invert to transform the 
large region into a zero for the original order. On the other hand, for each N > 3 
the class of N-gon orders is neither invertible nor zero-augmentable [4]. This is true 
even if all N-gons are regular, but not similarly oriented. 

The situation for angle orders is quite different, owing in part to unboundedness. 
Since angular region CC is properly included in angular region /? exactly when the 
closure of Z’S complement properly includes the closure of p’s complement, the 
class of angle orders is invertible. But the double inversion technique of the 
preceding paragraph cannot be used to deduce zero-augmentability from invertibil- 
ity, for it may be impossible to add an angular region that includes the angular 
regions used to represent an angle order. Indeed, as announced earlier: 

THEOREM 1. The c1as.s of angk orders is not zero-augmentable. 

This is proved in ensuing sections. We construct an angle order rn, suppose that 
l-H + 0 is an angle order, and obtain a contradiction when n is large. The proof is 
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facilitated by three basic results from Ramsey theory [2, 61 and a related result, 
Lemma 4, from the theory of tournaments [ 1,7]. 

LEMMA 1. Every linear arrangement of m2 + 1 distinct numbers has either an 
increasing subsequence or a decreasing subsequence of at least m + 1 numbers. 

LEMMA 2. For each positive integer m there is an integer A4(m) such that among 
any A4 > M(m) points in the plane there are m which form a convex m-gon. 

Remark. Some of the m among A4 points that delineate the m-gon could lie on 
sides between others. The extreme case has all m points collinear, so the interior of 
the convex m-gon could be empty. 

LEMMA 3. For each positive integer m there is an integer N(m) such that, for ever] 
complete graph I& with N > N(m) points whose edges are three colored (each edge 
red, green, or blue), all edges of some complete subgraph K,,, have the same color. 

LEMMA 4. For each positive integer m there is an integer T(m) such that, for every 
asymmetric and complete (x #y * x -c, y or y <I x) binary relation <, on 
T 2 T(m) points, there are m points on which < , is transitive. 

2. A Special Angle Order 

This section defines the angle order I-,, used to prove Theorem 1. Our proof by 
contradiction for FH + 0 begins in the next section. A few definitions will aid our 
description of l-n. 

An angular region A with angle 0 clockwise from r, to r2 is little if 0 -C n, 
ha~-planarife=~,andbigife>~:seeFigurel.Letn={l,2,...,n}.Wesay 
that a subset I of n is contiguous if Z has the form {i, i + 1, . . . , j} for 1 < i <j < n 
or {i, i + I, . . . , n, 1, . . . ,j) for 1 <j -C i < n. For each i l n, Fis the unique integer 
in n for which ii - q = n/2. We assume henceforth that n is even. 

8 c T : little 8 = T: half-planar 8~ T: big 

Fig. 1. Angular regmns. 
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We define I,, by an angular region representation in the plane. With 
In = (X, co), we take X = X, u X2 u X3 where 

Xl={Zsn: 1 <]Z] 6 n - 1, Z is contiguous], 

x2 = {{U} : {id. is a noncontiguous 2-set in n}, 

X3 = {i : i E n}. 

The 4 are mutually disjoint, IX, I= n(n - l), IX11 = ~(n - 3)/2 and IX3 I= n. The 
singletons {i} e X, are distinguished from the single elements i E X3. 

The angular regions for x, E Xi, x2 e X2 and x3 e X3 will be denoted by a(~,), 
/?(xJ and 7(xX) respectively, with x cOy if and only if the angular region for x is 
properly included in the angular region for y. All angular regions for In are 
positioned with reference to a fixed circular disk C with radius 1 centered at the 
origin 0 = (0,O). We partition C into 2n equal wedges by rays from 0 at succes- 
sive angles of z/n and label the 2n ray-perimeter intersection points as 
1, l’, 2,2’, . . . , n, n’ in clockwise succession. Also let f$, denote a fixed angle 
(dependent on n) that is much smaller than x/n. 

The vertex of a( {i}) for each singleton {i} in X, is point i on C’s perimeter, 
t9({i}) = O,,, and the little E({i}) extends away from C and is bisected by the ray 
from 0 through i. The vertex of a({not i}) for each (n - 1)-set {not Z} = n\{i} in X, 
is 0, 0({not il) = 27r - 00, and the big ~${not ij) has rays at angle f&/2 on either 
side of the ray from 0 through i. [The complement of a( {not i}) properly includes 
a({i}).] Every other Z e X,, with 2 < ]Z] <n - 2, has vertex 0 for a(Z). When 
Z= {i,. . . ,Z}, ri(Z) is the ray from 0 through (i - 1)’ [n’ if i = 1] and rz(Z) is the ray 
from 0 through Z’. Such an a(Z) is half-planar if j = L Figure 2 illustrates the 
angular regions for X, . 

The angular region /?( {i, j}) f or a noncontiguous pair {i, j} in X2 is formed from 
the lines tangent to C at points i and j. Its vertex is the intersection point of those 
lines (if j = t tilt one of the tangents very slightly at its point of tangency so that 
the two lines eventually cross). Its rays are the half-lines tangent to C, and O({i,j}) 
is the big angle thus formed so that almost all of C is exterior to /I( {i, j}). 

Finally, the vertex of y(i) for each i rz X3 is positioned on the ray from 0 through 
i just outside of C so that it lies in the interior of m( {i}). The rays of y(i) make angle 
t&/2 on either side of the line between i and 0 (back toward O), and O(i) is the big 
angle thus defined with 0 and all of X(F) outside of y(i). The angular regions for X2 
and X3 are illustrated in Figure 3. 

Recalling that (& is presumed to be very small compared to x/n, we note parts of 
c0 and its symmetric complement m0 (x -Oy if neither x <Oy nor y <0x) that 
are implied by the inclusions and noninclusions in the preceding construction of In. 
First, <,, restricted to Xi agrees with c: 

z <fJ.z-a(Z) ca(J) ezc.z. 

Next, for each {i,jj l X2 and all singletons in X,, 
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Fig. 2. Angular regions for X,. 

{i} co {Cj} ad {j} co i&j}, 
{k} -o {i,j} for every k G n\{i,j}. 

Finally, For each i E X3, 

{j} -co i for every j E n\{i, 9, 

i -co {not z? 

i w. {not j} for every j E {not 27 

For x3, c4{d) = d.1 f z or every j $ {i, ~7 while neither a({i]) nor a( {fp) is included in 
y(i). Moreover, y(i) c m({not 27) since the ray pairs of y(i) and u({not 3) are 
parallel and the vertex of y(i) lies in cz( {not ~7). However, for every j # < the rays 
of y(i) and u({not jj) cross. 
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Fig. 3. Angular regions for Xl and X3. 

3. Supposition and Singleton Regions 

The preceding partial specification of <a and - 0 identifies the most important 
parts of l-n = (X, Co) for our ensuing proof of 

THEOREM 2. There is an integer n0 such that l-n + 0 is not an angle order when n 
is even and n > nO. 

Since l-n is an angle order by construction, we prove Theorem 1 by proving 
Theorem 2. Proceeding with a proof by contradiction, we suppose henceforth that 
l-n + 0 is an angZe order for every even n. It will be shown that this is false. In 
particular, l-n + 0 is not an angle order when n is large. 
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Given our focal supposition, we presume an angular representation for l-,, + 0, 
denote the added zero and its angular region by 0, and position the whole so that 0 has 
vertex 0 = (0,O) and includes the negative ordinate in its interior. We also sometimes 
refer to an angular region of the presumed representation of l-,, + 0 by the name of its 
element in X, such as {i} for its own angular region. 

This section derives constraints on the singletons {i} in Xr that subsequent 
sections exploit to obtain the desired contradiction. We note where the section is 
headed and then show how we get there. 

Several definitions are needed. Let v, and R, be the vertex of {i} and the ray from 
0 through ui respectively. Let i <*j mean that, as we proceed clockwise around 0 
from the nonpositive ordinate, we meet RC before R,. Let S denote a nonempty 
subset of n. We say that S is concave to 0 if R, # R, for distinct i, j E S and, for any 
three i, j, k E S for which i c2 j c2 k, the line segment between 0 and v, does not 
cross over the line segment between vI and vk. (The two line segments can touch if 
1) is on the segment between V~ and vk.) Similarly, S is convex to 0 if all R, for i E S 
are different and i -c? j cz k for i, j, k E S implies that the line segment between 0 
and v, crosses the line segment between vI and v~, or touches that line segment. 
Figure 4 illustrates these definitions. 

A subset S of n is said to be a natural semiset if 

(a) it is either concave to 0 or convex to 0, 
(b) all i E S lie on a less-than-semicircular arc of the perimeter of C (see Section 

2) and 
(c) the clockwise order of the i E S along this arc equals c2 on S or the inverse 

of c2 on S. 

For example, if n = 100 and the v, on the upper left of Figure 4 have indices 89, 93, 
2, 3, 7, 11, 12, 20 in order left to right, then {2, 3, 7, 11, 12, 20, 89, 931 is a natural 
semiset. 

‘ i 

Fig. 4. Sets concave to 0 and convex to 0 
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Finally, a subset S of n is defined to be incZusion u@orm if one of the following 
three things holds: 

(1) for all distinct i,j E S, v, $ {j}; 
(2) for all distinct i, j e S, zj, e {jj; 
(3) either for all distinct i,j E S, i c2j =z. q G {j} and q $ {i}, or for all distinct 

i, j e S, i cz j * ZJ, $ {j} and v, E {i}. 

Figure 5 illustrates these three types of inclusion uniformity. Recall that {i} and {j} 
are being used to denote the angular regions of the named singletons. 

We can now state the main conclusion of this section. 

THEOREM 3. For each positive integer m there is an integer q,(m) such that, for all 
even n > q,(m), an angular representation that is order-isomorphic to the presumed 

(21 v, E {j} 

0 

(31 iq2j * Vi # {j} and VI l t4 

Fig. 5. Three types of inclusion uniformity. 
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angular representation of l-,, + 0 has an inclusion uniform natural semiset S G II with 
ISi 2 rn, 

This is proved in the rest of this section. Its order-isomorphic aspect comes into 
play only if one ray from 0 contains a number of the Us, in which case we reposition 
t$ slightly to ensure a suitably large concave or convex S. The next section uses 
Theorem 3 as the point of departure for the completion of our proof of Theorem 
2. 

To prove Theorem 3 we begin with three lemmas on angular regions for 
singletons. In addition to al and R, as defined earlier, let (!I,, and &, be the clockwise 
angles around Us from the downward vertical at Us to the initial ray of {i} and the 
terminal ray of {i}, respectively. Also let (!I( {ij) be the angle from the initial to 
terminal rays of {i}: see Figure 6. 

LEMMA 5. &, < Q,z for every i E n. 

LEMMA 6. max t&, < min 0,,. 
ZE” LG” 

LEMMA 7. [{i E n: 27, = u}i < 2 for every u E ET?. 

Proof of Lemma 5. tIil # t& since 0 < @(ii}) < 27~. If tIii < t$, then some part of 
the negative ordinate lies outside {i}. This contradicts t$ c {i}. Hence Qzz < Oii. q 

Proof of Lemma 6. Suppose to the contrary that t9,, < t& for some i and j. This 
and Lemma 5 imply &* < 0n < 19~~ < %,,. Let C’ be a circular disk centered at 0 that 

Fig. 6. Angular regions for singletons. 
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contains ZJ,, v, and all crossing points of the rays of {i} and {j}. Then every point 
on the perimeter of C’ that is not in {i} must be in {j}. Moreover, all points nol in 
{i} u {j} lie in C’. Then {& j}, whether this pair is in X, or X2, must cover the entire 
plane to have {i} c {i, j} and {j} c {&j}, i.e., for {i} <,, {&jl and {j} <,, i&j]. 
Since this contradicts 0 < 0 < 27~ for angular regions, we conclude that t&, < on for 
all i and j. IJ 

Proof of Lemma 7. suppose to the contrary that v, = vJ = vk = v for three 
singletons in X,. Assume for definiteness that f& = max{&, t&,, &.}, and that @ri 
or 0,, equals max{O,i, Orj, 6),k 1. Since the three vertices are identical, it follows from 
Lemma 6 that {kJ g {ij u {j]. M oreover, whether {&j] is in Xr or X2, we have 
Ii} LJ {j} s {kj} since {i} c0 {i,j} and {j} <,, {j,j}. Hence {k} & {&j}. This contra- 
dicts {k) w,, {&j} unless th e angular regions of {j?} and {i,j} are identical. But then 
{il c {f?}, contrary to {i} w0 {/c}. 0 

We now use the Ramsey theory results at the end of Section 1 to complete the proof 
of Theorem 3. 

Proof of Theorem 3. Lemma 7 implies that either there are at least n/4 distinct v, 
to the left of the ordinate, or at least n/4 distinct ~1, on or to the right of the 
ordinate. 

Assume for definiteness that the latter region contains n, 2 n/4 distinct v,. Apply 
Lemma 2 to these v~. Given nz as large as we please, it follows with suitably large 
n and hence n, that nz of the n, vz form a convex nz-gon in the right half-plane. Let 
r,, and r, denote the upper and lower rays respectively from 0 tangent to the nz-gon. 
If more than a few ~1, are on ru ur,, move the vertex of r$ downward slightly (do not 
change its rays’ angles) so that the new 0 is properly included in the original 0 and 
each of the new ru and rl contains a single vi from the nz. Then translate aZ1 angular 
regions uniformly upward to reposition the vertex of 0 at 0. After this order- 
isomorphic shift (if needed), each of ru and r[ touches the nz-gon at only one U, of 
the nz. It is then easily seen that the i for the v, on the boundary of the nz-gon from 
rL, counterclockwise to r, form an S, z n that is concave to 0, while the i for the vz 
on the boundary from ru clockwise to r, form an S, s n that is convex to 0. And one 
of these Sr’s has at least nJ2 members. 

Taking the larger of the concave S, and the convex S,, it follows from Lemma 
1 that we obtain a natural semiset Sz z S, with at least rz3 = La/21 members. 
By taking n suitably large, we get n3 as large as we please. 

Let K be the complete graph with n3 points labelled by the i E &. For all distinct 
i,j E S, color edge {i, j} red if V~ $ {j} and t; $ {i}, color edge {& j} green if v, E {j} 
and v, E {i], and color edge {&j} blue otherwise. Fix mO as large as desired. Then, 
with rzs suitably large, Lemma 3 yields a monochromatic complete subgraph K,,,O. 
If its color is red or green, we have an inclusion uniform natural semiset with mO 
elements. 
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Suppose the monochromatic K,,, ~ is blue. For distinct i and j in the corresponding 
mO-point subset of Sz, take i <, j if 27, E {j} and v, F$ {il. Fix m, as large as desired. 
Then, with m,, suitably large, Lemma 4 implies that <, is a linear order on some 
m,-point subset S3 G Sz. Moreover, by Lemma 1, there is an & G S3 with 
lxl> L&m such that <, restricted to Sd coincides with either <? or its dual 
restricted to &. By type (3) inclusion uniformity, ,!$ is an inclusion uniform natural 
semiset of n. 

Finally, with m as in Theorem 3, choose mO suitably large so that LaJ > m 
for the preceding paragraph. Then, by the two preceding paragraphs, some S z n0 
with ISi > m is an inclusion uniform natural semiset when Q is suitably large. 0 

4. Out on a Limb 

This section and the next bring XX into the picture to contradict the supposition 
behind Theorem 3 by proving that m therein is bounded above. In this section we 
establish a bounding result for a certain pattern of singletons and (n - 1)-element 
subsets of n in X,. The next section then uses this to analyze the several types of 
inclusion uniform natural semisets. 

Continuing under the supposition that I” + 0 is an angle order for each even n, 
henceforth let S denote an inclusion un$orm natural semiset of n with m members. 
With no loss of generality take S = {a,, a?, . . . , am} with I < a, -C a* -c. . .-c 
a,,, <n/2 and a, cz<az -c~-.. cz a,,, by the definition of cz early in the preced- 
ing section. 

As before, & E n with ia, - & 1 = n/2. Since the ai E S lie in less than a semicircular 
arc of C, 6L $ S and {& } c no { t[ a,, a,J} in the presumed representation. Here and 
later we use [a, b] to denote the contiguous subset of n clockwise on C’s perimeter 
from a to b inclusive. We continue to let members of X, uX* double for their 
angular regions, but now use 8(i) to denote the angular region for i E X3 in the 
presumed representation of In + 0. For example, with 

A E,, B if neither A c B nor B c A, 

the end of Section 2 gives 

&4) z. {all3 &4) z. {&I 
{j} c &al ) for every j E n\ { al, Al } 

6(aL) c {not i,} 

&a, 1 z. {notj} for every j in\{&}. 

There are two basic ways to position {not aI } relative to {az } when 1 < i -C m : 

way 1: one or both rays of {not al} cross the two-piece linear curve from vO, ~, 
kl va, tcl 00, + ,7 

way 2: the rays of {not at} do not cross the indicated two-piece linear curve. 
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way 1 : one ray of {not Oi} way I: both rays of {not al} 
crosses dashed line cross a doshed line 

way 2 

Fig. 7, Smgletons and (n - 1)-sets. 

These are illustrated in Figure 7. While various mixtures of these ways might occur, 
it is easily seen that only way 2 is possible when type (3) with its nested singleton 
vertices holds for S. 

LEMMA 8. The number of aI E S for which way 2 occurs is bounded above. 

We prove Lemma 8 in the rest of this section by a series of steps that consider 
positions for the angular regions of elements in X. Assuming that way 2 occurs for 
a number of al g S (about 30 will suffice), we eventually arrive at a contradiction. 

Let way 2 hold for a large number of az. Some of the cuts of {at } by {not az } 
could occur on terminal rays of the {a, 1 (bottom part of Figure 7) while others 
occur on initial rays. Take the majority occurrence of these two cases and reduce S 
by retaining only the al thus involved. Let S refer to the reduced set which, like the 
original, is an inclusion uniform natural semiset. 
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big angular 

regions for (n-4) - sets 

{not [oh]} 

ICne segments of rays of singletons 

0 

A 0 

Fig. 8. Way 2 for a succession of singletons. 

Figure 8 illustrates how the (n - l)-sets for S thus reduced penetrate rays of their 
corresponding singletons. Because {a, } c {not uL } when j # i, and each singleton 
ray segment shown extends indefinitely in one direction or the other, the singleton 
ray segments are concave to 0. The angular regions for the singletons lie below 
those ray segments and of course include 0. 

Figure 8 also illustrates {not[a, b]} for u < b in S. Its placement is dictated by 
{u, j c {not[a, b] j c {not a, 1 for u, G S\[Q, b] and a, G [a, b]. Careful viewers will 
note a potential inaccuracy in this part of the figure (if ray segments for singletons 
outside [u, b] extend toward the middle of the figure, the rays of {not[u, b]} must lie 
above them), but such artistic license should not be troublesome. 

The configuration of Figure 8 forces two other things. First, since {jj c d(&) for 
all j $ {G 4 1 along with {q} !zO b(4,) and a(&) c {not u,), the rays of &2,) must 
enclose those of {not uL} and cut the {q} ray segment with vertex beneath that 
segment. Each 6(2,) is big, except possibly for the ones on the ends, and because of 
regions like {not[a, b]}, which bear z0 to &L&), at least one ray of a(&) must cross 
a ray of each {not[q b]} for u <a, <b. 

Second, since each {not [a, b]) must properly include every singleton {hi] 
(& # [a, b] because of the semicircular feature of S), the {&} must lie wholly to the 
right of and/or beneath the rays of the {not[u, b]}. In addition, since {ii} %0 6(&) 
and {&} c d(a,) whenj # i, {&,} must cross a ray of&h,) but cross no rays of the 
other 6(6,). Such crossings could occur on either the upper right or lower left of 
Figure 8. We assume for definiteness that the majority occur on the upper right, 
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discard all u, not thus involved, trim off the last two remaining u, on each end to 
tidy things up, and refer to the set of az that remain as S. The value of m for this 
newly reduced S is no smaller than about l/4 of its original value. 

This brings us to a configuration like the one illustrated in Figure 9. It will be 
noted that the boundary on the upper right formed by the lowest segments of the 
initial rays of the &fi,) bends rightward as we go higher (convex to 0) and that the 
order of the fii as we go up is inverse to the order of the u, ray segments on the 
lower left. 

We consider positions for the {not ai} next. One possibility for {not &} is to have 
it cut inside or near the vertex of {L$} (similar to a way 1 case on Figure 7) with 
rays extending above the other {A,} vertices: see Figure 10. However, this will not 
work, for if the {not h, } are thus positioned, consider Z = {not[ak, ;,]I. Among 
other things (see C on Figure lo), Z includes {hJJ and {&} and is included in {not 

Fig. 9. Positions for a(&,) and {& j. 
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Fig. IO. Disallowed positions for the {not 6,;. 

ak 1 and {not 6, }. Then Z’s terminal ray goes leftward beneath {not ak } like the 
terminal ray of 6(&). Its initial ray must then pass through or to the right of the 
vertices of {not ak} and {not L?,} and through or to the left of the vertices of {c?,} 
and {& 1. But this is impossible since if the initial ray passes to the left of {&} it 
intersects the initial ray of 6(6,) prior to the vertex of {&,I and therefore remains 
above that ray, which implies that it cannot be wholly below the complement of 
{not c?~}. 

We conclude that at most two a, could have {not A,} positioned as in Figure 10, 
and with no real loss in generality assume henceforth that a way 1 position is never 
used for the {not AZ 1. It follows that way 2 must be used for these (n - 1)-sets 
relative to their {&}, either on initial rays (off to the right) or on terminal rays 
(downward). It is easily seen that the first possibility is futile, so we consider {not 
6, } cuts of terminal {&, } rays. 

Figure 11 illustrates the latter situation for a -C b -C c in S. Terminal rays of the 
{ail must be tilted as shown to accommodate penetrations by the corresponding 
{not hi], and the &al), shown with dashed rays, must be positioned in a manner 
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Fig. 11. New positions for the {not L?,} and 6(q). 

similar to the c~(c?~) in the lower left. Each d(q) is included in its {not &I and 
includes all singletons except {fiI 1 and {q }. 

Figure 11 does not show crossings of the {q} with their 6(q). Such a crossing 
might occur in one of three ways: 

1. the left ray segments of the terminal rays of the {&z} are positioned down 
below what is now shown on Figure 11; the {not &} and @al) penetrations are 
down there also and their rays extend leftward as before; the initial (upper) 
ray of d(q) is cut by a ray of {q}; 

2. the left ray segments of the terminal rays of the {&} are up to the right, 
somewhat as shown in Figure 11; the terminal (lower) ray of a(q) is cut by the 
terminal ray of {q}, which goes leftward from the vertex of {Us}; that vertex 
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is on a leftward extension of the {q} segment (shown in the figure) which is 
on the initial ray of {q}; 

3. a picture like Figure 11 applies with an initial ray for {q} cutting upward 
between the vertices of {not L&I and L?(q). 

It is easily checked that the first two of these three ways are infeasible: we omit the 
details. (At most one u[ can be handled by those ways.) 

This leaves the third way, which is shown in Figure 12 after re-positioning 
regions slightly from Figure 11. The initial rays of {u 1, {b) and {c} are dashed. The 
middle one, for {b}, cuts between the vertices of {not 6} and 6(b), and is to the 
right of 6(u), {not L?}, 6(c) and {not ?} for the necessary inclusions. The terminal 
rays of {u], [b} and {c} are extensions of our original segments on the lower left. 

Fig. 12. Preparation for a contradiction. 
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Because of the relative slopes of those segments and the dashed initial rays, the 
vertices of {a}, {f~} and { c must have the pattern illustrated on Figure 12. } 

We conclude the proof of Lemma 8 by showing that it is impossible to position 
{a, c} from X2 in the necessary way when a picture like Figure 12 obtains. Since 
{a, C} includes {u} and {c} it must be a big angular region whose rays are above 
and to the left of those of {a} and {c}. And {CZ, cj must cut {!I}, {6}, {;I and {6} 
as well as all other singletons besides {~j and [cl. This forces the vertex of {u, cl 
into either the little triangular area beneath b on the lower left or into the dashed 
triangular area that contains the vertex of 8(b). 

Suppose {a, c} cuts [b) at the little triangular area below b. Then the initial ray 
of {a, cl goes upward at a slope at least as great as the slope of {c}‘s initial 

Fig 13. The contradiction. 
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(dashed) ray. But since the slope of {c}‘s initial ray exceeds the slope of {g}‘s 
terminal ray, we get {g} c {a, c} for a contradiction. 

We are therefore forced to put the vertex of {a, cl near to the vertex of d(b). With 
slight changes in the initial rays of {CZ} and {c}, this can be done satisfactorily in a 
picture like Figure 12. However, it cannot be done satisfactorily if we consider 
another u, from S that precedes Q (a, c CZ), and such q’s are available when a, b and 
c are chosen initially above the first few members of S. Figure 13 shows what 
happens with this addition. The initial ray of {CZ} cuts C?(Q) and goes to the right of 
&aC); the terminal ray of {h,}, coming down from the top right, goes to the right 
of C?(U) and cuts b(q). Hence the initial ray of {u} lies to the left of the terminal ray 
of {&} from somewhere below the vertex of a(u) upward. But then an otherwise 
feasible position for the vertex of {u, c} near the vertex of 6(b) forces {&} c {u, c} 
for our final contradiction. 

5. More Bounds 

We conclude the proof of Theorem 2 and the desired contradiction to the 
supposition behind Theorem 3 by considering inclusion types of natural semisets as 
defined prior to Theorem 3. 

LEMMA 9. The number of elements in u type (2) or type (3) inchaion un@rm 
nuturul semiset S is bounded ubove. 

ProoJ It was already noted (and is obvious) that a type (3) S can have only way 
2 placements of {not q } relative to the singletons. The same thing is easily seen for 
a type (2) S, whether concave to 0 or convex to 0, in view of Lemma 6 and 
{q } c {not u, } for j # i. Lemma 8 completes the proof. 0 

We now consider type (1) inclusion uniformity, first with S concave to 0 and then 
with S convex to 0. 

LEMMA 10. The number of elements in u type (1) inclusion un$orm semiset S thut 
is concuve to 0 is bounded ubove. 

ProoJ Suppose to the contrary, and let m = IS’ be large relative to the upper 
bound on way 2 for Lemma 8. We can then assume that way 1 obtains for all {not 
uz } versus the {Us } since the few u, that exhibit way 2 can be deleted from S without 
changing its status as a type (1) inclusion uniform natural semiset. 

Figure 14 illustrates S concave to 0 with way 1 penetrations of the {q} by the 
[not Us }. We show seven consecutive u, from S, the middle five of which are denoted 
by u through e. The position of {not[u, e]} is prescribed by its inclusion in each of 
{not u} through {not e} and its inclusion of the singletons other than {u} through 
{el. Other {not[q, uJ]} have similar positions. 

Possible positions for the {& 1 and the c?(&~) are dictated by considerations similar 
to those for Figure 9. Since {&, j c {not[u,, Us]} for all u, c Us in S, the {& 1 must lie 
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A @ is down below3 

Fig. 14. S concave to 0, type (1) inclusion uniformity, way 1 for {q} versus {not q}, 

below the rays of regions like {not[u, e]]. &(c?,) is included in {not ql, includes al1 
singletons other than {q} and {il}, and cuts these two. One might imagine 6(q) 
down on the lower right as a big region whose vertex cuts the initial ray of {u,}, 
with ray tiltings of other {uJ j to accommodate a number of 6(uI) in this fashion, but 
this is infeasible since then there would be points in 6(q) [in the complement of 
{not Us) up top] that are not in {not Ui}. Hence each 6(q) must be a big region 
whose rays go upward outside the rays of {q } and which does not cut any {a,} for 
j # i. Moreover, because c!~(u,) cannot properly include {&}, either its vertex must 
cut below rays of all {not[u,, ~~11, or else one or the rays of d(q) must cross under 
the rays of the {not[+ qJ} off to the right or the left. Since m is supposed to be 
large, one of these possibilities must occur in profusion. We consider them further 
in detail. 

Suppose a large number of &ii) vertices go below the {not[u,, uJ} in the manner 
of a(&) on Figure 14, and that @ai) z,, {dij is satisfied by {& 1 cutting c?(&,) near 
its vertex. Then all cuts of the {&} by their {not &} occur off to the right or off to 
the left outside the region taken up by the {ui}. Assume for definiteness that the 
majority of the latter cuts occur off to the right. If enough of the vertices of the {Zi} 
thus involved are not also off to the right, then a way 2 pattern occurs for these {$,} 
versus their {not 6,} and we get a contradiction by the proof of Lemma 8. We 
therefore assume that the {& } vertices are off to the right in a way that allows way 
I penetrations of the {&I by their {not &J. The two general patterns that could 
obtain are shown in Figure 15. 

The lower pattern in Figure 15 with big {&, 1 forces way 2 (cf. the proof of 
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have wciy 2 

Fig. 15. Crossings of a(&) and {tz} beneath {q } vertices. 

Lemma 9) for the {not & } penetrations, so we focus on the upper pattern. As 
drawn, it is easily checked that there is no feasible way to position the d(q) regions. 
For upper-pattern feasibility we need to have the vertices of the {&} going upward 
to the right, as shown in Figure 16, and necessarily convex to 0. The problem in this 
case is similar to the problem of Figure 10: Z = {not[d, b]}, which includes {a}, {b}, 
{c}, {6}, {t} ad {g}, and is included in {not u} and {not c?}, has no feasible 
position. For example, to include {c} and be included in {not d}, its terminal ray 
goes beneath the vertex of {not d} and moves off to the left above the vertices of 
{c), {b}, . . . . Its initial ray then must go up to the right above the vertices of {a}, 
{C} and {gl and in the process cross the initial ray of d(b) before the vertex of {G} 
and remain above that ray thereafter. But then the initial ray of Z cannot have the 
complement of {not G} wholly above it, for a contradiction. 

We conclude that, with m suitably large, most of the crossings for a(&) z0 {St} 
occur on the upper right or upper left of Figure 14. With no loss of generality (or 
take the majority case) we assume that those crossings occur off to the right. This 
gives a picture like Figure 9 viewed from the lower right corner with the obvious 
difference for the already positioned singletons in the lower left part. By tracing the 
proof of Lemma 8 from its first mention of Figure 9 through Figure 11, it is easily 
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Fig. 16. Preparation for another contradiction. 

checked that we arrive at a configuration like Figure 11. But then we have a way 
2 situation with the {&} and their {not &}, and this is precisely the situation limited 
by Lemma 8. Hence I,‘31 for Lemma 10 is bounded above. cl 

We conclude with the final possibility. 

LEMMA 11. The number of elements in a type (I) inclusion unt~orm natural semiset 
S that is convex to 0 is bounded above. 

ProoJ Suppose to the contrary. In this case the value of m = is/ must be 
somewhat larger than in the proof of Lemma 10 for reasons explained shortly. 

Much of the analysis for s convex to 0 is similar to the analysis for Lemma 10. 
This is true in particular if the vertices of the @Z,) lie near the vertices of the {ai]. 
Then, even though the concave pattern of Figure 14, or the lower left part of Figure 
10, or the dashed-line part of Figure 16 is convex rather than concave, the 
contradictions obtained previously still apply. For example, a concave to convex 
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change in the dashed-line pattern of Figure 16 does not avoid the problem of 
placing Z described in the penultimate paragraph of the preceding proof. We omit 
repetitious details of this part of the proof of Lemma 11. 

There is, however, an alternative in placing the 8(&) for type (1) when S is 
convex to 0 that is unavailable when S is concave to 0. This consists of having 
one ray of 8(&) pass beneath the rays of {not a, } while cutting through the peak 
of {a, } and passing above all other {a, }. This then leaves the vertices of the a(&) 
free to be placed off to the left or the right, with latitude for the positions of the 
other rays. In fact, because of the need for the {not[u,, u,J} to include the {&} and 
the need for a(&) to cut {&}, the J(&) must be patterned to accommodate the 

Pl~3 which in turn must not penetrate the complements of the {not[u,, Us]} 
regions. Figure 17 shows one way to do this. Here the d(Al) bend down to the 
right, but they could also bend up to the right. We do not illustrate the latter case 
on Figure 17 but remark that its analysis is similar to what follows. 

Figure 17 is drawn to suggest that it can accommodate most of the regions 
considered earlier. Each {not[u,, u,]) on the upper left has terminal ray above 
{Us - ,} and beneath {not Us }, . . . , {not u,}, then its initial ray cuts upward: the 
heavy lines there indicate that all singletons not in the Us part of C must be to the 
right of those lines. A pattern symmetric to this is shown on the upper right for 
the &. The position of &u~) is similar to &fi,), except that &u,) cuts {not u1 } and 
goes under the rays and vertex of {not 4,} instead of the other way around. It is 
easily checked that {u,, 2, } in X2 cannot be little (else it will include unwanted 
singletons) and that these X2 regions can only be accommodated by the crossing 
pattern in the lower part of the figure formed from initial rays of the {uj} and 
terminal rays of the {iI}. We could take the vertex of {Us, 2,) as the intersection 
point of r,({u,}) and r2({iJ]) with rays coincident with those rays but in the 
opposite directions, The position of {u,, 2,} could differ slightly from this, but it 
must cut rays of all other singletons and be a big region with vertex down in the 
crossing area and upward rays: see {b, t}. Figure 17 also accommodates X2 from 
the same side as well as Z regions used for previous contradictions. 

Since Figure 17 or a similar diagram does not appear to give an easy contra- 
diction, we extend our analysis. Nothing said earlier forces S’s points to lie on 
nearly a semicircular arc of C. Indeed, with another division by 2 in Section 3, 
we can assume that S involves less than a quarter of C’s perimeter. This is 
pictured in Figure 18 where, with p = b( {Us, hi }) as in Section 2, we draw 
dashed lines parallel to the rays of /? and consider the arc of C between them in 
the direction of b’s vertex. Assuming as before that &, is very small and the 
vertices of the y(i) are just barely outside of C, it follows that all /r e n on that 
arc between its end points from n satisfy /3({um, ai}) c Y(U) or, in terms of 
continuing notation, that 

I%,> ii,} cz cqls). 

One such d(h) is pictured on Figure 17. 
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Fig. 17. Approximately feasible positions. 

Our analysis for Figure 17 and the fact that all {uz } and {& } are included in d(A) 
implies that it is a big angular region above the r,( {q}) and the r2({hl}) and that 
its rays are as close to the vertical as the rays of {am, S,}, which in turn are at least 
as steep as r,({um}), the rightmost rl ray on the left, and r2({Lil]), the leftmost r2 
ray on the right. But then the rays of 6(/z) are steeper than those of {u2, S,,-, }, thus 
forcing {uz, & - r } c d(h). However, this is a contradiction since fl({q, & - ,}) has 
its vertex on the opposite side of C from b( {Us, 4, }) where, as seen on Figure 18, 
kt-2 kW PU4.4 ~ l 1) 5f 74~1. 0 
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