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ON-LINE GRAPH COLORING

H. A. KIERSTEADt and W. T. TROTTER{

Abstract. We survey recent results concerning on-line graph coloring and announce the fol-
lowing Theorem: For every radius two tree T, the class Forb(T') of graphs which do not induce T is
on-line x-bounded. In particular, the class of co-comparability graphs is on-line x-bounded.
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1. Introduction. In this article we report on recent results concerning on-line
graph coloring and suggest a few interesting problems for future research. An on-fine
graph is a structure G< = (V, E, <), where G = (V, E) is a graph and < is a linear
ordering of V. We say that G< is an on-line presentation of G. We shall always
assume that V = {v1,...,v,}, where v; < v; if and only if ¢ < j. In particular, G<
has n = n(G) vertices. Then we let V; = {v; : j < i} and GF = G<[V}], the on-line
subgraph of G< induced by V;. If two vertices v and w are adjacent in G, we write
v ~ w. The neighborhood of a vertex vin Gis N(v) = Ng(v) = {w € V : v~ w}. An
algorithm for coloring the vertices of an on-line graph G< is said to be on-line if the
color of a vertex v; is determined solely by G. Intuitively, the algorithm colors the
vertices of G< one at a time in the externally determined order vy, ... ,v,, and at the
time a color is irrevocably assigned to the vertex v;, the algorithm can only see Gf.
A simple, but important example of an on-line algorithm is the algorithm First-Fit,
which colors the vertices of G with an initial sequence of the colors {1,2,...,} by
assigning to the vertex v; the least possible color which is not assigned to any vertex
of V;_.1 adjacent to v;.

The cligue number and chromatic number of G are denoted by w(G) and x(G),
respectively. For an on-line algorithm A and an on-line graph G<, let xa(G<) denote
the number of colors A uses to color G<. The performance function ¢a(k,n/T) of
A over a class of graphs I' is defined for integers k£ and n to be the maximum of
xa(G<) over all on-line presentations of k-colorable graphs G € T on n vertices. Note
that ¢(k,n/T") is an increasing function; we denote the limit as n goes to infinity
of ¢a(k,n/T') by éa(k/T). When T is the class of all graphs, we may simply write
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86 H. A. KIERSTEAD AND W. T. TROTTER

#a(k,n). The following elementary theorem, originally phrased in terms of recursive
functions, shows that the performance of an on-line coloring algorithm for an arbitrary
graph G cannot be bounded above solely in terms of x(G).

THEOREM 1.1. Bean[l]. For every on-line algorithm A and inlegert, there exists
an on-line tree T< such that ya(T<) >t. Moreover, T< has only 2 vertices.

The tree is constructed using a simplification of the Zykov [32] construction of
triangle-free t-critical graphs. Arguing inductively, one constructs disjoint on-line trees
T<,fori=1,...,t—1, so that T:< has 2¢ vertices and the algorithm is forced to use
i colors on 7.<. Then it is possible to choose a vertex x; in T;< so that each z;,
i=1,...,t—1, has a distinct color. The final vertex vy is played adjacent to each
z; and must receive the ¢-th color.

The situation is even worse for First-Fit. Let B; be the graph formed from the
complete bipartite graph K;; by removing a perfect matching M;. Then B; has 2¢
vertices, but the on-line presentation By of B;, where the pairs of vertices matched
in M; are ordered consecutively, forces First-Fit to use ¢ colors.

In §2 we consider the performance function of on-line coloring algorithms for
general graphs. In §3 we consider special classes of graphs for which there exist on-
line algorithms whose performance can be bounded solely in terms of clique size. In §4
we consider even more special classes of graphs for which the performance of First-Fit
can be bounded solely in terms of clique size.

2. Performance bounds for general graphs.

Our first theorem, when combined with Theorem 1.1, shows that ¢(2,n) =
6(logn).

THEOREM 2.1. Lovdsz, Saks and Trotter[25]. There exists an on-line algorithm
A such that for every on-line 2-colorable graph G< on n vertices, xa(G<) < 2lg n.

When a new point v; is considered there is a unique partition (I1,I5) of the
component of v; in G into independent sets with v; € I;. The algorithm A assigns
v; the least color not assigned to any vertex of I. Observe that if A assigns v; color
k + 2, then A must have already assigned k + 1 to some vertex of I; and k to some
vertex v, € Ip. Thus, A must have assigned k to some vertex z, € I1. Since A
assigned v, and v, the same color, v, and v, are in separate components of G5, where
r = max{p,¢}. Thus, by induction, each of these components must have size ok/2
and thus i > 2(2%/2) = 2(k+2)/2,

Vishwanathan improved the technique used to prove Theorem 1.1 in order to
show that ¢(k,n) = Q(lg¥~1n), for fixed &.

THEOREM 2.2. Vishwanathan[30]. For every on-line algorithm A and all integers
k and n, there ezists an on-line graph G< on n vertices such that x(G<) < k and

(lgn/(4k))* =1 < xa(G<).

For a fixed algorithm, the on-line graph G< is constructed using a primary in- -

duction on k and a secondary induction on n. The key idea is to maintain the strong
induction hypothesis that A can be forced to use (Ign/(4k))*~! colors on one part of
some partition of G< into k independent sets. Then the primary induction hypothesis
can be used to attach a & — 1 colorable graph to this part so that many new colors
mst be used. Some additional care must be taken to maintain the strong induction
hypothesis.
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Using an elegant construction, Szegedy proved:

THEOREM 2.3. Szegedy[28]. For every on-line algorithm A and integer k, there
ezists an on-line graph G< on n vertices such that x(G<) < k, n < k2%, and xa(G<) >
2F — 1.

The only positive result for all k-colorable graphs, with & > 3, is due to Lovasz,
Saks, and Trotter. They prove that ¢(k,n) is sublinear in n. Here 1g(¥) denotes 1g
iterated k times.

THEOREM 2.4. Lovdsz, Saks and Trotter[25]. There exists an on-line algorithm A
such that for every k-colorable on-line graph G< on n wvertices, xa(G<) =
O(n 1g?*=3n/1f2*=Dn).  Moreover, there exists an on-line algorithm B such that
for every integer k and every on-line k-colorable graph G< on n wertices, xg(G<) <
(kn/log" n)(1 + o(1)).

We give an overview of the algorithm when k& = 3. The algorithm follows the First-
Fit rule as long as this results in an assignment of a color at most ¢ = 100 loglog n.
Let X denote the remaining vertices. Then each v € X has in its neighborhood a
subset consisting of one vertex from each of the first ¢ color classes. Define a sequence
a1 = l,ag,a3,... by @31 = (;)?/2. The set X is partitioned on-line into subsets
X1,X3,X3,... so that if | X;| > s, then the vertices in X; have at least a,t common
neighbors. Subject to this restriction, the new vertex is added to the largest possible
subset. If it cannot be added to any of the existing nonempty sets in the partition,
then it is added to the partition as a singleton. Each set in the partition is 2-colorable
and has its own color set which consists of at most 21g|X;| colors. Some details remain.
First, the number of sets of size s has to be bounded. This is done automatically by the
partitioning scheme when s is small. When s is large, a simple pigeon-hole argument
works. Finally, the total number of colors has to be counted.

The results presented above leave the following problem on which there is con-
siderable room for progress.

PROBLEM 2.5. For fixed k, close the gap between ¢(k,n) = Q((lgn/(4k))*-1)
and ¢(k,n) = O(nlg(®*~3)n /1g(2k-9),

Vishwanathan has obtained interesting results using randomized on-line algo-
rithms.

THEOREM 2.6. Vishwanathan[30]. There exists a randomized on-line algorithm
A such that for every k-colorable on-line graph G< on n vertices, the ezpected value
of xa(G<) = O(k25nk=2/(E=-1)(1gn)/(E=1) " Moreover, for any randomized on-line
algorithm B, there ezisis a k-colorable on-line graph G< on n vertices such that the
ezpected value of xg(G<) = Q(1/(k — 1)(Ig n/(12(k + 1)) + 1)¥-1).

We comment that the algorithm A in Theorem 2.6 runs in polynomial time and
compares well with the best off-line polynomial time approximation algorithms for
graph coloring.

3. On-line y-bounded classes.

In this section we consider classes of graphs I', for which there exists an on-line
algorithm A such that ¢a(&/T) is finite for all k. More precisely, we say that I' is on-
line x-bounded if and only if there exists an on-line algorithm A and a function g(k),
called a x-binding function, such that xa(G<) < g(w(G)), for any on-line presentation
G< of any G € T. Similarly, ' is x-bounded if there exists a function f(k) such that
x(G) < f(w(G)), for all G€T.
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The results of this section have their roots in the authors’ previous work in re-
cursive combinatorics and a beautiful graph theoretical conjecture formulated inde-
pendently by Gyarfis and Sumner. The problems the authors considered in recursive
combinatorics can be very roughly described as follows. Given a countably infinite
graph G, design an algorithm to color each vertex v of G using only certain types of
local information (in particular, only finitely much information) about . Depending
on the amount of information allowed, in increasing order, the graphs may be recur-
sive, highly recursive, or decidable. Generally, results about coloring recursive graphs,
such as Bean [1], Kierstead [13], and Kierstead and Trotter[23] translate immediately
to on-line results, while results on highly recursive or decidable graphs such as Kier-
stead[14], [15], Manaster and Rosenstein[12], and Schmerl[27] do not. The starting
point for the work of this section is the following theorem. The notion of an on-line
ordered set is analogous to that of an on-line graph.

THEOREM 3.1. Kierstead[13]. There exists an on-line algorithm A which will
pariition any on-line ordered set of width at most w into (6% — 1)/4 chains.

Here we use < to denote the partial order while the linear order which specifies
the order in which the points are presented is L. Theorem 3.1 is proved by induction
on w. The algorithm A first partitions the on-line ordered set PL = (X, <)Y into
two parts C and X*, where C is a maximal chain. Then an auxiliary on-line ordered
set P*L = (X*,<*)* is defined (on-line) so that the width of P*L is at most w — 1,
and each <* chain can be partitioned on-line into five <-chains. By induction PL
can be covered on-line by 5(5¢~1 — 1)/4 + 1 = (5% — 1)/4 <-chains. However, the
implementation of this strategy is quite complex.

Theorem 3.1 led to many new questions. One obvious problem has remained
unanswered and appears to be very difficult.

PRrOBLEM 3.2. Is there an on-line algorithm which will partition any on-line
ordered set of width at most w into p(w) chains for some polynomial p?

Kierstead showed that the lower bound is non-linear and Szemerédi and Trotter
showed that it is at least quadratic. Schmerl asked whether the order relation is
necessary or is it the case that there is an on-line algorithm which partitions every on-
line comparability graph G into a number of complete subgraphs bounded as a function
of the independence number of G. This is equivalent to asking whether the class of
co-comparability graphs is on-line y-bounded. The problem is that Kierstead’s chain
covering algorithm makes use of the order relation between two comparable points
when deciding how to “color” them. We shall see later that Schmerl’s question has
an affirmative answer. It is also natural to look for other classes of x-bounded graphs
and orders. Interval graphs are the co-comparability graphs of interval orders, and for
this class of graphs, it is possible to obtain an exact answer.

THEOREM 3.3. Kierstead and Trotter[23]. There is an on-line coloring algo-
rithm which will color any on-line interval graph G< with at most 3w(G<) —2 colors.
Moreover, no on-line algorithm can do better.

Arguing by induction on w, one shows that G< can be partitioned on-line (just
be greedy) into a maximal graph G*< with clique size w — 1 and a graph H< with
maximum degree 2. Thus G can be colored on-line using 3(w — 1) — 2 + 3 colors.

Next, we introduce the Gyarfis-Sumner Conjecture. For a graph H, let Forb(H)
be the class of all graphs which do not contain an induced copy of H. Similarly,
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Forb(Hj, ..., H;) is the class of graphs which do not contain an induced copy of any
of the graphs Hy,..., H:.

CONJECTURE 3.4. Gydrfds[6] and Sumner[29]. If T is a tree, then the class
Forb(T) is x-bounded.

Erdds and Hajnal [4] have shown that there exist graphs with both arbitrarily
large girth and arbitrarily large chromatic number. Thus, if Forb(H) is x-bounded,
H must be acyclic. It is also not difficult to show that for a forest F', Forb(F) is
x-bounded if and only if Forb(T") is x-bounded, for each connected component (tree)
of F. Thus, if true, the conjecture gives a characterization of those graphs H such
that Forb(H) is x-bounded. Gyérfas[7] showed that the conjecture is true for paths
P, and a class of trees called brooms, which are paths to which extra leaves have been
added to one end. Arguing by induction on both w and n, one shows that if G has
huge chromatic number, then either the neighborhood N of some vertex has large
chromatic number (note w(N) < w(G)), or every vertex of G is the first point of an
induced P,. Gyarfas, Szemerédi and Tuza[l11] used a much more difficult argument
to prove that Forb(T, K3) is x-bounded, for every tree 7" with radius at most two.
Kierstead and Penrice[19] introduced a new technique, which could be used with the
Gyéarfas, Szemerédi, Tuza argument to show that Forb(T) is x-bounded for trees with

radius at most two.

Recently, Gyérfds and Lehel proved:

THEOREM 3.5. Gydrfds and Lehel[10]. Forb(Ps) is on-line x-bounded, but Forb(Ps)
is not on-line y-bounded. In fact, for any on-line algorithm R, there exists a 2-colorable
on-line graph G< such that xa(G<) > lgn.

The construction of G< is essentially the same as the construction for the proof
of Theorem 1.1. The only difference is that the subgraphs T;< are only assumed to be
bipartite, and the last point v, is adjacent to every point in one of the parts of each
TS,

By Theorem 3.5, if T is a tree with radius greater than two, Forb(7') is not on-
line x-bounded. However, Penrice [26] discovered that several radius two trees, more
complicated than paths, were on-line y-bounded. After developing a large catalog
of techniques for dealing with special cases, Kierstead, Penrice and Trotter have just
proved:

THEOREM 3.6. Kierstead, Penrice and Trotter[22]. For any tree T, Forb(T) is
on-line y-bounded if and only if T has radius at most two.

The proof builds on the Kierstead-Penrice proof of the off-line case, but requires
many new structural techniques to produce an on-line algorithm. Gyéarfas pointed out
that the subdivision SK; 3 of K13, shown below, is a radius two tree, which is not
induced by any co-comparability graph. Thus, Schmerl’s question is answered with
the following corollary.

SK

CoOROLLARY 3.7. The class of co-comparability graphs is on-line x-bounded.

It is worth noting that the proof of Theorem 3.6, even when restricted to SKj 3,
has nothing to do with the proof of Theorem 3.1. It also yields much worse bounds.
Thus, Problem 3.2 remains interesting.

1,3
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4. First-fit y-bounded classes.

In this section we consider classes of graphs T, for which ¢pr(k/T') is finite for all
k. We say that T is First-Fit x-bounded if there exists a function g(k) such that for
every G € T, xrr(G<) < g(w(G)), for all on-line presentations G< of G. Tt follows
immediately from Ramsey’s theorem that Forb(S) is First-Fit x-bounded, for any star
S. By Chvatal’s theorem [2] on perfectly orderable graphs, Forb(Py) is First-Fit x-
bounded. Gyarfés and Lehel noted that (1) there is an on-line presentation BS of B,
such that xpp(B;) =t and (2) B; € Forb(K; U K; U K3). Thus we have:

THEOREM 4.1. Gydrfds and Lehel[10]. If T is a tree such that K; UKy UK, s
an induced subgraph of T, then Forb(T) is not First-Fit x-bounded.

The only trees in Forb(K; U K; U K3) are stars and subpaths of Ps. This led
Gyérfas and Lehel to ask whether Forb(Ps) is First-Fit x-bounded. Kierstead, Penrice,
and Trotter answered this question affirmatively:

THEOREM 4.2. Kierstead, Penrice and Trotterf21]. The class Forb(Ps) is First-
Fit x-bounded, and thus, for any tree T', Forb(T) is First-Fit x-bounded if and only if
T does not contain K1 U K1 U Ky as an induced subgraph.

The proof of Theorem 3.6 uses the following theorem, whose off-line version is
also used to prove the off-line version of Theorem 3.6.

THEOREM 4.3. Kierstead, Penrice and Trotter[22]. For every tree T and com-
plete bipartite graph K ;, Forb(T, Ky) is First-Fit x-bounded.

While this is an interesting and useful theorem, it does not tell us, if or why,
xrr(G<) is large for some on-line presentation G< of a graph G € Forb(T) —
Forb(T, Ki;). Let Ps; be the tree obtained by adding a leaf to the middle vertex
of Ps, and let Dy, be the tree obtained by adding k — 1 leaves to each of the second and
third vertices of Ps. Recall that xpp(B) = ¢, for obvious reasons. Thus, if xpr(G<)
is huge for some G € Forb(T'), the following satisfying theorem provides a certificate
for the fact that xpp(G<) is large, in the special case that T = Ps ; or Dy.

THEOREM 4.4. Kierstead, Penrice and Trotter[22]. The classes Forb(Ps 1) and
Forb(Dy, By) are on-line x-bounded.

The proofs of both statements use Ramsey theory. In particular, the proof of
the first statement uses a so called “good” Ramsey theorem. The proof of the second
part of Theorem 3.5 actually shows that Forb(Ps, Bs) is not on-line x-bounded. Thus,
Theorem 4.4 cannot be extended to any tree of radius greater than two. Unfortu-
nately, there is a worse counter example. Kierstead[13] showed (using vastly different
language) that co-comparability graphs are not First-Fit y-bounded. Since all co-
comparability graphs are contained in Forb(SKs, Bs), Forb(5K3, Bs) is not First-Fit
x-bounded. However, the following may be true.

CONJECTURE 4.5. There ezisis a function g(k) such that if xpr(G<) > g(k),
then G contains an induced bipartite subgraph H such that xpp(H<) > k.

There are other interesting classes of graphs which are First-Fit y-bounded.
Woodall[31] showed that the class of interval graphs is First-Fit y-bounded, with
a quadratic binding function. Woodall, and independently Chrobak and Slusarek[3],
asked whether xpp was linear on this class.

THEOREM 4.6. Kierstead[16] If G is an interval graph, then xrr(G<) < 40w(G),
for every on-line presentation G< of G.

Both Woodall and Chrobak/Slusarek had observed that there is a polynomial time
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approximation algorithm for Dynamic Storage Allocation (DSA), whose performance
ratio is at most 2¢(k/T)/k, where T is the class of interval graphs. Thus, Theorem
4.6 shows that there is a polynomial time approximation algorithm for DSA with
a constant performance ratio of 80. Recently Kierstead and Qin[18] improved the
constant in Theorem 4.6 to 25.8. Kierstead[17] presented an improved polynomial time
approximation algorithm for DSA by replacing First-Fit in the previous algorithm by
a modified version of the on-line algorithm used to prove Theorem 3.2.

THEOREM 4.7. Kiersteadf17] There is a polynomial time approzimation algo-
rithm for Dynamic Storage Allocation with a constant performance ratio of six.

The relationship between on-line algorithms and polynomial time approximation
algorithms is one which should be explored further. In the case of Dynamic Storage
Allocation, there are two natural, but possibly conflicting, orders in which one would
like to consider the data. The first is by decreasing size of the given objects; the second
is by the start times for the objects. Very roughly speaking, the algorithm compromises
by using an on-line algorithm to color the storage intervals of the objects presented in
decreasing order of size.

Since every tree is a comparability graph, Theorem 1.1 implies that the class of
comparability graphs is not on-line x-bounded, and, in particular, is not First-Fit
y-bounded. However, we do have the following theorem.

THEOREM 4.8. Let I be the class of comparability graphs of interval orders. Then
érr(k/T) = 2k — 1 < ¢a(k/T), for any on-line algorithm A.
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