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Abstract. Let r be a positive integer. Consider r-regular graphs in which no induced subgraph on
four vertices is an independent pair of edges. The number v of vertices in such a graph does not
exceed 5r/2; this proves a conjecture of Bermond. More generally, it is conjectured that if v > 2r,
then the ratio v/r must be a rational number of the form 2 + 1/(2k). This is proved for v/r > 4i.
The extremal graphs and many other classes of these graphs are described and characterized.

1. Introduction

A graph G is H-free if it has no copy of H as an induced subgraph, where H is a
fixed graph. We say that an H-free graph avoids H. Let 2K, be the 4-vertex graph
consisting of two non-incident edges. We consider the class G, of all r-regular
2K ,-free graphs. We refer to a graph in G, as a G,-graph (or a graphin G = ( G,
as a G-graph). Our interest in G-graphs arose from a design problem for inter-
connection networks: maximize the number of vertices in a hypergraph of diameter
2 in which every edge has size r and every vertex has degree 2 (the edges and vertices
of the hypergraph become the vertices and edges of the derived G,-graph). We refer
the reader to the survey paper [1] for a discussion of problems of similar type and
an extensive bibliography. The more recent article [2] also explains the origin of
the problem.

There are two ways to view this problem: extremally and structurally. When H
is forbidden to occur as any subgraph of an n-vertex graph (not only as an induced
subgraph), the problem of maximizing the number of edges is a classical problem
of extremal graph theory. The appropriate analogue for H-free graphs is to maxi-
mize the number of edges in a connected H-free graph subject to a bound on the
maximum degree, since when H is not complete a complete graph is H-free. This
general problem is shown in [4] to be nontrivial precisely when H is a disjoint
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union of paths. It is solved there for the 4-vertex path, and it is solved in {3] for
H =2K,.

The structural motivation carries on a long tradition of characterizing graphs
with various forbidden subgraphs or forbidden induced subgraphs; here we add the
requirement of regularity. The reason for requiring the number of vertices to exceed
twice the degree is that smaller graphs are relatively dense and likely to avoid 2K ,.
When the number of vertices exceeds 2r, many structural properties emerge and
restrict the possibilities for G-graphs, so that we may hope to characterize these.
This structural investigation arose from our examination of the following extremal
conjecture of J.-C. Bermond:

Conjecture 0. A G,-graph has at most 5r/2 vertices.

Our paper begins with a short proof of this conjecture. During the three-year
period in which this paper was being refereed, a stronger and more difficult resuit
was proved by Chung, Gyarfas, Tuza, and Trotter [3]; a 2K,-free graph with
maximum degree at most r has at most 5r2/4 edges. Hence the main focus of our
paper is the structure of G-graphs, including partial proofs of the stronger conjec-
tures given below. We will completely describe all G,-graphs with at least 21r/10
vertices. Conjecture O follows from the initial steps in this direction; meanwhile, the
known examples of G,-graphs suggest a stronger conjecture:

Conjecture 1. If G is a G,-graph on v vertices, then r is even and v/r is a rational
number of the form 2 + 1/(2k).

The following construction by R.L. Graham provides G-graphs with the ratios
vfr =2 + 1/(2k).

Example 1. Let k > 1. Define a graph G, on 4k + 1 vertices as follows. The vertices
of G, are the integers 0, 1, ..., 4k, space equally around a circle. A vertex i is joined
to each of the 2k vertices at distance more than k from it around the circle; i.e., i, j
are neighbors when |i — j| > kmod(4k + 1). Suppose a, b, ¢, d (in that cyclic order)
induce 2K, in G,. A short case argument shows that the edges must be ac and bd
(crossing), but then the 4 non-edges require the cyclic traversal of a, b, ¢, d to cover
4k + 1 positions by traversing at most k positions in each of 4 steps. Hence G, is a
G,,-graph, and v/r = 2 + 1/(2k). Note that G, is the 5-cycle Cs. |

The next construction is an easy way to generate additional G-graphs.

Example 2. Let G be a G,-graph on v vertices. Given p > 1, let G” denote the graph
obtained by replacing each vertex x in G by a set I(x) of p independent vertices. An
edge xy in G becomes a complete bipartite graph with partite sets I(x) and I(y)in G?.
Being pr-regular and 2K,-free, G? is a G ,-graph. Since G” has vp vertices, the
vertex/ degree ratio is the same for G as for G. We call G* the p-fold expansion of
G. This is a special case of what is commonly called the lexicographic product G[H],
in which each vertex of G is expanded into a copy of H; here H is an independent
set of size p. O

Ideally, we would like to characterize G-graphs by providing a finite collection
of “primitive” classes of G-graphs from which all G-graphs can be built using a
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collection of operations such as expansion. We will present several such classes and
another operation for building G-graphs from smaller ones. The variety of G-
graphs is surprisingly rich. Nevertheless, all evidence presently available supports
a descriptive statement even stronger than Conjecture 1. Indeed, proving Conjec-
ture 2 seems the most likely way to prove Conjecture 1.

Conjecture 2. Every G,-graph on 2r + g vertices is the g-fold expansion of a G, ;-
graph on 2r/q + 1 vertices.

The example of CZ shows that Conjecture O is best possible for all even r. We
will develop many structural properties of G-graphs that enable us to describe all
G,-graphs with at least 21r/10 vertices. This yields a proof that C? is the unique
extremal graph (for r even) and a partial proof of Conjectures 1 and 2:

Theorem 1. If a G,-graph G has v = 2r + g > 21r/10 vertices, then v/r € {2 + 1/(2k):
1 < k < 5}, and G is the g-fold expansion of a G,,-graph on 2r/q + 1 vertices.

Indeed, our structural results culminate at Theorem 19 with a proof that the
G-graphs with v/r > 2} are expansions of exactly 7 basic graphs.

We adopt several notational conveniences. Let V = V(G) and E = E(G) denote
the vertex and edge sets of a finite simple graph G. If U, W are disjoint subsets of
V, let e(U) be the number of edges with both ends in U, and let e(U, W) be the
number of edges joining U and W. For vertices x, y € V, let x < y denote adjacency,
and let x || y denote nonadjacency. We choose this notation due to its easy extension
to sets of vertices. We write x < A when x <> a for all a € 4 and analogously define
x||A, A< B,and 4| B.

Let xy denote the edge between x and y when x < y. For x € V(G), let N(x) =
{y: x &y} denote the neighbor set of x. The degree of x is d(x) = |N(x)|, with the
degree of a regular graph being the common degree of its vertices. Let N(x) = {y:
x|y} denote the non-neighbor set of x; this includes x. It is convenient to define
N(S) = (ucsN(u), so that x € N(S) and x < § are equivalent (this differs from the
more common usage of N(S) for | J,.sN (). Similarly, let N(S) = (),.sN(u), and
define N(S|T) = N(S)N N(T). We extend the degree notation analogously: d(S) =
IN(S)| and d(S|T) = |N(S| T)|. We drop set brackets where no confusion arises; for
example, N(ab|uz) = N(@NNGB)NN@)NN(z) and S — x = S — {x}. Finally, mo-
tivated by Conjecture 2 and the operation of expansion, we say that vertices with
identical neighborhoods are equivalent, and we use {(u) = {x € V: N(x) = N(u)} to
denote the equivalence class of u.

Due to the frequency and variety of its use, we do not explicitly state the
condition that a G-graph is 2K ,-free when we invoke it. Instead, we use stereotypic
statements, indicated by the use of “&” and the verb “force”. We may say “a«<>b &
¢ d force ad” when we know allc, b|lc, and b|d, or “a<>b & c«>d force
d € N(a)U N(b)” when we know c¢||{a, b}, or “a < b forces U independent” when we
know U < N(ab). This convention becomes particularly useful when we apply it to
sets of vertices, as in “we—z & y S force we §.

A triangle in a graph is a pairwise-adjacent triple of vertices or the subgraph
they induce. In section 2 we characterize the triangle-free G-graphs. For other
G-graphs, section 3 proves the existence of a “dominating triangle,” meaning a
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triangle having a neighbor of every vertex. The results in Section 3 suffice to prove
Conjecture 0. Section 4 considers the structural consequences of edges not in
triangles. Sections 5—6 show that all G-graphs have edges not on triangles and
obtain other structural properties. In sections 7-9, these are applied to bound the
size of G-graphs of various types.

2. Triangle-free G-Graphs
We begin with two elementary observations.

Lemma 1. Let I be an independent set of vertices in a 2K ,-free graph. For any pair
x, y of non-adjacent vertices, the sets N(x) N I and N(y) N I are ordered by inclusion.

Lemma 2. For any ordered pair I,, I, of independent sets in a 2K ,-free graph, either
there exists x € I, with x « I,, or there exists y € I, with y| 1.

These lemmas allow us to dispose of triangle-free G-graphs.

Theorem 2. If G is a triangle-free G-graph, then r is even and G = CY>.

Proof. Choose an arbitrary edge abin G. Let A = N(a) — band B = N(b) — a. To
avoid triangles, A and B must be disjoint independent sets of size r — 1. Let
U = N(ab). If U is empty, then G has only 2r vertices and is not a G-graph.

Hence U # o&; now a« b forces U independent. Given u, v’ € U, we claim
N(@) = N('); suppose not. Since Nu)UN@')= AUB and du)=du')=r,
Lemma 1 allows us to assume Nu' )N A< NuyNA and Nu)NB < Nu')NB.
Since |A| = |B| = r — 1, u and u’ have neighbors in each of A, B, so there exist
x € N(auu') and y € N(bu'|u). Now x - u & b+ y force x «— y, which makes xu’y a
triangle. This contradiction yields N(u) = N(').

By the preceding paragraph, any x € AU B is adjacent to all or none of U. Let
S, =ANNU),S,=4—38,, T, = BNN(U), and T, = B — T,. Avoiding triangles
requires S; || T;. Since S, || U, the neighbors of x € S, are restricted to N(b), and then
r-regularity forces N(x) = N(b). Similarly, N(y) = N(a) for y € T,. With these ob-
servations, V(G) has been partitioned into five independent sets ({a), S;, U, T, (b))
such that vertices are adjacent if and only if they belong to cyclically consecutive
sets. Regularity then forces each set to have r/2 vertices. Therefore r is even and G
is the /2-fold expansion of a 5-cycle. 0

In view of Theorem 2, we henceforth consider only G-graphs containing
triangles.

3. Dominating Triangles

We say that a triangle in G is a dominating triangle if every vertex of G is adjacent
to at least one vertex of the triangle. We want to show that every G-graph with a
triangle has a dominating triangle. First we need a lemma.
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Lemma 3. Let I be an independent set in a G-graph G, and let S be an arbitrary set
of vertices. If x — S and I||(SU x), then N(SUI) is nonempty.

Proof. Since x <> S, N(S) is nonempty. Choose y € N(S) to maximize |[N(y)NI].
If there exists z € (I — N(y)), choose w e N(z|y), which exists because z||S and
G is regular. Now wez&y<— S force we S. Furthermore, since wly and
ze (INN(w|y)), Lemma 1 implies that w has more neighbors in I than y. This
contradicts the maximality of N(y)N I, so we conclude y > I. |

Lemma 4. If a, b belong to a triangle in a G-graph, then there is a vertex c such that
abc is a dominating triangle.

Proof. Choose a vertex x € N(ab), and let T = {a,b,x}. If T is not a dominating
triangle, let S = {a,b} U N(x|ab). Since N(ab) is independent, we have N(T) inde-
pendent and N(T)|[(S U x). Applying Lemma 3 with 7 = N(T) yields a point ¢ with
¢ <> (SU N(T)). This includes ¢ < N(ab), so abc is a dominating triangle. O

Let T = abc be a dominating triangle. To simplify notation, we use capital
letters to denote the sets of vertices not in T whose adjacencies in T are the
corresponding lower-case letters. For example, set A = N(a|bc), BC = N(bc|a) — a,
ABC = N(T), etc. We also henceforth express v as 2r + g with ¢ > 0, and we let
o, =|A| + |B[ +|C|,05 = |AB| 4+ |AC| + |BC|, and a3 = | ABC|. Various relation-
ships among these sets follow casily.

Lemma 5. The following statements hold for a dominating triangle abc in a G-graph,
with permutations of A, B, C freely applicable.

1. g =|C| — d(ab) = |B| — d(ac) = | 4| — d(bc).

2 0, + 203 <r—3.

3. |A| = 2, A is independent, and x € A implies |N(x) (BU C)| > 3.

4. If x € A and x||B, then N(x}N C # & and B« N(x)NC.

Proof. (1): Comparing N (ab) and V(G) yields 2r = v + d(ab) — |C| (etc.). (2): Since
T is dominating, v — 3 = a; + a, + &5, and the edges incident to T are counted
by 3r — 6 = a; + 20, + 3. Hence oy + 203, =7 — 3 —¢q. (3): By (1), |[A] > ¢ + 1.
A < N(bc) implies N(x) < (N(b)U N(c)), so A is independent. If N(x) N (BU C) < 2,
then x has at least r — 3 neighbors in ABU ACU BCU ABC. The resulting «, +
o3 > r — 3 contradicts (2). (4): By (3), N(x)NC # . Now Bob& x> N(x)NC
force B N(x)NC. O

When I, and I, are independent sets in a G-graph, we say that {I,, I, } are linked
(by xy)if there exist vertices x e I, and y € I, with x &> [, and y— I,. When I, < I,,
we say I, and I, are totally linked. Lemma 2 says that if a pair of independent sets
is not linked, then one of them must have a vertex totally independent of the other.
We use this to show that at least one of the pairs {4, B}, {B, C}, {4, C} generated
by a dominating triangle abc must be linked; in particular, if there is an unlinked
pair, then another pair is totally linked.

Lemma 6. Let abc be a dominating triangle in a G-graph, and suppose x € A satisfies
x||B. Then B« C and x < C. Equivalently, if abc is a dominating triangle for which
B & C is false, then every vertex of A has a neighbor in each of B and C.
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Proof. 1t suffices to show that y <> C for some y € B, since this means x @ a &y« C
force x <> C, and then B« b & x « C force B« C. By Lemma 5.4, x has neighbors
in C totally adjacent to B. If { B, C} is not linked, then we have some u € C with u|| B
(Lemma 2). If {4, C} also is not linked, then there exists we AU C with w||AUC,
in which case w has neighbors in B that violate x| B or || B (by Lemma 5.4).
Hence the assumption that {B, C} is not linked implies that {4, C} is linked by
some edge wz. We contradict this by showing it leads to 2v < 4r. This follows from
the fact that every vertex of G now has at least two neighbors in {a,c,w,z}. We
consider vertices by their adjacencies in abc; first N{ac) <> a, c and aU C < ¢, w and
cUA e a,z Also, we have ABU BC < N(a)U N(c) by definition, and ABUBC < b
& w+>z force ABUBC < N(w)UN(z). Finally, Bob& x>z force Bz, and
Bob&u«—swforce B«»w,50 Bew, z. O

Lemma 6 is the last tool needed to prove Conjecture 0. The counting technique
used in the proof appears again in later sections to bound the size of special classes
of G,-graphs. '

Theorem 0. A G,-graph has at most 5r/2 vertices, and the only G,-graph with 5r/2
vertices is C4°.

Proof. For triangle-free graphs, this is Theorem 2. Otherwise, we may assume that
abc is a dominating triangle with AB linked by xy. Note that ABU ABC «>a, b;
also A«>a, y and B« b, x. Finally, x < y&c«> N(c) force N(c) = N(x)UN(y).
Hence every vertex has at least two neighbors in {4, b, ¢, x, y}. Since a, b have three
such neighbors, this implies 2v < 5r. |

4. General Structure of G-Graphs

Lemma 6 also yields a classification of dominating triangles. We say that a domi-
nating triangle abc is a Type i triangle for i € {1,2,3} if exactly i of the pairs {4, B},
{4,C}, {B,C} are linked. Lemma 6 implies that Type 1 and Type 2 triangles have
a totally linked pair. The graphs G, constructed in Example 1 have Type 3 triangles
when k > 2. In particular, the triangle abc formed by the verticesa =k + 1, b = 3k
and ¢ =0 is a Type 3 triangle. To see this, observe that A = {3k + 1,..., 4k},
B={l,...,k},C = {2k, 2k + 1},and {k,2k} & A, {3k + 1,2k + 1} - B, {1,4k} - C.

We next present a construction-due partly to D.B. Shmoys that yields G-graphs
with Type 2 triangles.

Example 3. Let m be a positive integer, and set r = m? + m. Construct H,, as follows.
Form V(H,) from disjoint sets Q,, Q,, @3, Q4, Qs of sizes m, m?, m?, 1, m,
respectively, and let Q,, Q,, Q; be independent sets and Qs be a clique. Put
0, Q;,, (cyclically). Finally, we add some edges between Q; and Q. Label the
vertices in Qs as u,, ..., #,, and partition Q5 into m blocks Uy, ..., U, with m
vertices each. Then put ;|| U; and u; < U for i # j. It is straightforward to check
that H,, is r-regular and 2K ,-free.

Note that H, is the 5-cycle. For m > 2, choose a = u,,c = u,,and b € @,. Then
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abc is a dominating triangle, with A = U,, B= Q,,and C = U,. Since A~ C+ B

and A| B, abc is a Type 2 triangle. In fact, H,, has (’;) (m*> + m) dominating

triangles <and (’;) non-dominating triangles), all of which are Type 2 and lead to

the same structural decomposition of H,,. In this decomposition, the sizes of 4, B,
C, AB, AC, BC, ABC are m, m?, m, 0, m*> —m, 0, m — 2, respectively. Although
{a)y = {c) = 1, the set <b) consists of b and m — 1 vertices of AC (the remainder
of @, in the description above). The set AC also contains one special vertex z (the
vertex of Q, in the description above) such that z« N(b) — z and N(b) — z is
independent. O

Our examples of G-graphs with Type 1 triangles arise naturally from the
structure we prove that such graphs must have, so we postpone presentation of
such a graph until Section 7. Meanwhile, we note that the adjacency structure in
the subgraph induced by Q5 and Q5 in H,, will always occur under suitable condi-
tions. However, applications of this lemma will require considerable knowledge
about the structure of G-graphs. Hence we postpone it until Lemma 16 at the end
of Section 6, even though it applies for arbitrary G-graphs with appropriate subsets,
because its applications will come very late.

In the remainder of this section, we prove an important technical result about
edges of G-graphs not on triangles. As in the proof of Theorem 2, we seek to show
that common non-neighbors of adjacent vertices not in a triangle have identical
neighborhoods. The proof is much more difficult than the equality of neighbor-
hoods in Theorem 2; it depends on the regularity of G-graphs via the counting of
vertex neighborhoods. We first isolate a remark that applies to all edges and will
be useful separately.

Remark 1. If ab is an edge of a G-graph, then N(ab) is an independent set of size
d(ab) + q.

Proof. a<b forces independence, and |N(uw)| = d(u) + d(w) + IN@uw)| — v =
IN(uw)| — q. '

Theorem 3. If ab is an edge of a G-graph belonging to no triangle, then N(ab) is an
equivalence class (of size q).

Proof. The set U = N(ab) is independent, and no vertex outside U can have the
same neighborhood as a vertex in U. Thus it suffices to show N(u;) = N(u,) for
arbitrary distinct vertices u,, u, € U. This requires several auxiliary sets and facts
about their adjacencies. Let

0=<¢> S=N@-R S,=N@u,)NS S, =5-35,
R=<> T=Nb-0Q@ T,=Nu)NT T,=T-T,

Being equivalence classes, Q, R are independent sets. Since {a) < N(b) and
{b) = N(a), the sets Q, R, S, T partition V — U. By construction, S« @R« T.
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Also, Sy u, & b« T, force Sy T;; similarly T;, <> S,. The edges described thus

far appear in Fig. 1.

T~|"T,

Fig. 1. Sketch of a G-graph with an edge on no triangle

We claim that S; and T, are independent sets. It suffices to obtain a contradic-
tion from assuming an edge xy in S;. First x & y& b T, force T, = N(x)U N(y),
and x & y & u, <> S, force S, = N(x) U N(p). Also {x, y} <> (Q U T;), as noted above.
We have counted T, S, at least once and Q, T, twice, the total being at most 2r — 2.
However, QU T,UT; = N(b) and S,U T, U Q = N(u,)U Q, which yields the con-
tradiction 2r + |Q| < 2r — 2. :

We next claim that if S§; or T, is nonempty, then there exist ce S; and de T}
with ¢||T; and d||S;. For each x € §,, there exists y e T; with x| y; otherwise
N(x) o N{(b). Similarly, for each y € T; there exists x € S, with x| y. Now the claim
follows from Lemma 2.

For the remainder of the proof, we suppose that N(u,) # N(u,) and seek a
contradiction. We claim first that this forces u; <« (S; U T;). We may assume u, <> x
for some x € S, which also implies that T} is nonempty. Now u, < x & b > d force
u, <> d, after which u;, od& a8, force u, < §; (including u, «>¢), and then
> c&bo T, force u, < T;.

Hence N(u,)U N(u,) = SU T, and we can make the description symmetric in
u, and u, by refining the partition so that S; = SNN(u;), S, = SN N(u,), and
S; = SN N(u,u,); similarly for T. By symmetry in u,, u,, all of §;, S,, T}, T, are
nonempty. This symmetry also implies S, « (T; U T3) and T, < (S; U S;). Finally,
S, u, &u, — 8, force S; < S,; similarly T} & T,.

Now we count vertex neighborhoods. Given x € S; and y € T, we have Q, T;,
T, S, = N(x)and R, S;, S,, T, = N(p). Since N(x), N(y) also contain u,, u,, the
sizes of these eight sets sum to less than 2r. Using 2r = |N(a)| + |N(b)] = |Q] +
[R| + |S| + | T| and canceling like terms, we obtain |S,| + |T}| > |S,| + | T>|- How-
ever, doing this with x, y in S,, T, instead of S, T; yields |S,| + | T;| > [S,] + | T3 ].
This contradiction proves N(u,) = N(u,). O

Theorem 3 will help significantly if we can prove that every G-graph has an edge
not on a triangle. This is one aim of the next section.
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5. Critical Triangles

We begin by selecting a special dominating triangle. If abc is a dominating triangle
in a G-graph G, let u(abc) = min{|A|,|B|,|C|}, and let u(G) = min{u(abc): abc is a
dominating triangle of G}. A dominating triangle abc is a critical triangle in G if
u(abc) = u(G). For convenience, we say that a critical triangle abc is c-critical if
u(G) = plabc) = |C|, and that a G-graph is a Type i G-graph if it has a Type i
critical triangle. The illustration of a G-graph in Fig. 2 will aid visualization for the
arguments of the next several sections.

Fig. 2. Sketch of a G-graph with dominating triangle abc

We next make some easy but important remarks about dominating triangles,
collected here to emphasize the current notational conventions.

Lemma 7. If abc be a dominating triangle in a G-graph, then

l. If x> ywithxe A,y e B, then N(c) =« N(x)UN(y).

2. If xyz is a triangle with x € A, y € B, z € C, then xyz is dominating.

3. If {A, B} is linked by xy, then N(z|xy) € ABU {c}.

4. If abc is c-critical and {A, B} is linked by xy, then xy belongs to no triangle.
5. Kay € BCUa, (b) = ACUb, {c) < ABUc.

Proof. (1): x & y & c > N(c) force N(c) = N(x)U N(). (2): Since abc is dominating,
(1) applies to each edge of xyz. (3): Follows from x> A4, y— B, and (1). (4): If xy
belongs to a triangle, it belongs to a dominating triangle xyz (Lemma 4). Now (3)
and Lemma 5.1 imply d(z|xy) < d(ab) < |C|, contradicting the criticality of abc. (5):
The specified set contains all vertices whose adjacencies in {a, b, c} agree with the
specified vertex. ; [

Lemma 8. If abc is a c-critical triangle in G, then C < AB.
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Proof. Suppose there exist u € AB and z € C with u|| z. First, consider the case where
ze> A or z— B; we may assume z <> B. Choose some y € B, and let A’ = AN N(y).
We eliminate this case by showing that uyb is a dominating triangle with u(uyb) <
u(abe). First u«—a &z B force u<«> B. We have y«> A — A’ by definition. Also
ze>y&a« A force z> A', and then u—b& z— A’ force u> A'. Finally, uey
forces N(c) = N(w)U N(y). Hence uyb is dominating and d(b|uy) < d(ab) < |C]|
(Lemma 5.1).

Therefore, z must be nonadjacent to some x’ € A and y’ € B. Now ¢« z forces
x'|y’. The absence of edges among {x’,y’,z} implies that no pair of {4, B, C} is
totally linked; hence abc is a Type 3 triangle. This means {4, B} is linked by some
edge xy. But now x — y’' & ¢« z force x >z, and y«» x’ & ¢ > z force y <> z. This
makes xyz a triangle, which is forbidden by Lemma 7.4. ]

To guarantee edges not on triangles, it suffices to show that {4, B} is linked
when abc is c-critical, since every edge linking them then belongs to no triangle (by
Lemma 7.4). This is easy to show for c-critical triangles of Types 2 and 3, and
proving it for Type 1 will be our main task in the remainder of the section.

Lemma 9. If abc is a Type 2 or Type 3 c-critical triangle, then {A, B} is linked.

Proof. If abc is Type 3, we are done. If it is Type 2 and {4, B} is not linked, then by
Lemma 2 and symmetry of 4 and B we may choose x € A with x| B. Since {4, C}
must be linked, there exists z e C with z«— A. Consider N(c) = AUBUABUec.
We have z > AUc by choice, z«— B by Lemma 6, and z<— AB by Lemma 8, so
N(c)U N(z) = V. This yields the contradiction v < 2r. |

When we consider triangles abc with {4, B} linked by an edge xy, there is a
natural xy-partition of C; its definition and fundamental properties follow next.

Lemma 10. Suppose that abc is a dominating triangle for which {A,B} is linked by
xy, and let C; = CN N(x|y), C; = CNN(y|x), and C3 = CN N(xy).

1. C;, C,, Cy partition C.

2. C,>Aand C,~ B

3. If abc is c-critical, then C3 = &.

4. If abc is Type 1, or if abc is Type 3 and c-critical, then C, and C, are nonempty.

Proof. (1): Lemma 7.1. (2): C; <> ¢ & y > A force C, — A; similarly for C, <> B. (3):
Lemma 7.4. (4): If abc is Type 3 and c-critical, this follows from (3) and {4, C},
{B, C} linked. If abc is Type 1, then C, empty implies y < C, in which case {B, C}
is also linked unless there exists y’ € B with y’|| C, which implies A <> C (Lemma 6)
and contradicts the fact that abc is Type 1 (similarly for C,). O

The next result uses the xy-partition to establish fundamental adjacencies in
G-graphs. It will be applied in this section to show that {4, B} is the unique linked
pair in a c-critical Type 1 triangle abc. It will be used again later for both Type 1
and Type 3 graphs. The two contexts are combined here because the argument is
almost the same. The graphs H,, of Example 3 show that the conclusion of Lemma
11 (and the nonemptiness of C; and C, in Lemma 10) does not hold for Type 2
graphs; in fact, B| AC and C, = ¢ in those graphs.
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Lemma 11. Suppose abc is a dominating triangle for which { A, B} is linked. If abc is
Type 1, or if abc is Type 3 and c-critical, then B« AC and A < BC.

Proof. We use the xy-partition of C. Also, let S = BCNN(x), S =BC—-8§, T =
ACNN(y), T'= AC — T. We reduce the task to proving S'=T' = @. If abc is
Type 1 this suffices because 4 <> B and we can select any edge between them as xy.
Under the other hypothesis, abc c-critical implies y||S (Lemma 7.4), and then
S c&y—> Aforce S > A (similarly, T « B).

Whether S, T' are empty or not, S’ c& x> B force S« B, also S’ b&
x> C;UC; force 8’ C;UC;, and §'|{a,x} & a > x force | C,. Similarly, T’
AUC,UCyand T'|C,. Finally, §' & C; & T' < C, force 8’ T", since C; and C,
are nonempty (Lemma 10).

If §', T" are not both empty, we may select u € §'. We prove that uyb is a
dominating triangle and use this to prove T’ # . We know that ye 4, C,, C;, T,
b and u—C,, C;, T', b; hence N(b) = N(u)UN(y). Let U = N(u|yb) and Y =
N(ylbu). f T' = &, then U = C, U C;. Since a € N(b|uy)and a| C, U C;, Lemma 6
then implies U < Y. Since C is independent, we conclude YN C = @. Since C, is
nonempty, this contradicts C, < Y, which follows from C, || b, u.

Hence we can also select w e T”. It now suffices to show that each vertex of G
is adjacent to at least two of {u, w, y, z}, which yields the contradiction 2v < 4r. We
have already observed that u< B, C;, C;, T', b, c and y« A, C,, C5, T, S, b;
similarly we A, C,, Cs, §', a, c and x - B, C,, C;, S, T', a. This proves the claim
except for vertices in SU T U N(ab). For N(ab), u <« y & N(ab) <> a force N(ab)
N{uw)UN(y), and w— x & N(ab) < b force N(ab) = N(w)U N(x).

Finally, we have S < N(z) and T < N(y) and need another neighbor for vertices
in SUT; by symmetry, we need only consider v € S. Recall that T’} C, |§" and
T & G| S If v||w, then c>w& w||C, force v| C,, and v~ b& w C, force v
C,. If v|lu, then v« C, & u — C, force v« C,. This incompatibility between v and
the (nonempty) set C, prohibits v || w, u, which completes the proof. O

For the next result about Type 1 triangles, we need the following lemma.

Lemma 12. If I and S are disjoint vertex sets in a G-graph, I is »independent, and
N(S)NI = @&, then there is a clique in S containing a neighbor of every vertex in I.

Proof. By hypothesis, every vertex of I has a neighbor in S. Let K be a minimal
subset of S containing a neighbor of every vertex in I. If any vertices of K were
nonadjacent, their neighborhoods in I would be ordered by inclusion (Lemma 1),
which would violate the minimality of K. |

Now we can guarantee two special vertices with respect to Type 1 triangles.

Lemma 13. If abc is a Type 1 triangle and { A, B} is the unique linked pair, then AC
“and BC each contain a vertex adjacent to all of C.

Proof. Let C;, = CNN(A)— N(B) and Cz = CNN(B) — N(4), with C*=Cn
N(B)N N(A). Since C <> ¢ & A < B, these three sets partition C. Let C,. = CN N(B)
and Cg = CNN(A); note that C,. < C, and Cp < Cj. Since every vertex of C —
Cp has a neighbor in A, there exists x € A with x < (C — Cg.) (Lemma 2). Similarly,
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there exists y € B with y < (C — C,). If Cp. = &, then x « C, in which case {4, C}
is also linked unless there exists x’ € B with x’|| C, which implies B «<» C (Lemma 6)
and contradicts the fact that abc is Type 1. Hence Cg., C,. are nonempty.

Ifz| ACU A = N(a|b) for some z € C, then C being independent implies N(z) =
N(b) — a, which violates regularity. Since Cg | A, every vertex of Cy thus has a
neighbor in AC, and then Lemma 12 guarantees that AC contains a minimal
complete graph K whose vertices together dominate Cz.. Most of this proof in-
volves showing K « C, U C¥*, from which the desired vertices will emerge easily at
the end.

LetQ = N(C,UC*)NK and U = K — @, withm = |Q| and n = |U|. We claim
that U & A. Otherwise, consider u € U with u ¢ N(A). By the choice of K, # has a
neighbor x € Cy. Now u <> x & A «>(C,U C*) force u« (C,U C*), contradicting
uel.

We aim to show n = 0. Otherwise, we count 2(n + m) vertex neighborhoods and
obtain a total count of at least v(n + m), contradicting » > 2r. The easy case is
m = 0, n > 0. Here the 2n neighborhoods are N(x), n — 1 copies of N(c), and N(u)
for each u € K. First K <> B (Lemma 11) and K «» 4 UaU ¢ imply that vertices of
BUAUaUc are counted at least n times, and in fact x < B implies that B is
counted n + 1 times. Vertices in N(c) are counted n — 1 times from c; for the
additional incidence in N(c|a), we have z <« (C — Cz)U BC (Lemma 10) and every
vertex of Cg adjacent to at least one vertex of K. The remainder of N(c) is N(ac);
since |B| > |N(ac)| (Lemma 5.1), the excess count on B remedies the possible
deficiency on N(ac). The remaining vertices are w € AB, where w«+ b & edges of K
force w adjacent to at least n — 1 vertices of K. Now w«> b & K «» z force w> K
or w « z, which remedies the deficiency.

Hence we may assume m > 0. Here the 2(m + n) neighborhoods are N(a), n
copies of N(c), m — 1 copies of N(y), and N(u) for each u € K. Since A > U U yUa,
A is counted at least n + m times. Also, AC < B (Lemma 11) implies that BU ACU
c¢Ub is counted n + m times. If w € N(b), then w — b & edges of K force w adjacent
to at least n 4+ m — 1 vertices of K; a provides the additional neighbor when
w € N(ab), and ¢ provides n additional neighbors when w € BC.

This leaves C, which is counted n times from c¢. For C,U C*, we find the m
additional neighbors in Q. For Cg, we count m — 1 for N(y). For Cy, we are
guaranteed a neighbor in K, but for C; — Cz we may have a deficiency of 1.
The deficiency is eliminated if u||x for some u € Q, because then u ¢ N(Cp) & x <>
(C — Cg) force u«> (C — Cg.). Hence we may assume K < x. Now we remedy the
deficiency by proving that T = N(ab|x)is as large as Cy — Cg. and has excess count.
Since K x&be T force K« T, T is counted at least m + n + 1 times. By
Lemma 11 and the choice of T and x, respectively, x < N(b|a) U(N(ab) — T)U
(C — Cg). Hence r = d(bla) + d(ab) — |T| + |C — Cg/|, or |T| = |C — Cp.|.

We have now assigned a count of at least m + n to each vertex, except that
vertices of BC have been counted m + 2n — 1 times, for ¢ and their neighbors in K.
This is at least m + nif n > 0, and if K <> BC we have an additional neighbor in K.
Hence we have proved that n = 0 (i.e. K < C,U C¥) and that u| w for some u € K,
w e BC. Now w+ b & u(C,UC¥*) force w (C,U C*). This means that w itself
is a minimal clique in BC that dominates C,.. By the argument symmetric to that
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above, we conclude that w«> CgU C*. Hence w«> C. Now u«s»a& we C force
u<«> C, and u, w are the desired vertices. O

Finally, we reach the objective of this section, which by Lemma 7.4 yields edges
not on triangles.

Theorem 4. If abc is a c-critical triangle, then
1. {A, B} is linked by an edge xy.

2. e} = N(xy), and [{c)| = q.

3. |C| =29+ |ABC|.

Proof. (1): Immediate by Lemma 9 unless abc is Type 1, in which case we may
assume that {B, C} isits unique linked pair. Lemma 13 then guarantees u € AC with
u+«> A. Since u — B (Lemma 11), acu is a dominating triangle. Since u <> A, we have
N(a|cu) = AB, implying |[N(a|cu)| < |AB| < [C|(Lemma 5.1) and contradicting the
c-criticality of abc. (2): From (1), Lemma 7.4, and Theorem 3. (3): From (2) and
Remark 1, applied to C = N(ab). ' O

Since {4, B} is linked whenever abc is a c-critical triangle, Type 2 G-graphs lack
the symmetry of ¢ and b in their ¢-critical triangles, so our approach to charac-
terizing them differs from that for Type 1 and Type 3 G-graphs. We postpone the
discussion of Type 2 G-graphs to Section 9.

6. Structure of Type 1 and Type 3 G-Graphs

We can now sketch out the structure of Type 1 and 3 G-graphs. We assume abc is
a c-critical triangle, so {4, B} is linked by an edge xy (Lemma 13). Let C, =
CN N(x|y)and C, = N(y|x) be the xy-partition of C (Lemma 10). The next theorem
follows readily from earlier results.

Theorem S. If abc is a c-critical Type 1 or Type 3 triangle and { A, B} is linked by xy,
then

1. C, = N(by) and C, = N(ax).

2. The edges by and ax belong to no triangles.

3. C, and C, are equivalence classes of size q.
4, ABC = p.

Proof. (1): From y & A, x & B, and Lemma 11. (2): From (1), the criticality of abc,
and the fact that C;, C, are both nonempty (Lemma 10.4) and therefore smaller
than C, (3): From (1) and (2) by Theorem 3. (4): From (3) and Theorem 4.3. [

Note that Theorem 5.3 and 5.4 agree with Lemma 5.1 and Theorem 4.2, ie.
29 =|Ci|+ |Gyl =|C| =1+ |AB| + [ABC] + g. To study the structure of other
vertex subsets not self-symmetric in 4 and B, we introduce more detailed notation.
In addition to Cy, C,, this notation applies whenever we discuss a c-critical Type 1
or Type 3 triangle abc (through Section 8). Define 4, = AN N(B), B; = BN N(A),
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S=ACNN(C), § = ACNN(C), T =BCNN(C), T'=BCNN(C). Note that
x € A, and y € B; and that we already know C, & A4 and C, & B (Lemma 10.2).

Theorem 6. If abc is a c-critical Type 1 or Type 3 triangle and { A, B} is linked by xy,
then

1. A,|IN(a) and B, || N(b).

2. {c>=ABUc.

3. NC))NB=B — B, and N(C,)NA=A4 — A4,.

4 ST and TS

5. If ue S, then |BC — N(u)| = 2q + d(ua|b) (and w e T implies d{ac|bw) = 2q +
d(wb|a)).

6. AC=8SUS and BC=TUT.

7. 8" and T' are independent sets, with {(b) < S'Ub and {a) = T'Ua.

Proof. We verify the first in each symmetric pair of statements. (1): From Theorem
52.(2): {c) € ABUc = N(xy) = {c) by Lemma 7.5, (1), and Theorem 4.2, respec-
tively. (3): Theorem 5.1 implies B, | C,. For w e B — B;, we can choose u € A with
ulw, and then web& u C, forcewe— C,.(4): S C, &b« T' force S T". (5)
u«> B (Lemma 11) implies BC — N(u) = N(ua), which by Remark 1 has size q +
d(ua). Also, ABC = @ (Theorem 5.4) implies N (uab) = {c), which has size g (Theo-
rem 4.2).

(6): Since C; and C, are equivalence classes (Theorem 5.3), it suffices to show
u— C, if and only if u« C, for u € AC. For sufficiency, u« C, & x < C, (by (1))
force u <> C,. For necessity, (5) guarantees a vertex w e BC — N(u). Now weo b &
ue C, force w e C;, next we C; & y > C, (by (1)) force w > C,, and finally u <> a
& w > C, force u«> C,. (7): By (1), A, < C, forces §’ independent. Using Lemma
7.5, (6), and C < S, we have <b) = §'Ub. |

For Type 1 G-graphs, A — B makes some statements trivial; in particular,
A— A, = B — B, = @ for a Type 1 c-critical triangle. We employ this simplifica-
tion in the next section. However, there are still arguments that we can apply to
Type 1 and Type 3 triangles simultaneously. For §', 7" and A — A, B — B,, we
need a lemma that will partition a pair of independent sets into subsets with
identical neighborhoods among these vertices. This will be a simple extension of
Lemma 2.

When A and B are independent sets in a G-graph and the vertices of 4 have &
distinct neighborhoods in B, we define the B-partition of A to be the partition of A
into sets A4, ..., 4; such that Nw)"NB o> N(w)NBforue A;and w e 4; withi < j.
We refer to the B-partition of A and the A-partition of B as the mutual partitions of
{A4,B}.

Lemma 14. Let A and B be independent sets in a G-graph, and let A,, ..., A, and
B, ..., B, be the mutual partitions of {A, B}. If A and B are linked, then k = |,
i+ j<k+ limplies A;«<> Bj,and i + j > k + 1 implies A;|| B;. If A[B] has a vertex
independent of B [A), then the same conclusion holds with k replaced by k — 1 [
replaced by | — 1] (or both).
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Proof. Index the vertices of A = {x;} and B = {y;} in decreasing order of number
of neighbors in the other set. Since these neighborhoods are ordered by inclusion
(Lemma 1), the nonzero positions of the resulting adjacency matrix form the
Ferrers diagram for a partition of an integer, the integer being the number of edges
between A and B. When {4, B} is linked, the number of distinct |N(x;) N B| (row
sizes) and the number of distinct | N(y;) N A| (column sizes) is equal; it is the number
of “corner dots” (end of a row and a column) in the partition. The dots of the
partition encode the adjacencies, which yields the statement about the adjacency of
A;and B,. 3

If A has a vertex independent of B, then 4, = AN N(B). Now A — A, and B are
linked independent sets, and we can apply the previous result for k — 1 and L If also
B has a vertex independence of A, then B, = BN N(A), and we can delete B, and
apply the main result for k — 1 and [ — 1. |

This lemma suggests several partitions, again applicable through Section 8. Let
A,, ..., A and By, ..., B, be the mutual partitions of {4, B}; note that 4, and B,
are the same as previously defined. Since S’, T’ are independent (Theorem 6.7), and
also §’||C,Ub and T'||C; Ua, the sets S* =S'UC,Ub and T*=T'UC,Ua are
independent. Let S7,..., S;and Ty, ..., T; be the mutual partitions of {S*, T*}; they
have the same number of parts because C, || T* and C, ||S*. Also a«(§* — C;)
implies §; = C,, and examination of N(a) shows T| = {a). Similarly T; = C, and
S = {b). A sketch of the structure we have developed, indicating edges guaranteed
but not those forbidden or undecided, appears in Fig. 3.

Using these vertex subsets, we can describe most of the edges and non-edges of
Type 1 and Type 3 G-graphs in a block adjacency matrix. The information we have

Fig. 3. Sketch of Type 1 and Type 3 G-graphs
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determined is recorded in Figures 4 and 5. We complete this section by charac-
terizing the remaining conditions for these graphs to be 2K ,-free. The third condi-
tion is vacuous for Type 1 G-graphs.

Lemma 15. A graph with block adjacencies as in Figure 4 or Figure 5 is 2K ,-free if
and only if the following all hold.

1. The subgraphs induced by SUT, SUS', and TU T' are 2K ,-free.

2. T = NwyUN(u') when uu' is an edge of S; similarly for edges in T.

3. Suppose u||w with ue S and we T. If u<> A; is false for some j > 1, then w
(Bys2—;jU --UBy). Similarly if w B; is false.

Proof. The subgraph induced by V(G) — S — T is' 2K ,-free; we need only consider
edges corresponding to question marks in Figs. 4 and 5. The case of four vertices
in S, S, T, T" is handled by (1). (2) is forced by b« T for edges of S and by a«> S
for edges of T; no other 2K, can use an edge of S or T. For (3), consider the
nonadjacencies guaranteed in the mutual partitions of {4,B}; weo4; & ue
(Bys2—jU---UBy) force w «» (B, ,;U---U By). (3) also eliminates the possibility of a
2K, containing only one vertex of SU T. O

As yet we know little about S and T; in particular, we do not know whether
these are independent sets. In the next two sections, we will characterize all Type 1
and Type 3 G-graphs in which S and T are independent sets. Unfortunately, there
do exist G-graphs of both Types in which S and T are not independent sets;
we will construct arbitrarily large examples. Fortunately, such graphs have a
smaller ratio of v/r, and none yet discovered violates Conjecture 1 or 2.

Before embarking on the separate study of Type 1 and Type 3 graphs, we prove
a lemma that is applicable to appropriate vertex subsets of arbitrary G-graphs. It
will be applied to G-graphs of each Type, but these applications require consider-
able structural knowledge and therefore come late in the subsequent sections.
Hence we have placed this lemma here instead of earlier; it can be contrasted with
Lemma 14.

Lemma 16. Suppose that I and K are disjoint vertex subsets of a G-graph and there
is a vertex a ¢ 1UK such that a«— I and a|| K. If I is independent, no vertex of K is
adjacent to all of 1, and all vertices of K have equal degree in I U K, then I and K have
partitionsinto I, ..., I, and K, ..., K,, such that each K, is independent, I,| K,, and
K; > LUK;if i # j. If vertices of I also have equal degree in I UK, then |I,| and |K;|
are constant over i.

Proof. We show first that vertices of I with common non-neighbors in K have
identical neighbors in K. Foru,u’ € I, select we Nuu )N K. IfNW)NK # Nu')NK,
then we may select x € K N N(u’|u) (by symmetry). Now a < u forces w || x, and then
Nw)NI e N(x)NI (Lemma 1). Since x, w have equal-sized neighborhoods in
IUK, we may select y € KN N(w|x). Now y—w & a«> I forces y > N(w)N L. By
Lemma 1, this implies x <> I or y < I, which contradicts the hypothesis.

Now partition I into maximal sets I, ..., I,, with identical neighborhoods in K.
By'the preceding paragraph, the sets K; = K N N(I,) are disjoint. They also exhaust
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K, since no vertex of K is adjacent to all of I. Finally, a < I, forces K, independent,
and K; & I, & I, <> K forces K; & K. O

7. Bounds and Partial Characterization for Type 1 G-graphs

For Type 1 G-graphs, A = 4, and B = B,. This means we have determined all
edges in these graphs except for the edges involving § and T, For easy reference,
this information appears in Fig. 4, with question marks where we do not know all
the edges. By Lemma 15, the problem of constructing Type 1 G-graphs reduces to
that of inserting edges involving SU T so as to satisfy Lemma 15 and maintain
regularity by appropriate choices for the sizes of the other sets. The simplest choice
is S, T independent; we characterize the resulting graphs in Theorem 8. More
complicated choices are considered subsequently. Meanwhile, in Theorem 7 we
derive some constraints on the sizes of the blocks. The first result verifies the weaker
part of Conjecture 1 for Type 1 G-graphs; r is even.

C,« S* = (b) {a) « T* > C,
S| & -8 1Al B T - T, |T
S |2 1?20 0|1 1 1 ?
tCc,=8 |1 0 0
s* ? 0 0|1 1 1 00 1
$(BYy=S8;{10 110
Alo 0 o] o 1 1
e | 1 1 0| o0 o 1 1
B |1 1 0 0 0
Y a) = T 01 1 0
T 1 0 01 1 1 0 0 ?
I CL =T 0 0 0 1
T2 1 1] 1 0 0?21 |2

Fig. 4. Block adjacency matrix for Type 1 G-graphs

Theorem 7. If abc is a c-critical Type 1 triangle, then r is even. In addition,
1. r/2=14]=|B| =|T*| +|T| = |8*| + |§|.

2.18|=IT*¥—q=|T"|+ 1land |T| = |S*| —q = || + 1.

3ISI+ T =7/2 —q,|S*| + |T*| =712+ q,|S|+|T'|=r2~-2—q.
4. 8,8 T, T', are all nonempty.

5. Forue §* |Nw)N(SUT*)| =|T* — q. Similarly for we T*.

6. ForueS;, INwNS| = Y1 T, Similarly forwe T;.

7. SIS iff I=2if T|T"

8. eSUT) = (Vs SI TN — q/2 — ).

Proof. Recall | {¢)| = |C4| = |C,| = q and compare (block) neighborhoods as listed
in Fig. 4. (1): N(C,) vs. N(C,) yields |4| = |B}, and N(c) = {(c)UAUB yields
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|A| + |B| =r; hence |[A] = |B| =r/2. N(c) vs. N(B) yields |A| =|T*| + |T|, and
N(c) vs. N(4) yields |B] = |§*| + |S]. (2): N(C,) vs. N(b) and B(C,) vs. N(a). (3).
Apply r =d(c) = |S| + |S*| + |T*| + | T| and (2). (4): First S and T are nonempty
by (2), then |S| > 2q and |T| = 2q by Theorem 6.5, and finally S’ and T’ are
nonempty by (2). (5,6): N(u) vs. N(b). (7): N(S7) vs. N(S3).

(8): Let U=SUT; e(U)=%[r(IS| +|T|) — e(U,U)]. By (1) and Figure 4,
e(U,S*UT*) = [S*|(IT| + |T*| — q) + | T*|(IS| + |S*| — q) — 2)11;<IS{||T}|, and
e(U,AUc>UB) = (r/2 + q)(IS| + |T]). Using (2), the computation simplifies to
the formula claimed. 1l

Letting S, §’, T, T’ be as small as possible yields our first Type 1 G-graph. This
graph J is a member of several classes, one of which we present immediately.

Example 4. Let J be a graph having block adjacency matrix as in Fig. 4, with the
parameter [ set to 2, all unknown entries set to 0, and block sizes as follows: set
|[Al = |B| =5, e3> =|Ci] = |G, = 1, and |S§]| = |T| = [{a)| = [<b)| = 2. In fact,
g =1 and r = 10 imply these block sizes (Theorem 7). By inspection (Lemma 15),
Jis a G, ,-graph with 21 vertices. The triangles using one vertex each of {a), <{b),
c) are critical Type 1 triangles.

More generally, define J, for each value of I > 2 in Figure 4. To complete the
block adjacency matrix, let {S, T} be independent sets, and let S, ..., S;_; and
T, ..., T_; be a mutual partition of {S, T} with S; T, if i + j <1 and 8| T; if
i + j = | The remaining adjacencies are S; < §;, T, <> T/ ifi + j > land S, || S}, T;|| T/
ifi + j < I, id accordance with Theorem 7.6. Maintaining regularity requires satis-
fying the constraints of Theorem 7. Set |A| = |B| =41 — 3, |[{c>| = |C,| = |G, = 1,
and |S;] =|T)| =|S]| = |T| =2 for 1 <i <l The graph J; is regular of degree
r=8]— 6 and has 16/ — 11 = 2r + 1 vertices. Note that J, = J and that setting
I =1 yields a S-cycle, which is a G-graph but not Type 1. O

The graphs of Example 4 characterize the Type 1 G-graphs for which S and T
are independent sets.

Theorem 8. If abc is a c-critical Type 1 triangle and S, T are independent, then G is
the g-fold expansion of the graph J, of Example 4, for some | > 2.

Proof. When § is independent, Theorem 7.6 implies that S, ..., S is the S-partition
of $*. Since §] = C, <> S and S| = (b>| S, the S*-partition of § is some §;_;, ..., Sy,
with §;«> §;if i + j > land ;|| S ifi + j < I Similarly, T/, ..., T{ is the T-partition
of T*, and we obtain the T*-partition 7;_,, ..., T, of T. Given x € §; and y € §; with
i< j, we have N(x) — T < N(y) — T, with equality if and only if i = j. With T
independent, this forces N(x)\ T = N(y)N T, with equality if and only if i = j.
Therefore, S,, ..., S,_; is the T-partition of S; similarly, T,, ..., T,_, is the S-partition
of T.

This establishes blocks and block adjacencies as in J;, and we need only deter-
mine the block sizes. N(T;) vs. N(T;;,) and N(S}) vs. N(S;,,) yield |S;| = |T;| =
IS2] = =T 4| = [S1| = 5. Also N(S;) vs. N(S;;1) and N(T;)vs. N(T},,) yield
I =18 =T =+ =[84| = |Ti_1| = t. Now <a) vs. T} (or <b) vs. S,) yields
s =2q = t. Finally, r = d(c) = 2q(4] — 4) + 2q = q(8] — 6). Since |A| = |B| = r/2,
this completes the description of the graph as the g-fold expansion of J,. O
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Next we drop the requirement that both S and T be independent. Our discus-
sion of Type 1 G-graphs thus far has been symmetric in A vs. B and S vs. T; the
next example departs from this. These graphs will characterlze the Type 1 G-graphs
in which AC is independent.

Example 5. We construct L,, based on the matrix of Fig. 4. Set | = 2. To specify the
remaining adjacencies, let T be the complete m-partite graph with partite sets {7;}
of size 2, and let S be an independent set of size 2m? partitioned into sets {S;} of
size 2m. Put §;|| T;, but §; > T;for i # j. Since | = 2, 2K, can only occur within SU T.
Since nonadjacent vertices of T have the same neighborhood and S is independent,
none occur. It now suffices to specify set sizes for regularity. Let [{c>| = |C,| =
IC,] =1, [<bY| = 2m, |{a)| = 2m?, and |A| = |B| =1 + 2m + 2m% Now L, has
2r + 1 vertices and is (2 + 4m + 4m?)-regular. Note that L, is J of Example 4. [7]

The condition of the next theorem is equivalent to AC independent (and sym-
metric to BC independent).

Theorem 9. If abc is a c-critical Type 1 triangle and S||(SUS’), then G is the g-fold
expansion of the graph L, of Example 5, for some m > 1.

Proof. By Theorem 7.7, S||S’ implies ! = 2. Hence vertices of T have identical
neighborhoods outside SU T and identical degrees inside. With S independent and
S a| T, Lemma 16 reduces the block adjacency matrix to that of L,. Now
consider the set sizes. When S| §’, we have d(ua|b) = 0 (Fig. 4), and then |T}| = 2q
(Theorem 6.5). Now N(a) vs. N(T;) yields |S;| = |C| + |T — T;| = 2mg, also N(b) vs
N(C,) yields [{a}| = |S| = 2m?q, and N(a) vs. N(C,) yields |<bD| = |T| = 2mq.
Finally, r = |N(c)| = 2q + 4gm + 4qm?, so |A| = |B|=r/2 = (1 4+ 2m + 2m?)q,
and G is the g-fold expansion of L,,. ]

There are also Type 1 G-graphs in which neither S nor T is independent. The
following example introduces another operation for building large G-graphs from
smaller ones.

Example 6. Let H be an s-regular G-graph with 2s + 4q vertices. We construct a
collection f(H) of Type 1 G,-graphs with r = 4s + 10g and v = 2r + ¢. Let [ = 2,
and let the subgraph induced by SU T be H. Allocate the vertices of H equally to
S and T in a way that satisfies the condition of Lemma 15.2. Since [ = 2 implies
S|1S" and T||T’, Lemma 15 says any resulting graph is 2K ,-free. Since [ = 2, we
need only specify block sizes to satisfy regularity. Let |[C,| = |C,| = [{c)| = ¢,
|A| = |B| = 25 + 5¢, and |{a)| = [{b)| = s + 2q. Counting vertex neighborhoods
confirms that each such graph is 4s + 10g-regular and has 8s + 21¢ vertices.

For the degenerate case H = 4K, we have s = 0 and ¢q = 1, and the resulting
graph f(H)is J of Example 4. Suppose H is a Type 1 G,-graph with critical triangle
agbycy; we have specified |[{cy »| = 4. Examination of Figure 4 shows that the
requirement of Lemma 15.2 is satisfied by placing Ay USEU Sy in S, By U T U T,
in T, and splitting {cy » equally between S and T. As another example, consider the
graphs G, of Example 1, which are Type 3 G-graphs except for G,, the 5-cycle. If H
is a 4g-fold expansion of G,, place the images of 1,...,2kin S, of 2k + 1, ..., 4k in
T, and split the images of 0 equally between S and T. O
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Note that f “preserves” both Conjecture 1 and Conjecture 2. For Conjecture 1,
if s/(4q) is an even integer, then so is (4s + 10g)/q. If the graph H used by f satisfies
Conjecture 2, then it is a 4¢-fold expansion of a G,,-graph on 2s/(4q) + 1 vertices.
Let H’ be the (s/g)-regular 4-fold expansion of this graph. Since s + 2g = g(s/q + 2)
and 2s + 59 = q(2s/q + 5), any graph in f(H) is the g-fold expansion of the corre-
sponding graph in f(H’'), which is (4s/q + 10)-regular and has 8s/q + 21 vertices.
Finally, note that any application of f yields a graph with v/r > 3}, with equality
only when s = 0 and g = 1, which is the degenerate case yielding J.

The requirement of Lemma 15.2 is quite restrictive. We do not know whether
f(H) is nonempty when H is an arbitrary G-graph of Type 2 or 3. If H = G/, then
f(H) contains only one graph. More generally, suppose H is a 4g-fold expansion of
a G,-graph H' on 2t + 1 vertices, with t = s/44 (i.e., suppose H satisfies Conjecture
2). Call the independent set expanded from each vertex of H' a “clump”. We claim
that the set of clumps that are “split” by having vertices in both S and T in forming
f(H) form an independent set in H’' with identical neighborhoods (the only such
sets in G, are single vertices). If clumps corresponding to two adjacent vertices are
split, then there are edges between them in S and in T. Hence these two clumps
together have edges to members of all 2t + 1 clumps, violating t-regularity. With
the split clumps forming an independent set U, any edge from a clump in U to
another clump X yields an edge in S or in T between U and X. This member of X
must be adjacent to members of all clumps in U on the other side. Hence X < U.

Without assuming Conjecture 2, we must leave f(H) as described in Example
6. Nevertheless, like the previous constructions, the operation f characterizes a
class of G-graphs.

Theorem 10. If abc is a c-critical Type 1 triangle, SU T induces a regular subgraph
H, and S| S', then H is a G-graph and G € f(H), where f(H) is defined as in Ex-
ample 6.

Proof. By Theorem 7.7, S||S’ implies | = 2. Since G is 2K ,-free, the subgraph H
must also be 2K ,-free, and the adjacencies must be as described in Example 6. For
G e f(H), we need only show that the set sizes must be as in Example 6. Suppose
H is s-regular and has n vertices. Since | =2, we have |{(a)| =|S| =n, and
[<b>| = |T| =n,. As usual, |C,]| =|C,| =|<{c>| =¢q and |A| = |B| =r/2. Hence
d(u) — d(w) = |<{a)>| — |<b)|ifu € Sand w € T, which implies n, = n, = n/2. Futher-
more, d(u) =r =35 + 3q + /2 + /2 and d(c) = r = 2n + 2q. Solving for n and r
yields n = 2s 4+ 4q and r = 4s + 10g. Hence H is a G-graph and G € f(H). O

We do not know a common generalization of J, and L,,, nor can we strengthen
Theorem 9 to characterize all Type 1 G-graphs with at least one of S, T indepen-
dent. However, we have characterized all Type 1 G-graphs with large vertex/degree
ratio. This yields a partial proof of Conjectures 1 and 2 for Type 1 G-graphs, since
Jyand L, haveg = 1.

Theorem 11. If G is a Type 1 G-graph and is not an expansion of any J; or L, then
vfr < 29/14.
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Proof. By Theorem 8, we may assume ww' is an edge in 7. Now S — a & w — w’'force
Sc Nw)UN(w’'). With Fig. 4 ({4] =r/2 by Theorem 7.1), this yields d(w) +
d(w’) = |S| + 2|S*| + r + 4q. By Theorem 9, avoiding L,, requires an edge uu’ from
Sto SUS" . Ifu, u' € S, then as above we get d(u) + d(w’) > |T| + 2| T*| + r + 4q.
Summing these and using Theorem 7 yields 4r > 7r/2 + 9q, meaning v < (2 +
1/18r.fueSand w’' e 8, thenl > 2,and T b & u —u’ force T =« Nu)U N(u').
This time d(u) + d(u’) > 2q + r + 2| T*| + | T|. Now the sum is 4r > Tr/2 + 7q,
meaning v < (2 + 1/14)r. O

8. Bounds and Partial Characterization for Type 3 G-Graphs

For Type 3 G-graphs with c-critical abc, we conduct a similar analysis. As obtained
in Section 6, we have mutual partitions 4, ..., 4, and By, ..., B, of {4, B} and
Si,...,Sand Ty, ..., Ty of {S*, T*}. To have link edges for {4, C} and {B, C}, we
must have k > 2 (Lemma 7.4). The resulting block adjacency matrix replacing Fig. 4
appears in Fig. 5.

Cy e« 8* = (b} (@) « T* > C,
S 8 - 8, Ao, Ay | {c) | Bpyo. ., B, T, - T T
? 1?20 0 ? °? 1 1 1 ?
C,=8 |1 011 0 00
? 0 0?7 ? 1 1 1 00 1
®y=8; |0 0 00 110
“A; |0 000 111
: ? 1?20 0 0| 011 1 1
A, | ? 1?20 001
) | 1 1 0 0 0 1 1
B, 00 0?71 ?
: 1 1 1100 0 0?1 ?
B, 111 000 0
(@) = T§ 01 000 0
: 1 0 01 1 1 2?20 0 ?
C,=T 0 00 110 1
T ? 1 1 1 ?2 720 0?2 1 ?

Fig. 5. Block adjacency matrix for Type 3 G-graphs

The additional flexibility resulting from k > 1 makes Type 3 G-graphs consider-
ably harder to characterize. In addition to the extra question marks in the matrix,
it is no longer true that S and T must be nonempty. However, it is easy to
characterize the Type 3 G-graphs with § = g (which happens only if T = ¢ also).

Theorem 12. If abc is a c-critical Type 3 triangle with S = ¢ and the mutual
partitions of {A, B} have k parts, then G is the g-fold expansion of the 2k-regular
4k + 1-vertex G-graph H, of Example 1.
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Proof. With S = ¢, the requirements of regularity and the adjacencies recorded in
Fig. 5 imply that 4,, ..., A, is the S*-partition of 4 and §j, ..., S] is the 4A-partition
of $* Since A, ||8* and (b) = S, |4, Lemma 14 yields k = I, with 4;||S; when
i+j<k+1land A, S wheni+ j>k + 1. By Theorem 6.5, S = & if and only
if T = ¢r. Hence we similarly have B,, ..., B; and T}, ..., T{ as mutual partitions of
Band T*, withk =1, B;| T wheni+ j<k+ 1,and B> T/ wheni+ j> k + 1.

Under the cyclic ordering S, ..., 87, Ay, ..., A, <D, By, ..., By, T{, ..., T{ (see
Fig. 3), G now has the same block adjacency matrix as G, of Example 1. Regularity
forces the blocks to be the same size; |{c¢>| = ¢ implies G = G{. O

When S and T are nonempty, more complicated graphs are possible. The proofs
and results here are analogous to but more complicated than those in Section 7. It
is possible to combine some of this with the results of Section 7, but we feel that the
exposition is much clearer when the simpler setting of Type 1 G-graphs is consid-
ered first. For Type 3 G-graphs, we have not shown that r is even, and the results
about block sizes have an additional variable p = |4,] = | B, |. In Example 8 we will
see Type 3 G-graphs with | 4] # | B|, meaning that |4 = r/2 cannot be proved. Note
also the absence of the conclusion that S, T must be nonempty.

Theorem 13. If abc is a c-critical Type 3 triangle, then

.|4,|=|B|=pand|A| + |B| =r. Also |A| = |T*| + |T| and |B| = |S*| + |S|.
ISI+ 1Al —p=IT*|—q=|T'|+ 1and |T| + |B| —p =S¥ — g =|S| + L.
S|+ |Tl=p—qand |S*|+|T*| =@ —p) +4.

. Forue S* |INw)N(SUT*UA — A)| =|T*| — q. Similarly for we T*.

. ForueS,INwNSUA — A))| = YIZIIT.,|. Similarly forwe T, .

L SWSUAfI=2# T'\(TUB).

. If S or T is nonempty, then S (A — A,) and T — (B — B, ) cannot both hold.

NI NN R W N

Proof. (1-6): Same neighborhood comparisons as for Theorem 7. (7): By Theorem
6.5, we may assume both S and T are nonempty and choose a vertex'in each of S,
T, Ay, B,. If the claim is false, then every vertex has at least two neighbors among
these four (see Fig. 5), yielding the contradiction 4r > 2v. |

In light of Theorem 12, we may assume that § and T are nonempty. Our first
such Type 3 G-graphs can be viewed as another generalization of the ubiquitous
graph J of Example 4. '

Example 7. In Fig. 5, let | = 2; we define a graph M, for any k > 2. Let S and T be
independent sets with mutual partitions Sy, ..., Sy and T3, ..., T; satisfying T, || S,
sothat S;«» T,wheni + j < kand ;|| T wheni + j > k. For the remaining question
marks in Fig. 5, put 4, §;and B~ T;ifi + j > k + 1, and put 4, S; and B;|| T; if
i+ j<k+ 1 To define the set sizes, set |C;| = {C,| = [{c>| =1, |{a)| = |<b)| =
6k —4,]A,;| = |B,;| = 6k — 1, and |S,| = | T;| = 2, and let the remaining 4(k — 1)
unspecified sizes for S;, 4;, T;, B; be 3.

Mutual partitions avoid 2K, in the subgraph induced by two independent sets.
To verify Lemma 15.3, supposeu € S;, we T;, x € A, y € B, withu||wand x| y. Then
i+j>k+1lands+t >k + 1. Thisimpliesi + s > k + lorj+ t > k + 1, which
means u<>x or we y, and 2K, is avoided. Finally, summing the set sizes for
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neighbors of each block confirms that M, is an 18k — 8-regular G-graph with
36k — 15 vertices. Setting k = 1 collapses M, to J (abc is no longer Type 3).

There is another family closely related to M,, which we call M;. Again set [ = 2,
but this time let the S, T-partitions be Sy, ..., S,_, and T}, ..., T,_, with T, _, || S,_,.
Put 4, §;and B;<> T;if i + j > k, otherwise A4,||S; and B;| T;. In particular, note
that 4, S. This is made to work by setting |B,| = |C,| and | 4,| = |C,|, all of which
equal 1 along with [{c}>|. Also set [<a)|=|{(b>| =|A,| =|B;| = 6k — 11, and let
the remaining 4(k — 2} unspecified sizes for §;, 4,, T;, B, be 3. The resulting graph
M, is an 18k — 32-regular G-graph with 36k — 63 vertices. When k=2, Sand T
vanish and M, degenerates to the graph G, of Example 1, with vertex/degree ratio
9/4. For k > 2, if we use the block ordering C,, S;_,, ..., Sy, <b>, 4,, ..., 4;, {c>,
B,....,B,{a), T, ..., T,_,, C;, then the block adjacency matrix of M, is the same
as that of G, except for additional “block™ adjacencies C, — S+ C, < T C,.

d

Not surprisingly, these characterize the graphs satisfying appropriate condi-
tions; the proof is similar to that of Theorem 8. When comparing neighborhoods,
we henceforth adopt the stereotypic “U vs. W” in place of “N(U) vs. N(W)".

Theorem 14. If abc is a c-critical Type 3 triangle, S, T are independent sets, and
S'I(SUA) (or T'|(TUB)), then G is the g-fold expansion of M, or M;, for some
k>2.

Proof. By Theorem 13.6, §'||(SUA) and I =2 and T'||(TUB). Let S,, ..., S, and
Ti, ..., T, be the mutual partitions of S, T; note that S,|| T and T, || S (Theorem 6.5).
We need only determine the S, 4 and T, B adjacencies. This implies that Sy, ..., S,
is the A-partition of S and T,, ..., T; is the B-partition of T. The A, B adjacencies
force A, ..., A, to be the S-partition of A — A, and B,, ..., B, to be the T-partition
of B— B;. We have 4, S or §,| 4, and B, T or T, | A. Note that 4, vs. B,
implies 4, « S if and only if B, < T. Also, 4, || S if | B,| = |C,| = g, in which case the
S-partition of A is 4,, ..., As, (A, U A,). Since this reduces h, we have |B,| = q if
and only if | 4,] = ¢q. Hence the completion of the block adjacency matrix depends
on whether A, — S and on whether |B,| = q. If ¢ of these two things happens, then
h=k—e

If h = k, then we have the block adjacency matrix of M,. Now T,_; vs. T,_,_,
and A; vs. 4;,, successively yield |S;| = |B,| = |S,| = - = |B,| = |S;| + ¢, and {(a)
vs. T, yields | S| = 2q. We similarly obtain the corresponding sizes for {T;, 4;}. Also,
C, vs. (b) yields |{a)| = (6k — 4)q, and similarly {{b)| = (6k — 4)q. Now A, vs. {c)
yields |B| = [<b>| + |S;| = (6k — 1)g, and similarly | 4,] = (6k — 1)gq. Hence G is
the g-fold expansion of M,.

Ifh = k — 2, then A, « S and | B,| = ¢, and we have the block adjacency matrix
of M;. Now A; vs. A;,q and T, _,_; vs. T,_;_; successively yield | B,| = |S;| = |B;| =
|8, =" = |Bi—1| = |8=2| = | B] + 29 = 3q, and similarly for sizes in T, A because
we also have |4,| = g. Next C, vs. {b) yields [{a)| = (6k — 11)g, and similarly
[<b)| = (6k — 11)q. Finally A, vs. {c) yields |B;| = |<b}|, and similarly [4,| =
|<a)>|. Hence G is the g-fold expansion of M;.

If h = k — 1, we have two cases to consider. First suppose 4, < S and |B,| > q.
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Now T,_;_, vs. T,_; yields |S;| = |B;,,| fori=1, ..., k — 2, and B; vs. T, yields
|Se—;| = |B| + 2q. Hence |S| = |B| — p + 2g, which implies |S*| = p — 2g (Theo-
rem 13.1). However, A4, vs. {c¢) implies [{b)»| = p and hence |S*| = q + p.

Finally, suppose S, || A (and T; | B) but |B| = |4;| = q. Now {(a) vs. T; yields
[S.—| =1Cy| + |C,| = 2q. Also, A; vs. A, and T,_,_; vs. T;_,_; successively yield

|B,| =[S, = |Bs| =18,| = = |Be_y| = |Si—2| = | Bl = q. Hence [S|=kg and
|B| = p + (k — 1)q. Furthermore, A, vs. {c¢)> implies |S;| + |<b>| = p, or [<b>| =
p — q. This implies |S*| = p, which contradicts Theorem 13.1. O

Next we allow T to have edges but keep § independent. The examples that
result are our first c-critical G-graphs with |A| 5 |B|.

Example 8. In the structure of the adjacency matrix in Fig. 5,let [ =2 and k = 2.
For the remaining question marks, put S| A, but T« B,. Let § and T each consist
of m blocks of vertices with identical neighborhoods, such that § is independent and
T(S;UT), but T« (S;UT) if j#i To complete specification of the resulting
graph P, put || =Byl = |G| =Gyl =1, [T =2, IS]=[<b)|=|4,]=
2m + 1,and |A,| = |B;| = [{a)| = 2m* + 2m + 1. By Lemma 15.3, P,, is 2K ,-free,
and counting the neighborhoods in each class shows that it is 4m> + 8m + 4-
regular with 8m? + 16m + 9 vertices. Setting m = 0 collapses this to the graph G,
of Example 1. Ol

The proof of the corresponding characterization is similar to that of Theorem 9.

Theorem 15. If abc is a c-critical Type 3 triangle with (SU S')||(S U A)), then G is the
g-fold expansion of P,,, for some m > 1.

Proof. In the structure of Fig. 5, we have | = 2 and T'||(T U B) (Theorem 13.6). By
Lemma 15.3, S|| 4 implies T« (B — B,). Now B — B, has constant neighborhood
outside A, forcing k = 2. Now consider the subgraph induced by SUT. Since
Nw)N(BUT*) = B,UC, for all we T, the degree of w in SU T is constant. By
Lemma 16, we can partitioned S and T into equivalence classes S, ..., §,, and
T,,..., T,such that NS)NT =T, = N(T)NT.

Hence G has the block adjacency matrix of P,,, and it remains to determine the
set sizes. With S||(SUS"U A4), Theorem 6.5 says |T;| = 2g. Now A, vs. 4, yields
|B,| = |C,| = q and B, vs. B, yields |4,| = |C,| + | T| = 2m + 1)q. Also {a) vs. C,
yields |[<b)>| = |B,| + |T| = 2m + 1)q and C, vs. T; yields |S;| = [<b)|. <b) vs. C,
yields |[{a)| = |S| + |4,| = 2m? + 3m + 1)q. Finally, Theorem 13.1 yields |4,| =
|B;| = 2m* + 3m + 1)q and r = (4m* + 8m + 4)q. This expresses G as the g-fold
expansion of P,,. O

'

We do not have a common generalization of M, and P, nor a way to eliminate
the extra independence hypotheses in these theorems. Nevertheless, we can prove
there are no Type 3 G-graphs with u/r > 33/16 besides G,. The next theorem
completes our partial proof of Conjectures 1 and 2 for Type 3 G-graphs. Although
it is easy to show v/r < 37/18 when S, T each has an edge (count the neighborhoods
of the four end-points and use Lemma 15.2 and Theorem 13), handling the cases
where S or T is independent requires a more subtle argument that also covers the
non-independent case.



Large Regular Graphs with No Induced 2K, 189

Theorem 16. If abc is a c-critical Type 3 triangle for which S or Tis nonempty, then
v < 33/16r, with equality only for P,.

Proof. We take a weighted sum of eleven vertex neighborhoods. By Theorem 13.7
and symmetry, we may assume there exist u € S and x € (4 — A,) with u|| x. Theo-
rem 6.5 guarantees a w € T with u||w, and then w — B, (Lemma 15.3). Use u, w, and
one vertex from each of C,, (b, 4,, 4,, {c>, By, B;, {a), C, and weight their
neighborhoods as indicated in Table 1. By Lemma 15.3, each vertex of T is adjacent
to u or B,. Now every vertex is counted at least 16 times in the 33 neighborhoods,
so 33r > 16w.

Table 1. Neighborhood counting for Type 3 G-graphs
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The bound 33/16 is achieved by P,. If we require equality, each vertex must be
counted exactly 16 times. Hence B — B; — B, = & and k = 2. To avoid exceeding
16 in other neighborhood counts, we have T« B,, and all remaining question
marks must be 0. This yields S'||(SU A), so [ =2 (Theorem 13.6). Finally, the
weights must be proportional to the sizes of the corresponding sets, and we have
the expansion of P;. td

9. Bounds and Partial Characterization for Type 2 G-Graphs

For the remainder of the paper, we consider G-graphs with a c-critical Type 2
triangle abc; Theorem 4 implies that {4, B} is linked. We may assume that {4, C}
is the unique non-linked pair, and that the mutual partitions of {4, B} have k parts
Ay, ..., Acand By, ..., B,, with A, Byif i + j < k + 1 and 4;||B;ifi + j >k + 1.
The Type 2 G-graphs H,, of Example 3 have {4, B} totally linked and hence k = 1
for each c-critical triangle. We have only one example of a Type 2 G-graph with
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k = 2 (and its expansions). It has other critical triangles, some of which are Type 2
with k = 1, and others of which are Type 1 and show the graph isomorphic to our
old friend J of Example 4! We have no examples of Type 2 G-graphs with k > 2.
As we shall see, the Type 2 G-graphs with large vertex/degree ratio must have
k = 1; we will describe all Type 2 G-graphs with v/r > %5.

We drop our previous usage of S, S, T, T’ and introduce a new partition.
Let S = ACNN(B,),S=AC—S,T =BCNN(4,), T=BC—T,R = ABCN
N(B,),and R = ABC — R’. Also let A’ = A — A, and B’ = B — B,. These defini-
tions hold for the remainder of the paper.

Lemma 17 contains counterparts of earlier results for Type 1 and Type 3 graphs.
For example, Lemma 17.1 says that C; = g and C, = C in the xy-partition of C;
hence we no longer discuss the xy-partition. We also no longer have AC < B and
BC +> A, but we can say something about which edges are present or missing.

Lemma 17. If abc is a c-critical Type 2 triangle in G, then

1. A,||C and B« C > A’ (in particular, A||C if and only if k = 1).
. (RUSY-(CUA)and T'— B

.SoBand T «— A

. (RUSUT")||A; and (R°US’UT)||B,.

(RUS)—Band T« A.

. 8" and T’ U C are independent sets of size at least q.
.(RUSY-T.

I NV A TN N |

Proof. (1): If A has no vertex independent of C, then z || A for some z € C, since {4, C}
is non-linked. This imples A <> B (Lemma 6), so any A4, B-edge is a link edge. Since
{B, C} is also linked by some yz, any edge between A and C forms a triangle with
y, contradicting Lemma 7.4. Hence we may assume A has a vertex independent of
C, and then B+« C (Lemma 6). Now any A,, C-edge violates Lemma 7.4. Finally,
A'«a & B, Cforce A"+ C.

(2): Three applications of Lemma 7.1. (3): By §' & A, & b« B’; similarly for
T’ — A’, (4): By Lemma 7.4, since every vertex of RUSU T’ has a neighbor in By;
similarly for R"US’U T and A4,. (5): By (RUS)«> ¢ & A, < B; similarly for T« A.
(6): By Remark 1, since now N(by) = S’ for any y € B, and N(ax) = T'UC for any
xeA;.(MBy(RUS)—a& B, T O

Lemma 17 makes no comment on adjacencies for AB. Here we can obtain
{c¢> = ABUcasin Theorem 6.2 if k = 1. Even when k > 1, we know of no counter-
example to this conclusion.

Lemma 18. If abc is a c-critical Type 2 triangle, then AB — {c) is the disjoint union
of sets AB, and AB, such that A, <> AB,| B, and A, | AB, < B,. If k = 1, these sets
are empty, i.e. {c) = ABUc and |C| = 2q 4+ |ABC|.

Proof. Choose xe€ A,, ye B, ue AB. If u<x, then u| B, (Lemma 7.4). Now
ue A, since {¢c> = N(x'y) for all x’ € A; (Theorem 4.2). Similarly A4, [u« B, if
uey. Ifulx,y, thenue N(xy) = {c>. If k = 1 and u € AB,, then u < A. Since also
u o x forces N(c) < N(x)U N(u), and since x «» B, we conclude that uax is a domi-



Large Regular Graphs with No Induced 2K, 191

nating triangle and N(a|ux) = (ABU ¢) — u, which contradicts the criticality of abc.
The symmetric argument yields a contradiction when u € AB,. Theorem 4.2 and
Lemma 5.1 yield |C]. O

These adjacency statements enable us to characterize large Type 2 G-graphs
with k > 1.

Theorem 17. If abc is a c-critical Type 2 triangle in G, v/r = &, and k > 1, then G is
the q-fold expansion of the graph J of Example 4. '

Proof. Choose a, b, ¢ and one vertex each from A4,, 4,, B, B,, C, §’, where sets are
denoted as in Lemma 17. Counting the neighborhoods of these vertices with
weights as indicated in Table 2 yields a total count as indicated there, where we
have included AB— C (Lemma 8) and the results of Lemmas 17 and 18. By
T—b&S - AUC, we have we S or we AUC for any we T. Hence every
vertex is counted at least 10 times, and v < ZLr. If equality holds, then every vertex
must be counted exactly 10 times, so ABC = AB—<¢c>=T =g, T« §', and all
other question marks become 0. Because the vertices were chosen arbitrarily from
the specified sets, setting a question mark to 0 forces complete independence. We
can now restrict our attention to the block adjacency matrix on <{a), (b), {c>, 4,
A,, By, B,, C, S,. To achieve v/r > %} and regularity, the sizes of these sets must be
in proportion to the weights in Table 2, because the vertices of any set whose size
is less than v/21 times its weight will have more than 10v/21 neighbors. With
[{c>] = g, this yields a 10g-regular graph with 214 vertices. To transform this
description into the g-fold expansion of J, relabel the sets listed above as T, A, C,,
b, C,, B, {a), 8, {c, respectively, in the notation for J in Example 4. O

Table 2. Neighborhood counting for Type 2 G-graphs with k > 1

Nbhd weight | 2 5 1 21 5 2 2 1
Vertlocat | @ b ¢ A, A, B, B C S Total

a |0 5 1 21 0 0 01 10

b1 2 01 0 0 5 2 0 0 10

ey | 2 5 0 0 0 0O 2 1 10

A, |2 00 0 0 5 2 01 10
A2 00 0 0 5 ? 21 10

B, |05 0 21 00 2 0 10
B0 5 0 2700 21 10
c|l0 01 01 5 2 01 10
S'12 01 21 0 2 20 10
S|12 01 0 ? 5 2 ?7 ? 10

T 10 5 1 01 5 2 01 15

T |0 5 1 21 0 ? ?2 ? 9

AB, |2 5 0 2?7 ? ? 2 7? 11
AB, | 2 5 0 ?2 7 5 7 2 7 14

R |2 5 1 21 07 2 7 13

R 2 51 0 ? 5 2 ? ? 15
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In light of the somewhat unexpected appearance of J in Theorem 17, let us
consider other alternate interpretations of J. In turns out that J has many critical
triangles. In describing the corresponding structure, it is convenient to introduce
=8 ~(by>and T" =T — {a).

Example 9. Given the description of J as in Theorem 17, choose u € §" and x € 4,.
We have u> CUB, x— B, and N(b) = N(u)U N(x). Hence aux is a dominating
triangle. If x <> BC, then it is a critical triangle, with N(u]ax) = C. We also have
N(alux) = S, N N@u) and N(x|au) = B; UN(bc|u). Then BC«— x&u«> C force
N(bc|u) <> C. By Theorem 4, {N(a|ux), N(x|au)} is also linked, so this is another
Type 2 triangle. However, k = 1 for this u-critical triangle aux. This relabeling
corresponds to the fourth row in Table 3. Each row of Table 3 designates triangles
obtained by taking a vertex of each of the three sets in the first column, the third
set being the critical one. The entries in the interior of the table are the set names
under the alternate description.

Table 3. Alternate interpretations of J

Set size 2 5 1 2 1 5 2 2 1
Set name | (@) (b) () A, A, B; B, C S’
Triangle New name of set Notes
{a}bXe) | {a) (b () A, A; B, B, C § |11
CB,A, C B, A, By () (b A, (@ S |11
B,A\S" | BC A C (b} C B {a) AC {c) | 12
(@)A S’ (a) A S {6y 8" B T C (c) | 13
CB,S’ C B s T 8 A (b)Y {(a) {c) | 13
A
B

Aga)S’ () B T T Ae) C 8" ey | T4
{c)CS' S A (& C T T by ey | T4

ﬂType 2, B = 2, description in Theorem 17

gType 1, graph J of Example 4!

%4Type 2, k = 1, Lemma 20, Theorem 18
Type 2, & = 1, Lemma 19

In the remainder of this paper, we study Type 2 G-graphs with 4| C; these
are precisely those with k = 1 (Lemma 17.1) and include all those with v/r > %5
(Theorem 17). The sketch in Fig. 6 applies for the remainder of the paper;
known non-adjacencies are not indicated, and for clarity the forced edges
ABC > {{a), (b}, {c)} and R« T are also omitted.

For easy reference, we collect the current information for Type 2 triangles with

=1 in the block adjacency matrix of Fig. 7. Question marks denote unknown
submatrices. If these are not constant, then these sets may break into smaller
equivalence classes, but already every equivalence class is confined to one of these
sets.

For the Type 2 graphs with k = 1, we consider two cases: T’ # &5 and T' = &.
In each case, we find that such a graph has at most 2}r vertices, with equality only
for expansions of J. The main techniques are comparison of rows in Fig. 7 and
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Fig. 6. Canonical sets for Type 2 c-critical abc with A||C

AC —(b) BC —(a)
S's'T'T

=
&
RS

[

- == I e R I ]
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{a) 0
(&)
()
A
B
C
S
S’
It
T
R
R’

e | OO e = (OO e
= = O OO = O = O =
—oloRmrrolomo|loo ~ X
SO m - oSO mlmoRrlo~OW
— oo v wloRoi—~o oM
ORI IR I I e =
N0 e O O = O
B I R CRECE R S Uy S

D O g 2 0 O = =
B R R Y i S e

Fig. 7. Block adjacency matrix for Type 2 G-graphs with A||C

Remark 1. Since |C| = 2q + |ABC|, any pair of vertices in a triangle has at least
2q + |ABC| common non-neighbors (by c-criticality), and the number of common
non-neighbors is exactly ¢ more than the number of common neighbors (Remark
1). When T” and {a) are used together, we may use the alternate expression T U a;
similarly for §” U <{b> = SUb. We say that {B, C} generates a triangle if some edge
between B and C belongs to a triangle.

Lemma 19. If abc is a c-critical Type 2 triangle with A||C and T' # &, then

1. |R| +|T'| = |S| — q > q + |ABC|, also |TUa|>2q +|ABC| and |SUa| >
g+ IR|.

2. If {B, C} generates a triangle, then v < 2jr.

3. If {B, C} generates no triangle, then RUS"||C > T" — §" and §' < R.
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4. If v/r > 29/14 and §" « T", then |R'| < q and S" is an independent set.
5. If v/r > 3}, then G is the q-fold expansion of J.

Proof. (1) If ye B and we T’, then byw is a triangle. From Figure 7, we have
N(by) = S’ and N(by) = RU T’, also N(wy) € TUa and N(wy) = RUSUb.

(2): Suppose ye B and z € C form a triangle with w; note that w e N(yz) &
RUS". We have |N(yz)NS"| = q + |R'|. By (1) we may select some u € §’; now
u— z forces N(b) < N(u) U N(z), which implies N(uz) = 8" U (b>. Since uzc is a
triangle, we have [N(uz) N(SUb)| > 2g + |R| + |R’|. Since N(yz) and N(uz) are dis-
joint, together we have |[SUb} > 3g + |R| + 2|R’|. Now r = d(c) > 10q + 4|R| +
6|R’|. This implies v < #}r, with equality only if ABC = & and r = 10q. In particu-
lar, R = & and w e §”. Equality also requires |T'| =g, |C| =|8'| =|TUa| = 24,
and [SUb| = 3q, which yield | B| = 6q (Lemma 5.1). Since d(yz) > g, we conclude
that z has g, 64, q, 2q, neighbors in {c¢), B, §", §', respectively, which implies z|| T".
Now w ez & b+ BC force w+«> BC, yielding the contradiction N(b) = N(w) — z.

(3): If { B, C} generates no triangle, then C||(RUS”). Also N(yz) = {a) for any
ye B and ze C (Theorem 3), and hence T"«+> C. Now §"«a& C— T” force
S"o T, and R>b& C« § force R §'.

(4): From (1), r = d(c) = 8¢ + 4|R| + 6|R’|. If v/r = 29/14, this implies |R’| <
g. If wu’ is an edge in S”, then (N(b)UN(A)) =€ Nw)UN(u'), which yields
SUT'UABC <« Nw)UN(@w'). If we count N(u), N(u'), and twice N(B) (using
§"—T"), we obtain 4r >20+2—|S|+|T'|+|R|—|R|=2v+2—q— |R],
contradicting |R’| < g.

(5): If v/r > 2%, then the hypotheses of (3) and (4) hold, so §” is independent. If
u e §”, then u|| S’ implies N(u) < N(b). Hence Lemma 2 implies there exists w € '
with ' w §” (this also holds vacuously if §” is empty). We again count vertex
neighborhoods, using this vertex w € §’ and one vertex each from {a), {b), {c), A4,
B,C, T", T', weighted as indicated in the columns of Table 4. The count for vertices
in each set appears in the rows. The 21 vertex neighborhoods count each vertex at
least 10 times. Hence v/r < %%. If equality holds, then each vertex must be counted
exactly 10 times, which implies that " = R = R’ = & and each question mark in

Table 4. Neighborhood counting for some Type 2 G-graphs with k = 1

Neighbd weight 1 21 5 5 2 2 21
Vertex location —> {a) (b) (¢} A B C we€S'T'T  Total

{a) 0 2 ¢ 5 0 0 2 00 10
(&) 1 01 0 5 0 0 21 10
{c) 1 2 0 0 0 2 2 21 10
A 1 0 0 0 5 0 2 20 10

B 0 2 0 5 0 2 0 01 10

C 0 0 1 0 5 0 2 20 10
S’ 1 01 5 0 2 0 ? 1 10
T 0 2 1 5 0 2 ?7 0 ? 10
T 0 2 1 0 5 0 2 70 10
S 1 01 0 5 0 2 2 7? 11

R 1 21 0 5 0 2?7 ? 11
R’ 1 2 1 5 0 2 ? 0?1 12
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the other rows must become 0. Since $” = &5, we can now let w denote an arbitrary
vertex of §'. The block adjacency matrix is now that of J, as described in the last
two lines of Table 3. We obtain the g-fold expansion of J by letting the size of each
set be g times its weight. Furthermore, this is the only way to achieve v/r > 2} and
regularity, because the vertices of any set whose size is less than v/21 times its weight
will have more than 10v/21 neighbors. dJ

The remaining case is k = 1 and T" = &. The adjacency information known at
this point appears in Fig. 7.

Lemma 20, If abc is a c-critical Type 2 triangle with A||C and T' = &, then

1. R = & and {{b), B} generates no triangle.

2. §'is an equivalence class of size q.

3. If S & 8", then S —&(T"UR US").

4. If ' & 8"||C, then |{a)| = q,|A| = Kb)| = |C| + |T"|,and |B] = 2|C| +|\T"| +
18]

Proof. (1%: If T' = &, then N(by) = R for all y € B. If R # ¢, then |R| = |[N(by)| —
q=|C|—q=gq+|4ABC| > |R|.

(2): Follows from (1), N(by) = §', and Theorem 3.

(3): By (2}, we can pick ue S, x € A arbitrarily. Then axu is u-critical, since
T' = & implies N(ax) = C and u <> C. Let concatenations of 4’, X, U denote the
sets in the vertex partition induced by axu as a dominating triangle, just as concate-
nations of 4, B, C are used for the partition induced by abc. We have U = C, A’ =
(hYU(S"NNm), X =BU(T"NN@), AX =S URNNw)—u, XU=<adU
(T"NNW)—a, AU=<c>U(S"NN(@w)), and A'XU = (R'NN(u)). Since b|C,
{A',U} is not linked. However, b«>(BUT") and B ({b)US"), so {A, X} is
linked. Also C«>u&b > (T" N N(u)) force C«>(T"NN(u)), so {X,U} is linked.
Therefore, axu is a Type 2 u-critical triangle with {4’, U} non-linked (i.e., a has the
same role as before). By u«— S§”, we have A'||U and the value of “k” for axu is 1.
(Note: this is also implied by Theorem 17 if we assume v/r > 2% and G # J.) This
means that, in addition to A’X = (u) (Lemma 18), both A’ and X are equivalence
classes (as are 4 and B in Fig. 7). Hence there are none of the second type of vertex
in the description of A’, X, A’X and we have u > (T"UR’US").

(4): If S”||C, then {B, C} generates no triangle. As in Lemma 19.3, Theorem 3
implies N(yz) = {a) with size q, and hence T" <> C. We obtain | 4| from {a) vs. {c),
[<b>]| from B vs. §’, and |B| from (3) and b vs. §". O

This structural information enables us to characterize a class of Type 2 G-
graphs. Although these seem like many assumptions, we shall see that they all hold
‘when v/r > %4 and G # J.

Theorem 18. Suppose abc is a c-critical Type 2 triangle with A|C, T' = g,
S S"|C, T = @, and §” independent. Then G is the g-fold expansion of the graph
H,, of example 3, for some m > 2.

Proof. All the conclusions of Lemma 20 hold. Note that the relabeling of J in
Example 9 that has T’ = & is forbidden by S” | C. In Fig. 8 we collect the current
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Size q t gq t2t+S71t | ISl @ | t—2¢q
Class | (a){b){c) A B C s 8 R’
(a) 011 100 11 1
(b) 101 010 00 1
{c) 110 001 11 1
A 100 0160 01 1
B 010 101 10 0
CJOOI 010 01 1
S 101 010 01 ?
S’ 101 101 10 1
R’ 111 101 ?71 ?

Fig. 8. Block adjacency matrix for certain Type 2 G-graphs

status of our block adjacency matrix, together with the known set sizes, using
t=|C|=29+|R|

The only unknown adjacencies are in §” U R’. Since S” <> B||R’, we can apply
Lemma 16 to §” and R’. We obtain partitions of $” and R’ into equivalence classes
S4,...,S,and Ry, ..., R, such that N(S;)N R’ = R, = N(R;) N R'. Furthermore, the
equivalence classes in 8” and in R’ have the same size.

Ifh=0,then "= R’ = @ and t = 2¢, and G is 6g-regular on 13q vertices. As
a degenerate instance of the encoding described below, we can express G as H,.
Hence assume k> 0. Now uy for ye B, u€ §; is an edge not on a triangle, so
g = |N(uy)| = |R;| (Theorem 3). Any vertex outside R’ now has 3t + |§”| neighbors,
and w € R, has 4t + |S”| — |S;| neighbors, so |§;| = t. We also havet — 2g = |R'| =
hq,so t = (h + 2)q and |S"| = t(t — 2). Now G is the g-fold expansion of a graph
that is isomorphic to H, by setting @, =<b>,0, =B, 0, — U, - U, =58",0, =S,
u, =a, u, =¢, Qs —u; —u, = R’, corresponding to the c-critical triangle pre-
sented in Example 3. OJ

Finally, we conclude that we have found all the large G-graphs.

Theorem 19. If G is a G-graph with v/r = 2%, then G is one of H,, J, or G, for
1<k<5s.

Proof. By Lemma 21.5 and Theorems 11, 12, 16, 17, 18, it remains only to prove
that 1f G # J and G has a Type 2 c-critical triangle abc with T" = &, A|C, and
v/r > %, then G satisfies the hypotheses of Theorem 18. We noted i 1n the proof of
Lemma 20.3 that Theorem 17 implies 8’ <> S” when we assume v/r > 3§ and G # J.
If $”||C fails, then {B,C} generates a dominating triangle uyz with u€ 8", y € B,
z € C (Lemma 4). The sets N(yz) < T"U<a) and N(uy) = T"UR’ are disjoint and
together have at least 4g + 2|R’| vertices (Theorem 4.3). By Lemma 5.1, [4]| >
5q + 2|R’|. By Lemma 20.3, any vertex of S’ has at least 12¢g + 5|R’| neighbors,
which requlres v<Br.

If uu’ is an edge in S”, then N(uu') =2 <adU<c)>UBUS" and N(uu') = <b)U
AUCUS". Substituting in the known set sizes from Lemma 20.4 and applying
Remark 1 yields 6q + 3|R'| +2|T"(|S"| = 4q + |B| = 8¢ + 2|R'| + |T"| + |§"].
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The resulting |R'| + |T"| > 2q yields r = d(b) = 10g + |R’| + |S”|, which requires
v/r < 5. Hence §” is independent.

Finally, suppose there exists w € T”. If w — §” (including §” = &), then N(y) =
N(w) — ¢ for any y € B. Hence there exists u e $” with u|w. Now we N(uy) =
N(u)N(T"UR’) is an equivalence class of size g, since uy belongs to no triangle.
Hence |T”|>gq. From ¢ vs. w we have 4| =|(S"UT"UR’)— N(w)|. Since
|A| =2q + |R'| + |T"| (Lemma 20.4), we have |S”| > 2q, with equality only if
w|$”U T"UR'. Collecting the contributions to d{c) from Lemma 20.4, we have
r>6q+|8" +2|T"| + 3|R'| > 10gq, i.e. v/r < 2. Equality requires R’ = & and
w| S”, but then a <> 8" & T” « C force a < C, which is a contradiction. O
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