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1. Introduction

Throughout this paper, a poset P is an ordered pair (X, <,) in which <, is an
irreflexive and transitive binary relation on a finite set X of cardinality n > 3. We
write x ~y if x,y € X, x #y, and neither x <,y nor y <, x. P is linearly ordered
if ~ is empty. A linear extension of P = (X, <,) is a linearly ordered set (X, <,)
with <, < <, and when x ~ y we define p(x < y) by

number of linear extensions of P in which x <y

x<y)=
plx <) number of linear extensions of P
P’s height is the number of points in a maximum-cardinality linearly ordered subset
of P, and its width, w(P), is the number of points in a maximum-cardinality subset
of X in which <, is empty.
For every poset P that is not linearly ordered, let
d(P) = max min{p(x <), p(y <x)}

X~
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so that 0 < 6(P) < 1/2. We prove the first of the following theorems about &(P) for
height-2 posets.

THEOREM 1. &(P) = 1/3 for every height-2 poset.
THEOREM 2. lim,,_, , min{5(P): P has height 2, w(P) =m} = 1/2.

The latter theorem was recently proved by Komlos [5] as part of a more general
result for the limit 1/2.

Theorem 1 is motivated by the conjecture [3,7] that &(P) = 1/3 for every
nonlinear P: see Figure la. Kahn and Saks [4] prove 8(P) > 3/11 for every
nonlinear P. Linial [6] proves §(P) > 1/3 for every width-2 P, and Brightwell [2]
does likewise for every nonlinear semiorder. Aigner [1] proves that the only width-2
P’s with §(P) =1/3 are ordinal sums (vertical stackings) of single points and the
Figure la poset. He conjectures that 6(P) # 1/3 for every P with w(P) = 3. Saks [7]
reports that the smallest known 8(P) for width-3 posets is 14/39: see Figure 1b. A
computer program of Gehrlein’s for generating all small-n posets shows that no P
with w(P) =3 and n <9 has a §(P) smaller than 14/39.

Theorem 2 is motivated by the conjecture [4] for all posets that
inf{8(P): w(P) =m}—1/2 as m —» o0. Komlos’s proof of a specialization of this
conjecture [9] is the first firm evidence for the general conjecture.

We have further results on the smallest §(P) for height-2 posets for fixed n or w.
Let V,, be the 2m-point poset with m minimal points /;, 4, ..., /,, m maximal
points u, Uy, ..., U,, and [, < u, <> j <i. Also let V' equal V,, plus an isolated
point: see Figure 2. Let

3, =min{d(P): P is an n-point height-2 poset}

8(m) = min{d(P): w(P) = m, P has height 2}.
We have verified

dm+ 1) =65, =0y =0(V,,)=0(V})

I .

8Py =1/3 8(P) = 14/39
(a) (b)
Fig. 1.
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V¥

v, v, vi
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o(P)=2/5=04 MP)=8/19=0421...

V, Vi
\ ~ J

S(P) = 504/1145 = 0.44017 . . .

Fig. 2. § maximizers.

for m=2,3,4, and conjecture that it holds for all m > 2. Figure 2 shows the
realizing posets. Further calculations give

8(Vs) = 15940/35505 = 0.4495 . . .
8(V,) = T18050/1566813 = 0.4582 . . .
8(Vyo) =0.4748 . ..

8(Vys) =0.4836 . . ..

The next section covers preliminaries that prepare for the proof of Theorem 1.
The full proof appears in the final three sections.

2. Proof Preliminaries

For a height-2 poset P = (X, <), let X, be the set of nonmaximal minimal points,
and let X, be the set of nonminimal maximal points. Take n, = |X,| and n, = |X,|.
This leaves n, = n — (ny + n,) isolated points bearing ~ to all others. If n, = 1 then
p(x <) for x, y € Xy X, is independent of the isolated points, so 3(P) = o(P with
the isolates removed). For Theorem 1 it therefore suffices to prove that §(P) > 1/3
for every height-2 poset for which n = ny, + n, = 3. In view of duality (inversion) we
assume also that n, > n, and work henceforth with

P ={P: P has height 2, n=ny+n,, n >=ny}.

Let & denote the set of linear extensions of P € 2. Taking the L € £ as equally
likely, p(E) for event E on ¥ is the probability that E obtains. By prior notation,
p(x < y) is the probability that x is below y in Z.

Given P € 2, for each x € X| let f(x) on &£ be the random quantity with value
k at L € & when exactly k — 1 points in X are below x in L. The probability that
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x is in the top position is

1, =p(f(x) =n).

Because every point in X, is covered by at least one point in X, £, ¢, = 1. Because
every point in X, covers some point in X, p(f(x) = 1) =0. Moreover,

L=p(fx)=m)2p(f(x)=n—-1)22p(f(x)=2) (hH

since x € X, is maximal and can be interchanged with the point immediately above
it in L to yield another L e % when it is not already on top. The preceding
inequalities and the fact that X, p( f(x) =k) =1 imply

t, =z 1/(n—1) forevery x € X|.

For each x € X, let
hx) =Y kp(f(x)=k). [p(flx)=1)=0]

the average “height” of x in &. By (I). A(x})=22+Z(k —2)/n—1) =2+
(n —2)/2. Also, by packing as much probability for / as possible near the top.
we have W(x)<tfn+m—D+-+m—qg+ 1] +(1 —gt.)n—gq), where g =
[ 1/t, |. This gives

W)y <nm+ L1 )L e e 246 2—1D) <n+5—1/(2t,).
Therefore, for all x e X/,
n24+1<h(x)y<n+3—1/(2t,). (2)

These bounds provide information about |A( y) — A(x)| that is used in the next two
sections to verify 1/3 < p(x < 1) < 2/3 for all but the smallest (s, n,) pairs.

3. Proof: Part 1
This section proves that if P e 2 and (n,, n,) is not in
N={8.8).(7.7.....(2,2)} u{(7,6).(6,5),.... (2, O}

then 1/3 < p(x < v} < 2/3 for some distinct x, y € X,. A tighter and more complex
analysis in the next section shows that the same thing is true for the larger (1, 1)
in N. The remnant of smaller (n,, n,) in N is analyzed in the final section.

Given distinct x, y € X, let

B=px<y) and h=p(f(p)—fx)=1)=p(flx)—f(N=1),

where the p equality follows from interchanges of adjacent x and y in ¥. We prove
that

h(x) — h(y) > (1 — 2B — B*)/(2b), (3)
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and will combine this with (2) shortly.
Let

a =p(f(x)=f(y) =k and b, =p(f(y) —f(x) =k)
fork=z1l.s0 B=px<y)=Zbh,1-B=p(y<x)=Za,,b=a =b, and

h(x) — h(y) = ; k(a, — by)-

The final paragraph on p. 120 in Kahn and Saks [4] shows that, given fixed B and
b=a =b,, Lk(a,—b,) is minimized by making the partial sums aq, + a,,
a+a,+as,..., as large as possible and by making the partial sums
by +b,, b+ by, ..., as small as possible.

Consider the a,. Suppose L ¢ & has f(x) —f(y) =k + 1,k > 1. When y and the
point immediately above it are interchanged, we get another linear extension for
which f(x) — f(y) = k. This operation is one-one, s0 b > a, > a; > - - - . Hence the
partial g, sums, beginning with a,, can be no greater than b, 26, 36, ..., until 1 — B
is exhausted. Consider the ;. As shown in Kahn and Saks [4], especially the proof
of Lemma 2.6, the partial b, sums can be no smaller than those of the geometric
series b, b(1 —b6/B), b(1 —b/B)?, ..., where ¥ b(1 —b/B)* ' = B.

Let r = (1 — B)/b |. Then

2 ka, =Y kb, > Z kb +(r + 1)1 — B — rb) — i kb(1—b/BY 1.
k=1 k=1

Strict inequality holds if #, > 3 because of the infeasible tail in the later sum. That
sum equals B%/b. Let

S = Zr: kb +(r+ 1)1 — B —rb).
k=1

Observe that r <(1 —B)/b <2(1 —B)/b—1, hence that 1 — B—5/2 —br/220,
and that —r > —(1 — B)/b. Therefore
S=r(1—B—b/2—br/2)+(1—B)

=[(1—-B)/b—11(1—B—b2—br/2) + (1 —B)

2[(1-B)/b—-11-B—5b2—-(1-B)2] +(1 —B)

=(1— B)%(2b) + b/2

> (1 — B)*/(2b).
Thus Z k(a, — b,) > (1 — B)*/(2b) — B*/b = (1 — 2B — B»)/(2b), and this verifies
3.
( )Since 1—2B — B? decreases in B and equals 0 at B = ﬁ —1, it follows
immediately from (3) that if 0 > A(x) — A(y) then B > \/5 — 1. Equivalently, for all
x,yelX,

h(x) = h(y) = p(x <y) <2—/2<2/3. 4
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Moreover, since (3) says that b[A(x) —h(y)] > (1 —2B — B?/2, and since
(1 -2B — B%/2=1/9 when B =1/3,

h(x) 2 h(y) and blh(x) —h(y)] <1/9 = p(x <y) >1/3. (3)

We use (2) to show that the hypotheses of (5) hold for some x,y e X; when
(n,,my) ¢ N.

For convenience henceforth let m =n,;, so m = n/2. Also let X, ={1,2,...,m}
and without loss of generality suppose that

Vn-1)<y << <1,

Fix k in {2,...,m}. By (2), k(1) through h(k) all lie in [n/2 + 1, n +1 —1/(2t,)].
Therefore, regardless of the ordering of A(1), . . ., h(k) within this interval, there are
distinct i, j < k such that

(n —1)/2—-1)21,)

W) > (i) and hG) — h(j) <

Since p(f(i) —f(j) =1) <1, as seen by moving maximal i into the top position of
L whenever f(i) — f(j) = 1, we have

b <min{t,, 1 }. (6)

In particular, b < t,, so b[ha(i) — h( )] < [(n — D, — 1]/[2(k — 1)].
It follows that there are x, y € X, such that

. (n - l)tk - 1

h(x) = h(y) and blh(x) —h(y)] < L v
Let Z =min{[(n — 1)t, — 1]/[2(k — 1)]}. When ¢, is fixed, it is easily seen that Z is
maximized when the min arguments are equal, or when Z2(k — 1) =(n — )1, — 1
fork =2,...,m. Summation yields Z(m — 1)m=(n - 1)(1 —t,) —~(m —1),s0 Z is
maximized globally at min ¢, = 1/(n — 1). Hence Z < (n — 2)/[m(m — 1)] — 1/m.

Therefore there are distinct x, y € X, such that
n—m-—1
> —h <

Hx) > h(y) and blAG) — RO < B
Given (7), p(x <y) >2/3 by (4). By (5), 1/3<p(x <y) if

n—m—1 1

— <.

mm—1) 9

Q)

Given n = m + ny and m = n, = n,, it is routinely checked that this inequality holds
except for (n,,ny) € N.

4. Proof: Part 2

We modify the preceding proof after (6) to obtain the desired result for the larger
(n,, ny) pairs in N.
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Fix k €{2,...,m} as in the paragraph of (6). Suppose
h(o,) < h(o,) << hlay),
where g, 05, ..., 0, is a rearrangement of 1,2, ... k. Then, with b as in (6),
blh(o, 1) — h(a,)] <min{z, ,t, Ao, ) — h(o,)],

for i=1,...,k—1. Let s, =min{z,,¢
1 <i<k—1.Then

} and d,=h(s,,,) —h(c,) =20 for

O 41
min blh(o, 1) — h(o,)] <min{sdy, ..., s dy_\}
<1<k

with £ d, <(n — 1)/2 — 1/(2¢t,) by (2). Sequence s,, 55, . . ., s, has ¢, at least once,
t, or t, at least twice, ..., so

min b[i(o,, ;) —h(o,)] <max min{t,d,,..., 1, _,d,_}, (8)
k @)

1€ <

where (d) denotes the set of all nonnegative sequences d,, . .., d, , whose terms
sum to (n—1)/2—1/(2t,). Therefore max,, min{td,} is realized when fd,=
tdy=---=t_d_,. U k=2, maxy min{td}=[n—-1)2-1/2L)L=
[n—1)/2=1/2R)/(1/1); if k 23,

max min{td,} =[(n — 1)/2 — Y2t )/, + 1ts + - -+ 1/t _ ).

Let v,, v, ..., 1, be twice the max,, min values at k =2, 3, ..., m respectively,
and let

g =1/t for i=12,...,m
Then, by the preceding paragraph,
qiva+ g, =n—1
(g0 +g)vs+g:=n—1
(@ + g+ g)va+qa=n—1 &)

(ql + - .+qm~l)vm+qm =n—L
Moreover, by (8), there are x, y € X, such that
h(x) 2 h(y) and blh(x) — h(p)] <min{v,, vs,...,0,}/2.

If min{v,, ..., v, }/2<1/9 also, then 1/3 < p(x < y) < 2/3 as in the analysis follow-
ing (7).
Let

V =max min{v,,...,v,},
@
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where (g) denotes the set of all sequences ¢, ¢,, - . -, 4,, that satisfy (9) subject to

n=-1)2q>qpz " 24¢,>0 and ) ljg =1 (10)
=1
Because of the nonlinearity caused by X 1/g, =1, determination of V is more
complex than the determination of max Z that precedes (7).
An analysis of (9) subject to (10) shows that ¥ obtains when one of the following
three things holds:

[A] vy>v3=0v,="""=v, with ¢, =¢q,;
[B] vy=vy="""=0,;
€l ai=q2="""=Gn

In particular, if neither [A] nor [B] holds, then either

[D] v, >v, for some j, k >3, or

[E] v,>v3=---=v1,, and q, > q,, or
[F] va<v3=---=0,,
and in each a change in ¢ that satisfies (9) and (10) will increase min{v,,...,v,},

except perhaps when [C] obtains. For example, min increases under [E] when g,
and g, are moved closer together: with 1/q, + /g =¢, ¢; + ¢ = q: + q,/(cq, — 1);
the derivative of the latter expression with respect to g, is positive since cgq, > 2
given g, > ¢,; hence ¢, + ¢, decreases when ¢, decreases and, by (9), this forces each
of vy through v,, to increase. Similarly, if [F] holds, v, will increase as we move g,
and g, farther apart: we cannot have ¢, = ¢, to begin with since this implies that
v, > ;. But we might have g, = n — 1 for [F], in which case a decrease in ¢,, or in
both ¢, and ¢, if ¢, = ¢,, and a compensating increase in ¢,, will increase v,.
Suppose [D] obtains. If ¢; > ¢, and v, > min for k > 3, we increase every v, other
than v, by decreasing ¢, and increasing ¢,. This move is feasible unless g, _, = ¢,,
in which case v, _; >uv,, and continuation with k — 1 in place of k leads to the
conclusion that we increase min unless ¢, >g¢,="''=¢q;, which requires
v, > 13> - >v,. But then the move described for [E] increases min. On the other
hand, if [D] obtains and ¢, = ¢,, we can increase min{v,, ..., v, } unless perhaps

Hh=Gq="=Qqu_1 ZGn

Further analysis shows that we can do no better here than to take ¢, | = g,
which gives [C]: we omit the details.

Suppose henceforth in this section that one of [A], [B] and [C] holds along with
(9) and (10). As noted after (9), if V' <2/9 then 1/3 <p(x <y) <2/3 for some
x,yeX,. It turns out for the (m,n,) cases in N, that [A] yields V. The
max min{v,, . .., v, } values under [B] are smaller than those under [A], and the
values under [C] are smaller than those under [B]. We describe the analysis for [A]
and [C]. The analysis for [B] is similar to that for [A].
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Suppose [C] holds. Then ¢, = m for all i, and
min{v,, ..., 0} =0, =0 —1—m)/[mm — 1)).

It follows that v, <2/9 if and only if 9(n — 1) <2m?+ Tm. Since n <2m, ie.,
ny = ny, v, < 2/9 whenever m > 2. Therefore, given [C], all pairs in N have v,, < 2/9.
Suppose [A] holds. Let

g=q¢,=¢,, v=vy="""=p,=min{y,}, f=1/(1—0o).
The equations of (9) yield

n—1=g(1+v), ¢g=n—-1-2qv, q.=g;(1 —v)*=3* for k>4
By Z (1/g,) =1 and v = (f — 1)/, we have

_z+ ﬂm_z_l ——g+ y
g m—1-20)B-1) g (n—DB-2AB-1g’

where y = (™2 —1)/( — 1). This gives a quadratic equation in ¢ whose solu-
tions are

(= DB+AB—1)—y 2 [((n — DB +4(B — 1) —7)* — 16(n — 1)B(B — )]
1= 4B 1) '

Since ¢ 2 g;=n — 1 — 2qv, we require g = (n — 1}/(1 + 2v). Analysis then shows
that, when m = 6 and v is in the neighborhood of 2/9, we must use the + root of
the quadratic solution. With that root, ¢ = (n — 1)/(1 + 2v) reduces to

S 0B-DBm 242 -3
BB

When m = 6 and v is in the neighborhood of 2/9, or larger, the right side of the
preceding inequality increases in f, or in v since v increases as 8 increases. Thus, to
avoid the conclusion that v <2/9, hence that 1/3<p(x <y)<2/3 for some
x,y € X|, the preceding inequality must hold when § =9/7, i.e., when v =2/9. To
avoid the desired conclusion, calculations at § =9/7 show that if m =6 then
n—12>12 and, in general, if m > 6 then n >2m. Since we require n < 2m, the
desired result always hold if m > 6. Similar results hold for case [B].

When these conclusions are combined with those in the preceding section, we see
that 1/3 < p(x <) <2/3 for some x, y € X, except perhaps when (n,, n,) 1s in

N*={(5,5),(5,4),(5.3),(4,4),...,(2, D}

1

(11)

5. Proof: Part 3

The results for V,, and V} in the penultimate paragraph of the introduction cover
all pairs in N* except (5, 5). We conclude the proof of Theorem 1 by applying the
following lemma to (5, 5).
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Fig. 3. p(x <y)>1/3.

LEMMA 1. Suppose Pe ?. If x,y € X, and p(x <y) < 1/3 then x must cover at
least two points in Xy not covered by y. If x,y € X, and p(x <y) = 1/3, then y must
be covered by at least two points in X, that do not cover x.

Proof. We prove only the first part since the other proof is similar. Suppose
X,y € X,. It is easily seen that p(x < y) = 1/2 if x covers no point not covered by y.
Suppose that x covers exactly one point z € X; that is not covered by y: see Figure
3a, where X, ={x,y}ud, X,={c}UB,uB,uB; and B,uUB,#§. Dashed lines
indicate possible covers.

The modified diagrams for x <y and y < x are shown in the lower part of the
figure. Let b,, ¢, and ¢, denote the number of linear extensions of (b), of (c) when
=<y, and of (c) when y <z < x, respectively. We claim that ¢, < ¢, <5/, from
which it follows that

b, i

i<y=——m—m—>—_.,
PE <R = e

Consequently, p(x < y) < 1/3 forces x to cover at least two points in X, not covered
by 1. We now prove the claim.

Suppose z <y in (¢). If B, =0 then ¢, = b, since (b) and (¢) with z <y are
identical up to the x, y labels. If B, #® then ¢, < b, since ¢, = b} when b} is the
number of extensions for (b) that have B, < x. Hence ¢, < b,.

Suppose (c) obtains. If B, =@ then ¢, < ¢, since a proper subset of the set of
linear extensions for ¢, is isomorphic by restrictions of the diagram for ¢, to the set
of linear extensions for ¢,. If B, # @, let ¢; be the number of linear extensions with
B, <z «<y. Then ¢, < ¢, since there are extensions with z below points in B,, and
¢» < ¢3 by subset isomorphism. Threrfore ¢, <c,. |
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We now analyze (n,, n,) = (5, 5) for P € #. We suppose that 1/3 < p(x < y) <2/3
never occurs and proceed to a contradiction.

Given this suppostion for (5,5) let X, ={1,2,...,5} and Xy = {x, x5, ..., xs5}.
Fori,je X;,let{ >, jmean thaticovers at least two points in X, not covered by . For
x,y € X,, let x <, y mean that y is covered by at least two points in X, that do not
cover x. By our supposition, if a,b,c€ X, or a,b,ce X, then [pla <b)<
1/3, p(b < ¢) € 1/3] = p(a < ¢) >2/3 = pla < c) <1/3. Therefore, by Lemma 1, we
assume without loss of generality that i >, jwhenever 1 <i <j < 5. Similarly, there is
a linear arrangement of the points in X, such that x <, y whenever x precedes y in the
arrangement.

Since 5 € X, covers something in X, suppose for definiteness that x, <, 5. By
4 >, 5, 4 covers two points in X, that differ from x,: call them x, and x;. Assume
X, <, X, fordefiniteness. Then x;is covered by two pointsin X, say aand b, that don’t
cover x,. Since 5 doesn’t cover x5, and 4 covers both x, and x;, {a, b} n {4, 5} — 0.
Assume a >, b for definiteness. One of the points in X, covered by @ and not  must
differ from x,, x, and x;: call it x,. The other X, point for @ >, b can also be new (x;s)
or it can be x,. However, because b covers two points in X, not covered by 4, this forces
a sixth point in X;. Since this contradicts | Xy| = 5, the proof for (5, 5) is complete.

6. Discussion

We have shown that every height-2 poset with # > 4 has an incomparable pair for
which 1/3 < p(x < y) < 2/3. The smallest known J(P) for such posets is 2/5, which
obtains for ¥, and V. Itis almost certainly true that every height-2 P with n > 6 has
an incomparable pair for which 2/5 < p(x < y) < 3/5, but our approach only verifies
this for large # and for very small . In comparison with Theorem 2, which implies that
o(P)is arbitrarily close to 1/2 when s is suitably large, our methods show only that 6(P)
is at least as large asﬂ — 1 —¢ when nis large.

Two fundamental open questions about ¢ for height-2 posets concern its minimum
value o(m) for width-m posets, and the actual forms of the posets that attain this
minimum.

Q1. Is é(m) nondecreasing in m?
Q2. Does d(m + 1) =6(V ;) and, if so, is ¥} the unique realizer of é(m + 1)?
A positive answer to the first part of Q2 would answer Q1 in the affirmative.
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