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THE ORDER DIMENSION OF CONVEX POLYTOPES*
GRAHAM BRIGHTWELLt WILLIAM T. TROTTERS

Abstract. With a convex polytope M in a, a partially ordered set PM is associated whose elements are
the vertices, edges, and faces of M ordered by inclusion. This paper shows that the order dimension of PM
is exactly 4 for every convex polytope M. In fact, the subposet of PM determined by the vertices and faces is
critical in the sense that deleting any element leaves a poset of dimension 3.
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1. Introduction. We consider a planar map M as a finite connected planar graph
G (V, E) together with a plane drawing D of G, i.e., a representation of G by points
and arcs in the plane z in which there are no edge crossings. We do not distinguish
between a vertex (edge) of G and the corresponding point (arc) in the plane. Deleting
the vertices and edges of G from the plane leaves several connected components whose
closures are thefaces of M. The unique unbounded face is called the exterior or outside
face.

With a planar map M, we associate a partially ordered set (poset) PM whose ele-
ments are the vertices, edges, and faces (including the exterior face) of M ordered by
inclusion. As an example, a planar map M and its associated poset PM are shown in
Fig. 1, below.
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FIG. 1

With a convex polytope M in a, there is associated a planar map, which we also
denote by M. Among all planar maps, a well-known theorem of Steinitz [13] character-
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izes those associated with convex polytopes in 3. These are exactly the three-connected
planar maps. For example, the planar map in Fig. 1 is such a map.

Dushnik and Miller [2] defined the order dimension of a finite poset P, denoted
dim(P), as the least positive integer t for which P is the intersection of t linear orders.
The principal result of this paper will be the following theorem.

THEOREM 1.1. Let M be a planar map associated with a convexpolytope in ]a, and
let PM be the partially ordered set of vertices, edges and faces ofM ordered by inclusion.
Then dim(PM 4.

Before proceedingwith the proof, we pause to make a few comments concerning the
origin ofthis problem. Our original motivation comes from the study ofconvexpolytopes
in ’*. Theface lattice of a convex polytopeM is the poset consisting of all vertices, edges,
faces, hyperfaces, and so forth, partially ordered by inclusion. In Birkhoff’s lattice theory
book [1], the problem ofdetermining the order dimension ofthe face lattice of a polytope
in I’ is posed and is credited to Kurepa (see also Golumbic’s book [3, p. 137]). In I2,
the poset ofvertices and edges of a convex polygon has the following form. The point set
is {xi 1 < i < m} t.J {yi 1 < i < m}, and the order is given by x < y and x < y+l
(cyclically) for i 1, 2,..., m, where m > 3 is the number of vertices. Such posets are
easily seen to be three-dimensional. They belong to a well-known family of posets called
crowns [14]. (See Fig. 2.)

FIG. 2

If n > 4, there exist convex polytopes in R’ for which the face lattice has arbitrarily
large dimension. This phenomenon is due to the existence of cyclical polytopes that
have the property that they contain large sets of vertices each pair ofwhich is contained
in an edge. Spencer [12] showed that the order dimension d(m) of the poset of all 1- and
2-element subsets of an m-element set satisfies log log rn < d(m) < 2 log log m.

Accordingly, the problem is of interest only in R. Sedmak [11] reports on the ex-
istence of (nonconvex) polyhedra in 1 with face lattices of arbitrarily large dimension.
However, our Theorem 1.1 implies that the order dimension of PM is 4 whenever M is
associated with a convex polytope in R, so for example, the poset shown in Fig. 1 has
order dimension 4.

Also, we are motivated by the work of Schnyder [10], who proved the following
elegant characterization of planar graphs.

THEOREM 1.2. Let ( (V, E) be a graph and let QG denote the poset consisting of
the vertices and edges ofGpartially ordered by inclusion. Then G isplanar ifand only ifthe
order dimension ofQG is at most 3.

It is relatively easy to show that G is planar ifdim(Q) < 3. Schnyder’s argument to
show that dim(Qa) < 3when G is planar is quite complex and requires the development
of some entirely new concepts for planar graphs. However, Schnyder is able to capitalize
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on the fact that in this part of the proof, it can be assumed that G is a maximal planar
graph. In this case, a plane drawing of G without edge crossings produces a planar
triangulation M, i.e., a planar map M in which every face (including the exterior face)
is a triangle.

It is natural to ask what happens to the order dimension of the poset associated
with a planar graph if we add the faces determined by a particular drawing. It is not
at all clear why the order dimension should be bounded by any absolute constant, and
it is conceivable that a planar graph can be drawn as two different maps for which the
associated posets have different order dimension.

In the final section of this paper, Schnyder comments that it follows easily from his
Theorem 1.2 that if M is a convex polytope in 13 in which every face is a triangle, then
dim(PM) < 4. By duality, the upper bound dim(PM) < 4 also holds if every vertex has
degree 3. For these reasons, the problem of finding an upper bound (if one exists) when
M is an arbitrary convex polytope in is a natural one.

We comment that Schnyder’s theorem can be derived easily from our results. Also,
we have been successful in establishing the upper bound dim(PM) < 4 when M is an
arbitrary planar map--allowing loops and multiple edges. As this result requires addi-
tional machinery, it will appear in a subsequent paper. For the general theorem, the
results and techniques of this paper will serve as an essential first step.

In the next section of this paper, we collect some facts from dimension theory. The
major part of the proof of Theorem 1.1 in 3 and 4 involves the construction of a
family of paths in a planar map. We fix three special vertices v, vz, va on the outside
face and then, for each other vertex z, find three vertex-disjoint paths from z to the vi.
Menger’s theorem tells us that, provided no pair of vertices separates any other vertex
from {vx, v, va }, we can find such a family of paths in the graph. We show that the fam-
ily we construct has certain other properties related to the plane representation of the
graph. This enables us to define three partial orders on the vertex set of the map, which
we use in turn to define three linear extensions of PM. In the fourth linear extension,
we require only that the outside face is below all vertices not on that face. These four
linear extensions then intersect to give PM.

2. Necessary tools from dimension theory. In this section, we describe briefly some
basic concepts of dimension theory needed in this paper. We refer the reader to the
monograph [17] by Trotter, the survey article by Kelly [5] and by Kelly and Trotter [6] and
the chapters in [15], [16] by Trotter for additional background material and an extensive
list of references.

Let P be a finite poset. We write zllg to indicate that z and g are incomparable
points in P. A family F {L1, L2,..., Lt } of linear extensions of P is called a realizer
of P if P L1 f3 L2 f3... f3 Lt, i.e., x < /in P if and only if x < y in L for i 1, 2,..., t.
The dimension of P is then the minimum cardinality of a realizer.

An ordered pair (x, /) of incomparable points is called a criticalpair if z < z implies
z <//and w > implies w > x for all z, w P. In Fig. 3, we show a critical pair in a
poset.

If (x,//) is a critical pair in a poset P and L is a linear extension ofP, we say L reverses
(x, /) if /< z in L. A family {Li, L2,..., Lt} of linear extensions of P is a realizer of P
if and only if, for every critical pair (z, /), there is some i so that L reverses (z, /).

When M is a planar map, a vertex, and F a face not containing , then (, F) is a
critical pair in PM" So every realizer must (at least) reverse each critical pair of this type.
We let D(PM) denote the least positive integer for which there exist t linear extensions
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FIG. 3

L1, L2,..., Lt reversing all critical pairs of the form (y, F), where y is a vertex and F is
a face not containing . Of course, we always have D(PM) < dim(PM).

We say that a planar map M is wellformed if the critical pairs of PM are exactly the
pairs of the form (V, F), where V is a vertex, F is a face, and V F. It is an easy exercise
to show that if M is a planar map associated with a convex polytope in ll3, then M is
well formed so that dim(PM) D(PM).

When L is a linear order on the vertex set V of a planar map M, V is a vertex and F
is a face of M, we write y > F in L when V > z in L for every vertex z E F. It is easy
to see that if L is any linear order on V, then there exists a linear extension L* of PM SO

that > F in L* whenever > F in L. Accordingly, to show that dim(PM) < 4 when
M is a well-formed planar map, we must produce four linear orders, L1, L2, L3, L4 of
the vertex set V so that for every critical pair (V, F), there is some i with V > F in Li.

3. Normal families ofpaths. When z and V are distinct vertices on the exterior face
of M, we denote by M[z, ] the sequence of vertices encountered in proceeding clock-
wise around the exterior face ofM beginning at z and ending at y. For the sequence ob-
tained by proceeding in a counterclockwise direction, we write M [z, V]. For example, in
the planar map M shown in Fig. 4, M[f, a] (f, t, v, t, a) and Mr[e, a] (e, v, b, a).

We call a triple (v, v2, vz) of distinct vertices from the exterior face of M a triad if
v+ M[v, v+] for a 1, 2, 3. (Throughout this paper, subscripts are interpreted
cyclically.) The triple (v, v2, vz) is a triad for the map M, shown in Fig. 4.

When P, P2,..., Pk are paths in M, we denote by S(P, P2,..., Pk) the set of all
points in the plane that belong to an edge in some Pi together with those points inside
any cycle formed by edges in the union of the edge sets of these paths. For example,
in Fig. 4, let P1 M[v, v2], P2 (c, a, g, v), P3 (c, b, d, v2). Then S(P, P2, P3)
contains the points from the edges in these paths and points inside the triangles T and
T.

Now letM be a planar map and let (vl, v2, v3) be a triad for M. Let " {P(x, v)
x E V, a 1, 2, 3} be a family of paths in M. We say that " is a normalfamily of paths
for (v, v2, v3), provided the following five properties are satisfied.

Path Property 1. For all x V and each a 1, 2, 3, P(x, va) is a path from x to va.
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Path Property 2. For all x E V {vl, v2, v3} and each a 1, 2, 3, the paths P(x, v)
and P(x, v+) have only the vertex x in common.

Path Property 3. For each c 1, 2, 3, P(v, v+l) M[v,,, v+] and P(v+, v)
M[v+, v].

Path Property 4. For all x, y E V and each c 1, 2, 3, if P(x, va) is the path
(x u0,u,...,ut va) and y ui for some i, then P(y,v) is the path (y
ui, ui+l,..., u v), i.e., P(y, v) is a terminal segment of P(x, v).

Path Property . For all x V and each c 1, 2, 3, let S(x, c) S(P(x, v+),
P(x, v+2), P(v+, v+2)). Then, for all x, y V and each c 1, 2, 3, if y S(x, c),
then S(y, c) c_ S(x, c).

For the planar map shown in Fig. 4, it is easy to see that there are two normal fam-
ilies of paths for the triad (v, v2, va). The only option is to choose P(b, v3) as either
(b, c, f, v3) or (b, d, e, v3). We say that x and y are c-equialent when S(x, c) S(y, c).
The reader is invited to compare Schnyder’s proof [10] of Theorem 1.1 and his con-
struction of families of paths in a planar triangulation. Note that when M is a planar
triangulation, Schnydr’s argument gives an explicit construction of a normal family of
paths for which there is no pair of (x-equivalent vertices.

Recall that a -conncted planar map is well formed. In the next section, we will
show that a 3-connected planar map has a normal family of paths for every triad. To
provide clear motivation for the concept of a normal family, we show how such a family
is used to establish the upper bound dim(PM) <_ 4 whenM is 3-connected. First, we will
need some additional properties of normal families ofpaths and binary relations defined
in terms of them. In what follows, let (v, v2, v3) be a triad for a planar map M and let

(P(x, v) x V, c 1, 2, 3} be a normal family of paths for (Vl, v2, v3).
LEMMA 3.1. /fc E {1,2,3}, x e V, y S(x,c)andy P(x,v+)t3 P(x,v+2),

then x P(y, v+) t3 P(y, v+2).
Proof. If x P(y, v+) t3 P(y, va+2), then x S(y, c), so S(x, c) c_ S(y, c).

However, y S(x, c) and y P(x, v+) t3 P(x, v+2) require S(y, ) c S(x, c). The
contradiction completes the proof.

For each c {1, 2, 3}, the binary relation Q defined on the vertex set V of M
{(x,y):S(x,a) S(y,c)} is obviously a partial order. Note that when

S(x.c,)

_
S(y, c)and S(y,c)_ S(x, c), we have xlly in Q. We simplify this bywriting
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S(x, a) S(y, a). However, we also have xlly inQwhen x and y are distinct a-equivalent
points, i.e., S(x, o) S(y, a). Note that when xlly in Q, there is a unique e {a +
1, a + 2}, so that S(x, ) S(y, ).

The general plan is to take a linear extension L of the partial order Q for each
c 1, 2, 3. However, we need for each L, to satisfy certain other conditions. Ideally,
we would like x > F in L whenever x it F and F c_ S(x, o). Since L extends Q, this
will certainly occur unless F contains a vertex y, which is c-equivalent to x. Indeed, it
may well be that x and y are a-equivalent, say with y P(x, c + 1), and there are faces
F and G in S(x, o) with F containing y but not x and G containing x but not y. In this
situation, we clearly cannot have both x > F and y > G in L. Can we put x > F in
one of the other linear extensions? Not in L+, since (x, y) Q+I. If F contains a
vertex w with (x, w) Q+, then we cannot put x > F in L+: either. Fortunately, if
F contains such a vertex w, then G cannot contain a vertex z with (y, z) Q+, (see
Lemma 3.4), so we may put (y, x) L, and force x > F in L. On the other hand, if
F contains no such vertex w, then we want to put (u, x) L+z for every u e F, to get
x > F in L+. We then must check that these relations do not conflict and that we can
find linear extensions L1, L2, L3 satisfying these various requirements.

More formally, we proceed by defining for each c { 1, 2, 3} a suitable extension
Q’ of the order Q, and then taking a linear extension L of Q’. To accomplish this,
we must first define some new binary relations on V. For each c {1, 2, 3}, define
z {(x, y) v w xlly in Q and S(y, a + 2) c S(x, a + 2)} and7 {(x, y)
V x V" xlly in Qa and S(y, a + 1) c S(x, a + 1)}.

Recall that the dual of a binary relation Q on a set V is the relation { (x, y) V x V
(y, x) Q}. The following result is then immediate.

LEMMA 3.2. For each c { 1, 2, 3},/a and arepartial orders on V, andT is the
dual of.

We think of/: and 77. as denoting "left" and "right," respectively. In what follows,
we will define binary relations c_ Z: and T c_ ; however, and :R will not
be dual. First set Z: {(x, y) :a" there is a face F and a vertex u y such that (1)
u,x F, (2)y e S(u,a+ 1), and (3) u P(y, va)}. IfF and u are as above, we say that
(F, u) witnesses (x, y) ..

Nowwe set/ {(x, z) Z:" there is some y with (x, y) : and (y, z) Qa or
y z}. If y is as above and (F, u) witnesses (x, y) Z:, we say that the triple (F, u, y)
witnesses (x, z) Z:. Thus, : is designed to capture both of the cases discussed above,
where we must impose (x, y) e L, although (x, y) Q, at least where (x, y) e .

We define 7 and 7 in the corresponding way. Thus we set { (x, y) 7:
there is a face F and a vertex u y, such that (1) u, x F, (2) y S(u, a + 2), and
(3) u P(y, va)}. As before, in this situation we say that (F, u) witnesses (x, y) 7.
Again, just as before, we set {(x, z) a there is some y with (x, y)
and (y, z) Q or y z}. If here (F, u) witnesses (x, y) e , then we say (F, u, y)
witnesses (x, z)

The next lemma provides some information about the binary relations : and
There is, of course, a symmetric version forT and 7.

LEMMA 3.3. Let c { 1, 2, 3} and suppose that (F, u, y) witnesses (x, z) ..
(1) If x and z are a-equivalent, then F c_ S(x, a), and y z (i.e., (x, z) .).
(2) If S(x, a) llS(z, a), then u and y are (a + 1)-equivalent, and both y and u are on

P(z,v+2).
Proof. We first verify statement (1). Suppose, then, that x and z are c-equivalent.

If z y, then S(y, a) c S(z, a) S(x, c), which is not possible. Thus, in this case,
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z y. If F S(x, a), then F C_ S(y, o + 1), so in particular u e S(y, a + 1). Since
also y E S(u, o + 1), this implies that u and y are (c + 1)-equivalent, so we must have
u P(y, v), a contradiction. This completes the proof of (1).

We now prove (2). Since S(x, a)llS(y, a) and (x, y) , it is clear that F c_
S(y, o + 1). Thus S(u, o + 1) c_ S(y, o + 1). However, we also have S(y, o + 1) c_
S(u, o / 1), so u and y are (c + 1)-equivalent. We do not have u P(y, v), so we must
have y P(u, v,). If y z, this completes the proof, so suppose that (y, z) e Q. Then
u S(z, c), but x is not in this region, so u is on P(z, v+2). Finally, y S(u, o + 1) c_
S(z, o + 1), and, since also y S(z, c), this implies that y is on P(z, Vc+2). [-I

Note that when (F, u) witnesses (x, y) E , the face F can be located in S(x, o) or
in S(x, t + 2). See Figs. 5(a) and 5(b).

(a) (b)

FIG. 5

Our goal is to prove that the binary relation given by Q’ Q uE toR is acyclic,
and then to take L’ to be a linear extension of the transitive closure of Q’.

LEMMA 3.4. If c { 1, 2, 3}, (x, z) and (z, w) , then x w and (x, w)

Proof. Take (F, u, y), witnessing (x, z) g, and (G, v), witnessing (z, w) g.
First, we consider the case where S(x, )llS(z, ). t R be the region bounded

by P(x, v), P(z, v), P(z, v+), and the clocise path from x to u round F. Note
that there are o slightly different situations, depending on whether F is in S(x, ) or
S(x, + 2). (See Figs. 6(a) and 6(b).) We claim that w R.

Since z is in the interior of S(x,+2) and shares a face with v, v is also in S(x,+2),
and hence, so is w. Mso w S(z, + 1). If F S(x, ), this suffices to prove our claim,
so suppose that F S(x, + 2). Now if v S(u, + 2), then so is w, and we are
done. However, z P(u, v+), so the only other possibili is that v 6 R, in which
case w is also in R, as required. Note that this also roles out the case where w x and
F S(x, + 2), since that requires v R.

Consider the path P P(w, v+) and the point it leaves R. If P joins the path
P(z, v+) and ets via u, then u S(w, ), so y S(w, ), and hence either (y, w)
Q, when (x, w) 6 , or y and w are -equivalent when (w, z) Q, a contradiction.
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The path P does not cross P(z, v), so the only remaining possibility is that it crosses
P(z, v). In this case, z S(w, c), and so (z, w) Q, unless S(z, ix) S(w, c).

By an earlier remark, we cannot have z w and F c_ S(z, + 2), so if S(z, c)
S(w, a), we have F c_ S(x, a). Now v is on P(x, Vc+l), but is not in S(z, oz), since, then,
P(v, Vo,) cannot go via w. Finally, P(v, v+2) exits R via u, but this contradicts Lemma
3.1. This completes the proof in the case where S(x, o)llS(z, o).

Now suppose that x and z are c-equivalent. We know that in this case y z. Sup-
pose next that z and w are also c-equivalent. If w is on P(x, V+l), with w x, then
(F, u) witnesses (x, w) /2, so we may suppose that w P(x, v,+2). Then (G,v)
witnesses also (z, x) . If v S(u, a + 2), then x S(v, a + 2) c_ S(u, a + 2),
which is clearly not possible. By symmetry, we are also done if u S(v, c + 1). So sup-
pose v S(u, o + 1) and u S(v, o + 2). (Clearly, we cannot have, for instance, v in
the interior of S(u, cQ.) Then v is in the region R bounded by P(y, v,+2), P(u, v,),
and F. Now consider P(v, v,+z). It cannot cross P(u, v,), since that would imply
u S(v, o + 1). Thus the path must join P(y, v,+:) and leave R via x. This clearly
contradicts x S(v, oz + 2).

Finally, suppose that x and z are c-equivalent, but that z and w are not. If (x, w)
Q,, then (x, w) 7., and x S(w, o + 2) S(v, oz + 2). If v is on P(x, v,), then so is
w, which implies (x, w) Q. If v is not on P(x, v,), then (G, v) witnesses (z, x) ,
which we have just seen is not possible. [3

Now for each c 1, 2, 3, let Q’ Q tA tA R.. We will show that Q’ is an acyclic
binary relation on V so that the transitive closure of Q’ is a partial order extending Q.

LEMMA 3.5. For each a 1, 2, 3, the binary relation Q is acyclic.
Proof. Suppose to the contrary that Q’ is not acyclic and choose a sequence zx, x,...

x so that (xi, x+) Q’ for i 1, 2,..., s. Without loss of generality, we may assume
that this sequence has been chosen so that s is minimum. Then the points x, xu,..., x
are all distinct. Furthermore, (xi, xi+z) it Q’ for i 1, 2,..., s.

Since Q is acyclic, we know that at least one ofthe pairs in {(xi, xi+) 1 < i < s}
belongs to tA R. By symmetry, we will assume one (or more) of these pairs is in.
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Since E c_ , we know that the relation is acyclic. It follows that there is some
i < s for which (x,x+) f_. and (x+,x+) Q, t_l R. If (x+,x+) Q,, then
(xi, xi+2) is clearly in ; whereas if (G, v, y) witnesses (xi+, xi+2) 7, then by the
previous lemma we have (xi, y) Q, U E, so (xi, xi+2) Q u.

With the preceding lemma,we are now ready to establish the upperbound, dim(Pi)
< 4, when M is a 3oconnected planar maly--under the assumption that M has a normal
family of paths.

THEOREM 3.6. Let (Vl, v2, v3) be a triad for a planar map M and suppose that
{P(x, va)" x E V, a 1, 2, 3} is a normalfamily ofpathsfor (vl, v2, v3); then D(PM) <

Proof. As before, for each a 1, 2, 3, let Q’ be the acyclic binary relation on the
vertex set V defined by Q’ Q u ’ u R’. Then the transitive closure of Q’ is a
partial order on V. LetL be a linear extension of this partial order. Then let La be any
linear order on V for which x < y in La whenever x is on the exterior face of M and y
is not.

Now let (y, F) be a critical pair in PM. We show that y > F in some L. If F is
the exterior face, then y > F in La. So we assume F is an interior face. In this case, we
actually prove a stronger statement. We show that there is some a { 1, 2, 3} for which
(x, y) E Q’ for every x F. For such an c, we have y > F in L.

To see this, choose a {1, 2, 3} so that F c_ S(y, o). Then S(x, o) c_ S(y, o)
for every x F. If S(x, a) c S(y, a) for every x F, then y > F in Q, and thus
y > F in Q’. So we may assume that there is a point x0 E F for which S(xo, a)
S(y, oO. By symmetry, we may assume that (x0, y) E. If F contains a point u for
which S(y, a + 1) c_ S(u, o + 1), then (F, u) witnesses (x, y) ’ for every x F with
xlly in Q. For any other x F, we have S(x, a) c S(y, o) and (x, y) E Q. Together,
these statements imply (x, y) Q’ for every x F.

It remains only to consider the case where F contains no point u for which S(y, a +
1) c S(u, o + 1). In this case, we claim that y > F in Q’ To see this, observe thatcq-l"

for each x F, either S(x, a + 1) c S(y, a + 1) or xlly in Q+. However, when
in Q+, the face F and the vertex x0 witness (x, y) R’ Then (x, y) E Q’+ forc+l"
every x F.

Since D(PM) dim(PM) when M is 3-connected, Theorem 3.6 yields the upper
bound of our principal theorem once we have established the existence of a normal fam-
ily of paths.

4. Constructing normal families of paths. Let M be a planar map, and let X, Y,
and Z be vertices or sets of vertices in M, with X f3 Z . We say that Z separates X
from Y if every path in M from X to Y includes a vertex in Z.

Let M be a planar map and let (vx, v2, va) be a triad for M. We say that M satisfies
the star-property for (Vl, V2, V3) if for every vertex x E V {Vl, v2, V3}, no pair {y, z} C_
V-{x} separates x from {Vl, v2, v3 }. From Menger’s theorem, it follows thatM satisfies
the star-property for (vl, v2, va) if and only if there is a family {P(x, v) x V,
1, 2, 3} satisfying Path Properties 1 and 2.

LEMMA 4.1 (normal family lemma). Let M be a planar map and let (v, v2, v3) be a
triadfor M. Then M has a normalfamily ofpathsfor (v, v, va) ifand only ifM satisfies
the star-propertyfor (v, v2, v3).

Proof. As noted previously, necessity follows from consideration of Path Properties
1 and 2 alone. We now prove sufficiency. We proceed by induction on the sum $(M) of
the number of edges and the number of faces of M. The lemma is true for the two maps
(K3 and K1,3) where S(M) is at most 5.
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So we consider a planar map M, having $(M) > 5, with a triad (v, vz, va) and we
assume that the lemma holds for all planar maps M’ with S(M’) < S(M).

The remainder of the argument is organized into a series of cases. In treating these
cases, we will consider maps M0, M, Mz, and so forth. These maps are either submaps
of M or are formed by making minor changes in submaps of M. When working with
such a map, say M, we will use the notation - for a normal family in M, and a path
from x to /in Mi will be denoted Pi(x, 1). The vertex set of Mi will be denoted V/, and
so forth. If P(z, 1) and P(/, z) are paths having only the vertex /in common, we denote
by P(z, 1) P(/, z) the path from x to z formed by their concatenation. We also use the
notation P(z, 1) P(z, w) for the path formed by the union of two vertex disjoint paths
for which /z is an edge.

Case 1. M has a cut-vertex.
Suppose M {z) is the union of r components C1, C,..., C with r >_ 2. If Ci is

one of these components and C {vx, v, va} }, then any vertex in C is separated
from {vl, v2, v3} by z. So each Ci contains at least one element from {vl, v2, v3}. Since
r > 2, we may assume without loss of generality that C contains exactly one element
from {v, vz, va }, say v. Ifv is not the only element ofC, choose a point C-{v}.
Then y is separated from {vl, v, va } by z and vs. So it follows thatv is the only element
of C and that the edge e v,x is a bridge.

Clearly, M0 M {v} satisfies the star-property for the triad (x, v+, v+).
Now let .T’0 be a normal family of paths in M0. Then define .T" by P(y, v) P0(, x)
(x, v) for every /E V {v}, while P(v, v) is trivial.

It is straightforward to verify that .T" is a normal family for M. The only difficulty is
to make sure that P(x, v+) and P(x, v+) have no vertex in common other than x.
However, if z is common to these paths, then x is separated from {vl, v, va} by v and
z. So in the remainder of the proof, we will assume M has no cut-vertices.

Case 2. For some c E {1, 2, 3}, vv,+ is an edge in M.
Consider the planar map M0 obtained by deleting the edge vv+ from M. It

is easy to show that (v, v, va) is a triad for M0 and M0 satisfies the star-property for
(v, va, va). Let ’0 be a normal family of paths for (v, v, va) in M0. Construct 9v from
’0 by setting P(v, v+) (v,, v,+) and P(V+l, Va) (Va+l, Va) as required by
Path Property 3. All other paths are the same in Y" as in ’0. Clearly, " is a normal family
of paths for (v, v, va), so in what follows, we assume that {v, vz, va} is an independent
set.

Now we pause to make an important observation about the faces of M. If F is an
interior face, then the boundary of F is a simple cycle. If we label the vertices of F as
Xl,X,... ,xt in clockwise order, then xx+ is an edge for each i, but these are the
only edges among the vertices of F. For if xxj is an edge, and these vertices are not
consecutive, then one of x+ and X+l is an interior vertex separated from {v, v, va}
by xi and x.

Also, a similar argument shows that if F and G are interior faces having one or more
common vertices, then their common vertices occur consecutively on their boundaries.

Case 3. For some a {1, 2, 3}, there exists an interior face F that contains v and
a point from M[v,+, v,+].

Label the points on the boundary of F in clockwise order x, xz,..., xt so that x
belongs to M[v,+, v+:] but xt does not. Let i be the largest integer for which x
M[V+l, v+]. Then either i 1 or i 2, for if i > 2, then x is separated from
{vl, v, v} by x and x.
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Suppose next that xx v+x. Choose avertex x E M[v, v+t] with x 6 {v,v+}.
Then x is separated from {vx, v2, va} by
v+. Similarly, x # v+2.

The removal of x and v from M disconnects the map and leaves v+ in a com-
ponent C. We let M be the submap generated by the vertices in Cx together with
x and v,. Then (v,, v,+,xi) is a triad for M1, and M satisfies the star-property for

The map M: is formed in an analogous fashion considering the component Cz con-
taining v+z when x and v, are removed. Then Mz satisfies the star-property for the
triad (v, x, v,+z).

Now let ’x be a normal family in Mx for (v,, v+x, x), and let’ be a normal family
in M for (v,,x, v,+:). Define the normal family " in M as follows. For a vertex
x Ct with x v, set P(x,v,) P(x,v,) and P(x,v,+) P(x,v,+) while
P(x, v.+2) P (x, xi) @ M[xi, v.+2]. For a vertex y C2 with x v., P(y, v.)
P2(y,v.) and P(y,v.+2) P2(y,v.+2) while P(y,v.+) P2(y,x) M(x,v.+).
If i 1, we may choose P(xi, vo) as either M[x, v] or M[x, v].

It is straightforward to verify that " is a normal family for (v, v2, v3), so in the
remainder of the proofwe will assume that there is no interior face containing some v
and a vertex from M[v+, v+2].

A set {F, F2, F3} of three distinct faces is called a ring if there exists a simple cycle
C with the following three properties:

1. Every edge of C belongs to exactly one of the faces F, F2, F3.
2. No point in the interior of C belongs to the interior of any of the three faces

Fa.
3. If c { 1, 2, 3} and v is a vertex on C, then there is some i e { 1, 2, 3} for which

v, Fi Fi+.
Note that in the definition of a ring, we allow one of the three faces to be the exterior

face. Also note that the cycle C is uniquely determined.
Case 4. M has a ring {F, F2, F3}.
Let C be the uniquely determined cycle that demonstrates that {F, F2, Fa} is a

ring. Then there exist unique vertices u, uz, ua on C so that u belongs to F and F+
for i 1,2,3.

For each i 1, 2, 3, let ui ui if ui has two or more neighbors outside C, i.e., ui is
the unique point shared by Fi and Fi+x in M. Otherwise, let u be the unique neighbor

also belongs to Fi and Fi+of u outside C. In this situation, ui
We illustrate these definitions in Fig. 7. For the map shown, {Fx, F2, Fa } is a ring

and the cycle C {u, a, u2,
Let M0 be the submap of M induced by the vertices inside and on the cycle C.

We may assume that the faces F1, F, and Fa have been labeled so that (Ul, u, ua) is
a triad for M0, i.e., u+: M0[u,, u+] for each c 1, 2, 3. We now observe that
M0 satisfies the star-property for (u, u:, ua). To see that this statement is valid, let
x V0 {u, ue, ua}. In the map M, there are three paths Px, Pu, Pa so that P is a path
from x to v andP fqP+ {x} for each c 1, 2, 3. It is clear that there is some/3 for
which u P+ for each c 1, 2, 3. Thus the initial segments of P, P, and Pa show
that M0 satisfies the star-property for the triad (u, u, ua). By the inductive hypothesis,
there is a normal family of paths U0 in M0 for (Ul, u:, ua).

Next, let M1 be the submap of M induced by the vertices outside C together with
those elements of {u, u, u} that are on C. Then form Me from M, by adding a new
vertex u0 in the area formerly occupied by the interior of C and making uo adjacent to
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u,u and u. The modified faces adjacent to u0 in M2 are denoted by F, F, and F
withu F/, F+ for each c 1, 2, 3. We illustrate this definition for the map shown
in Fig. 8.

V2= U;

F1

F2
1 a

v3=u2

F3

M

FIG. 7

u0

v3=u2

V1

M2

FIG. 8

We now show that (vl, v2, va) is a triad for M2 and that M2 satisfies the star-property
for (v, v, va). It is obvious that (v, v2, va) is a triad for M2 if F, F2, and Fa are interior
faces. Now suppose that one of them, say Fa, is the exterior face. In this case, the
path M[u, u] is a portion of the boundary of M. In M2, this path is replaced by u @
(u, uo, u) u’a, so that (vl, v2, va) is also a triad for M2.
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Next, we show that Mz satisfies the star-property for (vx, v, va). To the contrary,
suppose that there exists a vertex z E Vz {v, vz, va} for which there are two vertices, z in Vz {z} that separate z from {vx, v, va } in M.

First, consider the case where z u0. Choose a E {1, 2, 3} so that u {y, z}.
Clearly, zt {vx, vz, va}, so that in M, there exist paths P, Pz, Pa, so that P is a path
from u’ to va and Pa Pa+l {u’} for each/3 1 2, 3. Since y, z V { }, at
least one of these paths, say P-r, misses and z in M. If P-r is a path in Mz, we are done.
Otherwise, P-r contains at least two elements of {Ux, uz, ua}. Let P. be the terminal
segment of P-r beginning with the last occurrence of an element of {ux, uz, ua} in
Then u0 @ P. is a path from u0 to v. inM {y, z}.

Next, consider the case where x V (u, u, u}. Since M satisfies the star-
property for (vx, v2, v3), there exist paths P, P2, P3, so that P is a path from x to v
and P f3 P+l {x} for each c 1, 2, 3. Any one of these three paths that is not a
path in M2 must contain at least two elements of {ul, u2, u3}, so at least two of P, P2,
and P3 are paths in M2. So we may assume that P and P+ are paths in M: with
y P and z P+. We may also assume that P+2 contains at least two elements
from (ul, u2, u3}. Let uf be the first element from this set that belongs to Pa+2 and let

u. be the last. Then replace the portion of P+2 beginning at u and ending with
with (u, u0, u.) to obtain a path from x to v+ inM {y, z}.

Now suppose x E {u, u, u}. If neither y nor z is u0, then y and z are vertices
in M, so there is a path P in M from x to {Vl, vz, va}, with P avoiding y and z. If P is
a path in M, we are done. So we conclude that P contains at least two vertices from
(Ul, uz, ua}. Let ua be the last vertex from {u, uu, ua}, which belongs to P, and let Pt
be the terminal segment of P beginning at u. Then (x, u0, u) Pt is a path from x to
(Vl, vz, v3} in Mz, which avoids y and z.

and one of the separating vertices,It remains only to consider the case where x u
say y, is equal to u0. If x has a neighbor w in Mu (y, z, u, u, u}, then we have that
there is a path P in Mz from w to (v, vz, va} avoiding y and z. Then (x, w) @ P is
the desired path in M:. On the other hand, if x has no neighbor in Mz outside the set
(y, z, ul, u, u}, then it is adjacent to one of the other ui (y, z}, say u. Now ifu has
a neighbor w in M:-{y, z, u], u, u}, then again there is a path P from w to {Vl, v, va}
in M: avoiding y and z, which yields a path (x, u)P as required. Finally, ifu also has

where {a,no neighbor outside {y, z, u, u, u}, then the two vertices z and u.r,
separate u’ (and also u) from {vx, vz, va} in M, a contradiction.

This completes the argument that M: satisfies the star-property for {v, v, va}.
Now let ’ be a normal family of paths in M: for the triad (Vl, v, va). We may as-

P(uo for asume without loss of generality that u, v,) each 1, 2, 3. We use ’0
and 2-2 to construct a normal family for M as follows. Let x V. If x V0, set
P(x, v,) Po(x, u,) P(u, v,). If x V V0, set P(x, v,) P2(x, v,) when
uo Pz(x, v,). If x V Vo and uo P=(x, v,), choose the unique elements u,
for which u precedes u0 and u follows u0 in P2(x, v,). Replace this portion of the
path by u’ Po(u, u.) u’. Verification that the resulting family of paths is normal is
straightforward. Accordingly, we will assume in what follows that M does not contain a
ring.

Case 5. We now present the closing argument.
Let v be the second vertex on the path M[v, v2]. Let Mo be the submap of M

obtained by deleting vx. On the path P M0[v3, v], rub out all vertices of degree 2
that are strictly between the end points of P. Call the resulting map M.
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Suppose there is a face G interior toM whose intersection with P does not form a
single subpath. Let V and z be distinct vertices of P on G, with V on M0[va, z], such that
M0[y, z] f3 G {y, z}.

There are two paths from z to y around the face G. Let Po be the one "nearer" to
M0[y, z], and let T be the region bounded by P0 and Mo[y, z]. This region has nonempty
interior and contains some vertex w of M other than y and z, since M has no multiple
edges. Clearly, w 6 {vx, v2, ’/33 }, SO there is a path from w to {v, v2, va} in M avoiding
{V, z}. There is no such path in M, so this path must go to v via an edge from some
vertex strictly between y and z on Mo.

Let wl,..., wk be the vertices strictly between y and z on P, in the order they occur
on P: we have just shown that k > 1. If k 1, let F and F2 be the two faces incident
with the edge vlw in M. Then (F, F2, G) forms a ring, with the cycle C being the
boundary of T, contradicting our assumption that M has no ring. If k > 1, let Fx be the
face incident with edge vwl and not including w2; and let F2 be the face incident with
vxwk and not includingw_x. Again, (Fx, F2, G) forms a ring, with the cycle (7 consisting
of the boundary of T, with Mo[w, wk] replaced by the two edgeswv and vw. Again,
this is a contradiction, so there is no such face G.

In particular, M1 has no multiple edges.
Now it is easy to see that (v, v2, va) is a triad for M. We next show that Mx satisfies

the star-property for (V’l, v2, v); suppose not. Choose x Vx {v, v, v} for which
there exist two vertices y, z E Vx {x} that separate x from {v, v2, v3} in M1. Since
M satisfies the star-property, there exists a path P’ from x to one of {v, v2, va } with P’
missing y and z. It is obvious that P’ terminates at v. Thus P’ contains a vertex w from
the path P M0[v3, v].

Hence y and z both lie on P, one either side of w. We may suppose that y
M [v3, w] and z M [w, v]. If y and z do not share a face inside M1, then Mx y z
is connected, a contradiction. Thus, y and z do share a face G inside Mx, which there-
fore contains the whole of M [y, z]. So w lies on M [y, z] and has degree 2 in M1, a
contradiction.

Thus, Mx satisfies the star-property for (v, v2, v3). Now let 2"1 be a normal family
of paths in M for (v, vg., v3). We construct a family 2" of paths in M as follows:

1. For every vertex x V, P(x, v, P (z, v, for c 2, 3.
2. For every vertex x Vx, let y be the first vertex on PI(X, v), which is adjacent

to x in M and let P (x, y) be the initial segment of this path ending at g. Then set
P(x, v Px (x, y)

3. For everyvertex E V-VI with x v, set P(x, v) (x, v), P(x, v2) Mo[x, v2]
and P(x, v3) M)[x, v3].

It is an easy exercise to verify that " is a normal family of paths. This completes the
proof of Lemma 4.1. [3

5. The lower bound. For the sake of completeness, we include a proof of the fol-
lowing result, which is also proved in [7].

THEOREM 5.1. IfM is a convexpolytope in 13, then dim(PM) > 4.

Proof. Suppose to the contrary that dim(PM) < 3. Choose linear extensions L, L2,
L3 of PM, so that PM L1 f3 L2 f3 L3. Of all the faces, let F0 be the Lz-least. Then
let x,x2,... ,xt be the vertices of F0 and let G, G2,..., Gt be the faces that share an
edge with F0. We may assume that these vertices and faces have been labeled so that
x G f3 G+ fori 1,2,...,t.

Now xi < F0 < Gj in L3 for each i, j with 1 _< i, j _< t. However, the subposet
P0 of PM generated by {xi 1 _< i <_ t} U {Gi 1 _< i <_ t} is isomorphic to a three-
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dimensional crown. The linear extension La reverses no critical pairs ofP0, which means
they must all be reversed by L1 and L2. Since dim(P0) 3, this is impossible.

Note that this argument actually shows that the subposet ofPM consisting ofvertices
and faces has dimension at least 4.

6. Irreducible posets and duality. For t _> 2, a poset P is said to be t irreducible if
dim(P) t and dim(P ) < for every P. The only 2-irreducible poset is a 2-
element antichain. In [5] and [17], the collection of all 3-irreducible posets is determined.
The posets in this collection can be grouped into seven infinite families with an additional
eleven sporadic examples. For >_ 4, constructions of -irreducible posets are given in
[4], [8], [9], and [14].

We find it interesting to note that each convex polytope ina determines a 4-irreduc-
ible poset in a natural manner.

THEOREM 6.1. Let M be a convexpolytope in a and let Fo be an arbitraryface ofM.
Then the subposet Q0 PM {F0} is three-dimensional.

Proof. Consider a plane drawing ofthe mapM so that F0 is the exterior face. Choose
vertices v, v2, va on F0 so that (v, v, va) is a triad. Then let " be a normal family of
paths for (v, v, va).

Now consider the critical pairs in Q0. In addition to the Type 1 critical pairs of the
form (y, F), where F is an interior face and y F, we also have Type 2 critical pairs of
the following form.

Type 2: (x, e), where x is a vertex on an interior face F, e is an edge common to F
and the exterior face F0, and z is not an end point of e.

Let L1, L2, and La be the linear orders on V defined in the proof of Theorem 3.6.
Extend L1, Lz, and La to linear extensions of Q0 by inserting the edges and faces as low
as possible in each of the three orders. Call the resulting orders L, L, L. We show
Q0 L N L N L. It suffices to show that each Type 2 critical pair is reversed in some

L. (We know from 3.6 that the Type I critical pairs are automatically reversed.)
Let (z, e) be a Type 2 critical pair. Let y and z denote the two end points of e. Choose

a so that F C_ S(x, a). Then y,z M[v+, v+2], q- S(y, a) S(z, a) c S(x, a). So
it follows that (y, x) and (z, x) belong to Q. Thus, x > e in L. [:]

WhenM is a planar 3-connected map, the planar dual Md ofM is also 3-connected.
Furthermore, it is easy to see that the poset associated with the dual ofM is the dual of
the poset associated with M. With this observation, we obtain the following dual form
of the preceding theorem as well as the corollary summarizing the net effect of the two.

THEOREM 6.2. Let M be a convexpolytope in 3 and let x be an arbitrary vertex ofM.
Then the subposet Q PM {x} is three-dimensional.

COROLLARY 6.3. Let M be a convex polytope in 3. Then the subposet ofM deter-
mined by the vertices andfaces is 4-irreducible.

7. Concluding remarks. As mentioned earlier, we have been able to establish the
upper bound dim(PM) < 4, on the dimension of PM when M is an arbitrary planar
map. In the most general setting, we allow disconnected maps, loops, and multiple edges.
However, we do not have an independent proof of this result. Our argument depends
heavily on having the results and techniques of this paper in hand.

It is perhaps interesting to note here that the analogue of Theorem 6.1 does not
hold for general planar maps. In the map M shown below (see Fig. 9), each critical pair
(x, F) must be reversed in a different linear extension of PM.
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X2

X3

FIG. 9

It is relatively straightforward to show that for maps drawn on a surface of genus n,
there is an upper bound of the form dim(PM) < f(n). It would be of some interest to
determine f(n). Perhaps the correct answer is f(n) n + 4.
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