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PROGRESS AND NEW DIRECTIONS IN DIMENSION
THEORY FOR FINITE PARTIALLY ORDERED SETS

W.T. TROTTER

0. INTRODUCTION

In this paper we discuss combinatorial problems for finite partially ordered
sets, using the concept of dimension as a unifying theme. A special effort
is made to provide a sketch of the background behind the problems and
to indicate why efforts to resolve them are worthwhile. Some new results
are included, but our emphasis is on providing a motivating framework for

future research.

We consider a partially ordered set, or poset for short, as a pair (X, P)
where X is a set (usually finite) and P is a reflexive, antisymmetric and
transitive binary relation on X. We prefer to write £ < ¥ in P rather
than (z, y) € P. Also, when z and y are incomparable in P, we will write
z|ly in P. The dimension of a poset (X, P), denoted dim (X, P), is the
least positive integer ¢ for which there exists a family R = {L1, L2, .-, L:}
of linear extensions of P so that P = LinNLzN---N L;. We refer the :
reader to the survey articles [36], [59], and [62] and the monograph [63] !

for additional background material on partially ordered sets and dimension

theory. Additional combinatorial problems for finite posets are given in [61].
ded into eight sections with each

The remainder of this article is divi

section featuring one or two central problems. In each section, we will also
esearch problems.

present some related conjectures and r
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1. PLANARITY AND GENUS

One of the most exciting developments in dimension theory since the con-
cept was first introduced by Dushnik and Miller [15] some 50 years ago is
Schnyder’s recent theorem [47] which characterizes planar graphs in terms
of the dimensions of associated posets. For a graph G = (V, E), define the
vertez-edge poset Pg as the poset (X, P) where X =V UFE and z < e in
P if and only if z € V,.e € E and z is an end point of e. This poset is also
called the incidence poset of G.

Theorem 1.1. (Schnyder [47]). A graph G is planar if and only if the
dimension of its vertex-edge poset P is at most three. m

Schnyder’s theorem is a particularly striking result, and its proof con-
tains some novel concepts for planar triangulations which are of substantial
independent interest. Schnyder also proposed to investigate the dimension
of the poset consisting of the vertices, edges and faces of a planar map,
partially ordered by inclusion. For a planar map M, we call this poset the
vertez-edge-face poset of M. The vertez-face poset of a planar map is de-
fined similarly. Recall that a poset (X, P) is t-irreducible for some ¢ > 2 if
dim (X, P) =t and dim (X — {z}, P(X — {z})) =t — 1, for every z € X.

Theorem 1.2. (Brightwell/Trotter [11], [12]). Let M be a planar map.

i. The dimension of the vertez-edge-face poset of M is at most 4, even if
M is allowed to have loops and multiple edges.

ii. If M is a 3-connected planar map with no loops or multiple edges, then
the dimension of the vertex-edge-face poset of M is exactly 4. In fact,
the vertex-face poset of M is 4-irreducible. ®

There are several important observations to be made about the preced-
ing theorem. First, by the well-known characterization theorem of Steinitz
[52], the 3-connected planar maps with no loops or multiple edges are ex-
actly those planar maps associated with convex polytopes in R3. Second,
while Theorem 1.2 can be considered as a generalization of Theorem 1.1 and
contains an alternate proof of the primary direction of Schnyder’s theorem,
it requires some new ideas for planar graphs which are of independent inter-
est. Third, in-the proof:of Theorem 1.2, the second part is actually proved
first, and the first part is then derived from it. In this derivation, the proof
of the first part is reduced to the case where M is a 2-connected map with
no loops or multiple edges.

Dimension Theory for Finite Partially Ordered Sets

Problem 1. Let G be a graph of genus n > 0 and let M be the map
obtained by embedding G without edge crossings on a sphere with n handles.
Find the maximum value f(n) of the dimension of the vertex-edge-face poset

of M. m

We comment that the existence of the function f(n) in Problem 1. is
easily established by induction on n, once the result is known for n = 0.
Of course, Theorem 1.2 asserts that f(0) = 4, but a wealfer result, say
£(0) <10, would suffice to prove that the function f(n) exists.

Problem 2. Find a simple argument, avoiding the claborate machinery
of Theorems 1.1 and 1.2, to show that the dimension of the vertex-edge-face

poset of a planar map is at most 1010, m

Problem 3. Which planar maps have vertex-edge-face posets with dimen-
sion exactly 47 m

Yannakakis [71] showed that the problem “Is dim (X, P) < t?” is NP-

complete for each fixed £ > 3.

Problem 4. For fixed t > 4, is it NP-complete to determine whether the
. > ' ;
dimension of the vertex—edge poset of a graph is at most ¢/ ®

Note that the answer to Problem 4 is no when t = 3, since by Schnyder’s

theorem, this is equivalent to testing the graph for planarity.

There is no analogue of Schnyder’s theorem for genus larser thfgn. zcl;:);
the complete bipartite graph K m has large genus when mt 12 sg : mciiz;rl ;,
large, but the dimension of its :flerte);—efd%il ;(;Zfiz 1ls 2320?:(?“6;{ pOIytope;
there is no analogue of the second part 0 . vex poytonet
in RY when d > 4. This is due to the faf:t that wh.en d‘1_>_1 ) thero extes
convex polytopes in R¢ for which there exllsts an arbitranly .arg ot s

et V so that each pair of vertices from S determines an edge 0
:lflglz:izszf};cs)lytope. For this reason, the vertex—edge pos:.tuhs: ;f:::;;;g}g,
large dimension (see Theorem 3.2). However, there n}atyhs i ' be
bounds in terms of other combinatorial parameters o the posct.

The following result is an easy exercise.

ts an absolute constant ¢ > 0 so that if G is a

Theorem 1.3. There exis “imension of the vertex-e dge

graph with chromatic pumber n > 1, then the
poset of G is at most cloglogn. ®
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On the other hand, Kfiz and NeSetfil [39] have constructed a family of
graphs {G,, : n > 1} so that the dimension of the vertex—edge poset of G,, is
at most 10 for each n > 1, yet the chromatic number of G,, tends to infinity
as n increases.

2. GEOMETRIC CONTAINMENT ORDERS

Let F be any family of sets. We call a poset (X, P) an F-containment order
if it is possible to choose for each € X a set S, in F so that z < yin P if
and only if 5; C S,,.

Example. [15]. If F is the set of closed intervals of R, then a finite poset
is an F-containment order if and only if it has dimension at most two. m

There are several quite natural instances of geometric containment
orders which have been studied in the literature:

1. Angular regions in the plane [22], [23], [24]
2. Polygonal regions in the plane [28], [45], [49]
3. Spheres in R¢ [9], [13], [21], [47]

The special case of spheres (disks) in the plane R? has attracted the
attention of many researchers and is the source of a most perplexing prob-
lem. Perhaps these posets should be called disk containment orders, but
most authors have called them circle containment orders. Observe that by
the example given previously, any two-dimensional poset is a circle contain-
ment order; in fact, we may require their centers to be collinear. It follows
from the “degrees of freedom” theory developed by Alon and Scheinerman
[1] that not all four-dimensional posets are circle containment orders.

For an integer n > 3, let 7, consist of all polygonal regions in the plane
R? whose boundary is a regular polygon with n sides with one side having
a fixed orientation (say horizontal). We prefer to refer to a poset which is
an F,-containment order as an n-gon containment order.

Example. A finite poset is a 3-gon containment order if and only if it has
dimension at most three. m

Many researchers have independently discovered the following elemen-
tary result.
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Theorem 2.1. Let (X, P) be a finite poset of dimension at most 3. Then
(X, P) is an n-gon containment order, for eachn > 3. m

Consider a fixed poset (X, P) of dimension at most 3, and let the integer
n in Theorem 2.1 tend to infinity. Then n-gons are very close to being circles,
suggesting the following problem.

Problem 5. Is every finite poset of dimension 3 a circle containment
order? m

The qualifying word “finite” cannot be deleted from this problem.
Scheinerman and Weirman [46] showed that the countably infinite posct
Z3 is not a circle containment order, and Hurlbert [32] has found an even
simpler proof that N3 is not a circle containment order.

The importance of this question continues to grow. Kobbe and Andri.ev
proved that every planar graph G = (V, E) can be represente.d .by a fan'nly
{D, : z € V} of disks in the plane so that the disks have disjoint ?nterlors
and zy is an edge in G exactly when D, and Dy are tangent. Schemerma,n
[47] has used this theorem to establish the following analogue of Schnyder’s

result.

Theorem 2.2 (Scheinerman [47]). A finite graph G is planar if and only
if its vertex-edge poset is a circle containment order. m

In recent years, Kobbe and Andriev’s theorem has been giV(.an new proofs
by Thurston [53], Pulleyblank [40], and Brightwell and Scheinerman [10].
In each case, the new proofs actually give somewhat stronger results. Many

interesting questions remain.

Problem 6. Find the minimum family C of posets so that a posct (izs a
circle containment order if and only if it does not contain a poset from C as

a subposet. ®

Problem 7. Is it NP-complete to determine whether a poset is a circle
containment order? m

The following tantalizing problem appears in Brightwell and Winkler
[13].
Problem 8. Does there exist a finite poset which is not a sphere contain-
ment order in R?, for any d > 17 ®
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3. FAMILIES OF SUBSETS

For an integer n > 1, let [n] = {1,2,...,n}. Then let ([Z]) = {SCn]:
|S| = k}, foreach &k = 0,1,2,...,n. Also, for distinct positive integers
k1,ka, ... ke < n, let P(ki, ko, ..., ki;n) denote the poset (X, P) where
X =Uj(f)and $ <Tin P if and only if SCT.

Example. For n > 3, the poset P(1,n — 1;n) is an n-irreducible poset on
2n points. This is called the “standard” example of an n-dimensional poset,
and is also denoted S,. ®

The following result gives the precise dimension of P(1,k;n) when k is
relatively large in comparison to n, in particular when 2y/n < k < n.

Theorem 3.1. (Dushnik [14]). Let n > 4 and let j be any integer with
2 < j < |nY?]. Ifk is a positive integer satisfying [ﬁ%?:lJ <k-1Z

[EQ#J , then dim (P(1,k;n))=n—-j+1. =

For fixed k and n tending to infinity, the following estimates are known.

Theorem 3.2. (Spencer [50]).

(i) dim (P(1,2;n)) = (1 + o(1))lglgn.

(ii) For each k > 2, there exists a constant ci, > 0 so that dim (P(1,k;n)) <
celglgn. ®

Little else is known about dim (P(1, k;n)), although some special cases
are treated in [64].

Problem 9. Estimate dim (P(1,k;n)), the dimension of the poset of
1 and k element subsets of an n element set ordered by inclusion when
2<k<2yn. m '

Hurlbert has investigated some more general families and has obtained
the following inequalities for families symmetric about the middle of the
subset lattice.

Theorem 3.3. (Hurlbert [31]).
(i) n—2<dim(P(2,n—-2;n) <n-1.
(ii) If n > 3k, thenn — k < dim(P(k,n—k;n))<n—-1. m

Problem 10. For large n, is dim (P(2,n —2;n) equal ton—2orn—17
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Problem 11. For fixed k and n suitably large, is dim (P(k,n — k;n)) =
dim (P(1,n — k;n))? m

The estimation of the dimension of the middle two levels of the subset
lattice is of particular interest. The only known inequalities are the following
trivial bounds Iglgn < dim (P(1,2;n+2)) < dim (P(n,n+1;2n+1) < 2n.

Problem 12. Estimate dim (P(n,n + 1;2n + 1)), the dimension of the
poset consisting of the middle two levels of the subset lattice of all subsets
of a 2n + 1 element set. ®

4. REMOVAL THEOREMS

One of the best known inequalities in the dimension theory is the following
important result, known as Hiraguchi’s inequality.

Theorem 4.1. (Hiraguchi [30]). If (X, P) is a poset, then dim (X, P) <
|X|/2, when | X| > 4. =

The original proof of this inequality, as well as a somewhat more pol-
ished version due to Bogart [6], proceeded by induction on |X |. By ad-
hoc techniques, the result is first established for small posets, those with
4 < |X] € 7. The general result follows then by showing that if (X, P)
is any poset with [X| > 8, then either (i) (X, P) contains a two element
subset S = {z,y} so that dim(X,P) < 1+ dim(X - S,P(X - 8)), or
(ii) X contains a four element subset T' = {z,y, z,w} so that dim (X,P) <
2 +dim (X — T, P(X - T)).

In 1974, Kimble [38] and Trotter [56] independently found a new proof
of Hiraguchi’s inequality by establishing the following result.

Theorem 4.2. (Kimble [38], Trotter [56]). Let (X, P) be a poset and let
A be an antichain in (X, P). Then dim (X, P) < max{2,|X — A|}. =

The inequality in 4.2 combined with the eler.nentary bound,
dim (X, P) < width(X, P), yields 4.1. However, the following natural ques-
tion remains open (see also Kelly [35]).

poset with | X| > 3. Is it always the case

13. X, P) be a
Problem 13. Let ( ) t dim (X,P) <

that X contains a two element subset S = {z,y} so tha

" 14+dim(X - S,P(X-5)). =
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¢ Problem 13 appears to be surprisingly difficult. A number of properties
have been given so that if a two element set satisfies any one of them, then its
removal decreases the dimension by at most one. Examples of such removal
theorems may be found in [6], [8], [31] [65] and [66].
.~ 'Let (X, P) be a poset and let (z,y) € X x X. We call (z,y) a critical
2" pair (also, a nonforced pair) if (1) ||y in P and (2) for all z,w € X, z < z
_in P implies 2 < yin P and y < w in P implies ¢ < w in P. In [65] Trotter
conjectured that the removal of any critical pair decreases the dimension by
at most one. o

. Example. (Reuter [43])In the poset on Fig. 1, (z,y) is a critical pair.

However, (X, P) has dimensﬂid‘k‘n‘ 4 and removing the 2 element set {z,y}
.- leaves a two-dimensional poset. m ‘

&2

Figure 1.

Example. (Kierstead and Trotter [37]). For n > 5, the poset on Fig. 2is n
dimensional, and (z,y) is a critical pair. However, removing z and y leaves
. an n — 2 dimensional poset. m
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Despite this negative evidence, many researchers believe that the answer
to the following question (see [35] and [36]) is yes.

Problem 14. Let (X, P) be a poset with [X| > 3. Is it always the case
that for every = € X, there exists some y € X — {z} so that removing the
2 element subset {z,y} decreases the dimension by at most onc? m

In [58], Trotter gave a forbidden subposet characterization of the in-
equality in Theorem 4.2. The following characterization problem will no
doubt be even harder.

Problem 15. For each n > 4, find the minimum list C,, of posets so that
if (X, P) is a poset of width n, then dim (X, P) < n unless it contains a

poset from C, as a subposet. B

We require n > 4 in Problem 15 because the problem is trivial for n = 2
and easily solved for 3. When n = 3, we need only examine the list of all
3-irreducible posets (see [33] or [69]) and choose those which have width 3.
If Problem 15 is really difficult, perhaps the reason is an affirmative answer

to the following question.

Problem 16. For each n > 3, is it NP-complete to determine whether a
width n poset has dimension n? ®m

Clearly, the answer to the question in Problem 16 is no when n =1, 2
or 3, so it only makes sense to consider n 2 4.
Peter Fishburn [20] has posed the following challenging problem.

Problem 17. For each n > 2, find the minimum number of incomparable

pairs in a poset of dimension n. ®

Although Fishburn noted f(3) =7, he conjectured f(n) = n? for.n >4
and that the standard example Sy is the unique extremal .poset. Qm [41]
has verified this conjecture when n = 4, but his argumen't is very difficult.
For n = 5, Qin is only able to show f(5) > 24, and this requires a very

complicated argument.
The following dual problem is also of interest.

Problem 18. What is the minimum number of comparable pairs in a

poset of dimension n? ®

o Problem 18 may be as small as en?/ log® n.

t that the answer t .
I suspec 2/logn, by the results of Section 6.

It is certainly no more than cn
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5. INTERVAL ORDERS AND SHIFT GRAPHS

For n > 4, let G, denote the graph whose vertex set is ([g]) and whose
edge set consists of those pairs {{i1,i2,i3} {i2,43,44}} with 1 < 4, < iy <
i3 < i4 < n. Erdés and Hajnal [16] showed that the chromatic number of
- Gris (1 +0(1))lglgn. In fact the chromatic number of G,, is exactly the
-least ¢ so that the lattice of all subsets of {1,2,...,t} contains at least n
antichains. So x(Gyn) =lglgn+ (3 +0(1))lglglgn. A poset (X, P) is called

- an interval order if it is isomorphic to a poset (Y, Q) where Y is a family

of closed intervals of the real line R and [a,b] < le,d] in Q if and only if
- b<cinR.

, Rabinovitch [42] proved that the dimension of an interval order can be
bounded in terms of its height, i.e., the maximum number of points in a
chain (see also [7]).

o . Theorem 5.1. (P. Hajnal, Fiiredi, R6dl, Trotter). The mazimum value
= f(n) of the dimension of an interval order of height n is given by:

f(n) =1glgn + (—;— + 0(1)) lglglgn. ]

To show an appropriate lower bound for the function f (n) is easy. The
canonical interval order I,, consisting of all intervals with integer endpoints
from {1,2,...,n} has dimension at least as large as the chromatic number
of the double shift graph G,, defined above. To show an upper bound of the
same form is the real challenge. This is accomplished in two steps. First,
we show that if m = (éJ) and n < 2™, then dim(I,) is at most ¢ + 3. It is

-just a technical step to extend the proof to general interval orders.

Many interesting problems involving dimension of interval orders re-
main.

5 X Problem 19. ;Does there exist a function f : N — N so that if n > 4 and
' 7 (X, P)is any interval order of dimension at least f (n), then (X, P) contains

a subposet isomorphic to the canonical interval order of all intervals with
- integer end points from [n]? m

Results obtained by Felsner and Morvan [19] concerning staircases in

- interval orders of large dimension appear to support an affirmative answer

to Problem 19.
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Problem 20. What is the maximum value of the dimension of an interval
order of width n? m

Problem 21. For fixed t > 3, is it NP-complete to determine whether the
dimension of an interval order is at most ¢t? =

Problem 22. For integers h, ¢, how many t-irreducible interval orders
have exactly n points? ®

6. RANDOM POSETS

In [17], Erdés, Kierstead and Trotter investigated the d.imension 'of random
posets using the following model. The point set X 1s.the.umon of two
antichains A U A’. Each of A and A’ are n element antlchalrl§. The only
pairs (z,y) € X x X for which it is possible to have x,.< y in P belong
to A x A'. For each (a,a’) € A x A', take Probla < o' in P] =p _wl.xcre
p = p(n) satisfies 0 < p < L. Furthermore, events c.orrespondmg to d{lzstmct
pairs from A x A’ are independent. Call the resulting sample space (n, p)

Among the principal results of [ ] are:

Theorem 6.1. (Erdds, Kierstead, Trotter 7).
i. For every € > 0, there exists § > 0 so that if n
dim (X, P) > épnlog pn, for almost all (X, P) € Q(n,p). .

ii. For every € > 0, there exists § > 0 so that if 1/logn <p<1l—-n""""

log1 X,P) €
then dim (X,P) > max{én, n-— 3’6—‘1’%742}, for almost all (X, P)

Q(n,p)- "
if p= - <
iii. There exist positive constants ci, €2 SO that ifp=1 /12,2the: n— &
dim(X,P) <n— l—%ﬂﬁ, for almost all (X, P) € (n, 1/2).

quences of Theorem 6.1 is the infor-

mation we gain about the relative tightness of upper bo;uiz)o;ln((iiuze;lilic::tl
expressed in terms of maximum degree. For a poset ( l, and a pont
r € X, define the degree of = to be the rfumber of elemen ¢ aﬁ -
ble to z. Then let A(X, P) denote the maximum d.egree ar?(:l gfunction
points in X. Rodl and Trotter first showe'd the. existence ot X )
f: N — N so that f(k) is the maximum dimension of a pose )

which A(X,P) < k.

-1t¢ <« p<1/logn, then

One of the most significant conse
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Thkeorem 6.2. (Fiiredi/Kahn [25]). If (X, P) is a poset, |X| =n > 2 and
A(X,P)=k > 1, then

i dim (X, P) < 10klogn, and

i dim (X, P) < 50k(logk)? m

It is interesting to note that the inequalities in Theorem 6.2 are universal
~-and apply for all posets satisfying the hypothesis as opposed to holding
for almost all posets in some probability space. However, probabilistic
techniques are used in proving the two inequalities. In particular, the so-

o called Lovdsz Local Lemma [18] is essential to the proof of the second part.

. It is easy to see that Theorem 6.1 implies that the first inequality in
- Theorem 6.2 is best possible up to the value of the constant ¢; = 10.
Although, we do not entirely settle the question of the accuracy of the
second part, we at least get a super-linear lower bound.

 Problem 23. For each k > 2, let f(k) denote the maximum dimension

. of a poset with A(X, P) = k, It is known that there are positive constants

¢« c1, ¢z so that ¢; k(logk) < f(k) < c2 k(log k)2. Provide better estimates for
Yf(k). m

Strangely enough there is a technical problem whose resolution could
shed some light on Problem 23. We pose the problem using the notation of
Section 2.

Problem 24. There exist positive constants c;, ¢z so that ¢;(logn)? <
dim (P(1,logn;n)) < ca(logn)3, for all n > 10. Provide a better estimate
for dim (P(1, logn;n)). =

We comment that if one can show an upper bound of the form
dim (P(1; logn) ; n) < c3(logn)?*® where 0 < 6§ < 1, then there is a positive
constant c4 so that the dimension of a poset (X, P) with A(X,P) =k >2
does not exceed cqk(log k)1 +9.

A listing of problems in the dimension theory for random posets is given
in [17]. Here are some of the most important ones.

Problem 25. For fixed t = 3, 4, 5,..., what is the threshold probability
pt for which we first expect that a random poset will have dimension at least
7 m

Problem 26. What is the expected value of dim (X, P) when p is very
small, say p < n~1*¢? Or when p is very close to one, say p > 1 —n"1+¢. m
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Problem 27. What is the expected value of dim (X, P)/n when p =
1/logn. m

Here is an interesting extremal problem for which these random tech-
niques yield partial results. For integers n, k with 3 <k <n/2, let f(n, k)
be the maximum dimension of a poset on n points which does not con-
tain a k dimensional standard example Si. Although f(3, 7) = 3, we know
f(k, 2k +1) =k —1 for all k > 4. However, this is extraordinarily difficult
to show (see [38], for example).

Problem 28. Find a short proof that for £ > 4, any posct on 2k + 1
points which does not contain Sy has dimension at most k —1. =

Problem 29. Find the maximum value f(n, k) of a poset on n points
which does not contain a k-dimensional standard example Sy as a sub-

poset. B

When 1 < k < n, the random model gives a lower bound of thelform
f(n, k) > nl=%. This is obtained simply by using probability p = n"%.

Dimension problems for two other models of random posets have been
investigated. Erdds, Kierstead and Trotter [17] also studied t'he set of all
labelled posets on n elements with each one being equally hkely. Tl.ley
produced upper and lower bounds on the expected value of the dimension

of a random poset in this sample space.

Problem 30. Let €(n) consist of all labelled posets (X, P) with X = [n].
Find the positive constant c so that JLH; (n— E(dim(X,P)) |/logn=c. ®

In [2] Albert and Frieze study random posets deﬁn(?d as follows. flrst
choose a random graph G on the vertex set [n]. Then dlrfact al% edges roril
the smaller to larger vertices and set ¢ < j in P if there is a dl.rected' pat ;
from 7 to j in G. They show that the expected value of the dimension o

1_5_5,/31%@ and at most ,/%.

a random poset is almost surely at least Tog 2

They conjecture that the dimension is sharply concentrated at the upper
bound.

Although it does no
suspect that it is worthwhile investigat
whose minimal elements form a groun :
correspond to blocks in a design on S. The partia

t necessarily make a well-defined prob-lem, I strongly
ing the dimension of height one posets
d set S and whose maximal elements
1 order is defined in the
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natural way: an element x € S is less than a block B if £ € B. This problem
is particularly interesting in the case of a (v, k, \)-design.

7. CROWNS AND CYCLES

Baker, Fishburn and Roberts [4] first used the term crown to identify one
- of the 3-irreducible posets shown on Fig. 3.

Figure 3.

: For integers n,k with n > 3 and & > 0, Trotter [54] defined the
- generalized crown SE as a height one poset with n + k minimal elements

© a1,a2, ..., n+k and n+k maximal elements by, bz, . . ., bytk. The only order

relations are those of the form a; < b; where j is congruent to one of the
following integers (modulon+k) i+k+1,i+k+2,i+k+3,...,i+k+n—1.
The original 3-irreducible crowns are those in subfamily {S% : k¥ > 0}, and
the standard examples are those in {S? : n > 0}. Trotter [54] gave the
general formula dim (S¥) = [2(n + k)/(k + 2)] and showed that for each
t > 3, there are infinitely many (generalized) crowns which are ¢-irreducible.

Define a poset (X, P) to be transitive if for every z,y € X with height
(z) = height (y), there exists an isomorphism ¢ of (X, P) with ¢(z) =
y. Of course, a generalized crown is transitive, so that for every ¢t > 3,
there are infinitely many ¢-irreducible transitive posets. Other examples of
irreducible transitive posets have been constructed by Kelly [34], but Kelly’s
construction produces just one poset for each ¢t > 3.

. Problem 31. Lett > 4. Are there infinitely many t-irreducible transitive
- posets which are not generalized crowns? m

: A poset (X, P) is said to be cycle-free if its comparability graph is a

- rigid circuit graph, i.e., it does not contain induced cycles of four or more

" vertices. Alternately, a poset is cycle-free if it does not contain any 3-
irreducible crown as a subposet and it does not contain the 4-element poset
shown on Fig. 4 as a subposet.
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. Theorem. (Spinrad and Ma [51]). If (X,P) is a cycle-free poset, then

dim(X,P)<4. m

Qin [41] has found a clever argument to show the existence of 4-
dimensional cycle-free posets, but Qin’s example is not 4-irreducible. In
fact, Qin’s example contains more than 100 points. It must certainly be
the case that a smaller example exists.

Problem 32. Find all 4-irreducible cycle-free posets and find one with
less than 100 points. =

If there are infinitely many 4-irreducible cycle-free posets, then the
following problem makes sense.

Problem 33. Is it NP-complete to determine whether a cycle-free posect

 has dimension at most 37 &

The rigid circuit graphs are exactly those graphs which are the inter-
section graphs of families of subtrees of a (graph-theoretic) tree. Howc.ver,
not all such graphs are comparability graphs, and it is useful to consider
cycle-free posets in terms of posets which are themselves called trees.

A poset is called a forest if it does not contain the 3-element posct

shown on Fig. 5 as a subposet.

Figure 5.

ree if it is a forest and it has a greatest elemeflt. Every
component of a forest is a tree. Of course, a linear orde.zr is a special case of
a tree. As noted by Wolk [70], the dimension of a tree is at most 2. It is a:il
easy exercise to see that posets which are forests or 'trees can be répres.e(;lte
by subgraphs of graph theoretic trees in the following manner. ‘onsx er a
graph theoretic tree 7' and a family T of subtrees of T satisfying:

T, € T, Ty # Toand ThiNT2 # 0,

A poset is a i

Intersection/Inclusion Property. If Ty,
then either Ty C T, or T C T.
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Clearly, the poset (7, C) is a forest. Just on its own merits, it is of
interest to revisit the subject of geometric containment orders and consider
tree-like families F which satisfy the Intersection/Inclusion property given
above. ‘

..~ To connect this subject with cycle-free posets, we consider the following
construction. Let T be a graph theoretic tree and let A, B be families of
syubtr’eies of T each satisfying the Intersection/Inclusion property. Define a
~poset (AU B, P) by:
(1) A; < Ay in P if Ay C A,, for all A, Ay € A,
-+ (2) B1 < Bzin P if B; C B, for all By, B; € B, and
(3) A<BmPifANB+#0,forall Ac A, BeB.
It is an easy exercise to show that (AUB, P) is cycle-free. Furthermore,
every cycle-free poset has such a representation.

rﬁﬁProblem 33. Let A and B satisfy the Intersection/Inclusion property.
- Define a partial order on P by the three rules given for cycle-free posets.
. What posets arise and what can be said about their dimension if A and B
..are families of :

(1) Intervals of the real line?
(2) Boxes in R%?

(3) Disks in R??

(4) Spheres in R4?

(5) Arcs on a circle? m

The concept of dimension can be generalized in many ways. While we
1 have limited our discussion to the original Dushnik/Miller concept of dimen-
sion, we cannot help mentioning one new variant. Behrendt [5] proposed to
define the tree-dimension of a poset (X, P) as the least number ¢ for which
: there exist partial orders P, Ps,...,P,on X sothat P= P NPN---NP,
“.and (X, P;) is a tree, for each i = 1,2,...,¢.

" Problem 35. Let (X,P) be a poset with tree-dimension t. If we re-
~ move a point from (X, P), by how much can the tree-dimension decrease?
_increase? ]

; Finally, before leaving the subject of trees, we should remark that
. Trotter [68] proposed to call any poset a tree if its cover graph is a graph
" theoretic tree. This is a more inclusive definition of a tree and allows them
to have dimension 1, 2, or 3. In fact, dimension 3 is characterized by the
two posets of Fig. 6, both of which are 3-irreducible.
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8. LATTICES AND PRODUCTS

B. Sands posed the following problem.

Problem 36. For each n > 2 what is the smallest f(n) so that there is a
lattice L on f(n) points so that L is an n-dimensional poset? m

Sands remarked that the subset lattice shows f(n) < 27, and in the
absence of a better example, asked whether f(n) might equal 2". Gant.cr,
Nevermann, Reuter and Stahl [27] showed that the dimension of the lattxc'e
of all partitions of an n-element set is at least 3(3) and at most (5). This
shows f(n) < Jog®n However, Fiiredi and Kahn [26] have shown'that ?he
poset of points and lines of a finite projective pl2ane or or.de.r m has dimension
at least m/2logm. This shows f(n) < cn? log® n, but it is not even kx}own
whether f(n)/n tends to infinity. Attila Sali [44] has a new approach to
this problem and has proposed an extremal set theory conjecture whose
resolution would imply that f(n)/n — oo. ’ |

If (X, P) and (Y, Q) are posets, the cartesian product (X, P) x (Y, Q);
the poset (Z, R) where Z = X xY and R = {(($1,y1),'(1'2, Y2)) : (fll, T(Z})’EQ)
and (y1,2) € Q}. Trivially, dim ((X, P)XQ", Q)) < dim (X, P)1+ und. t,inct,
and Baker [3] showed that equality holds if ()‘( ,P) ”and (v, 62) w;ve is
greatest and least elements, i.e., both have a “zero” and a “one.

e least f(m,n) for which

. > 3, what is th
PrOblem 37' For lntegers m,n = W =1m, dlm (Y7 Q) =n

there exist posets (X, P) and (Y, Q) so that dim (X, P)
and dim ((X, P) x (Y,Q)) = f(m,n)? m

(n) for which there exists an

> hat is the least g
Problem 38. Forn >3, w x (X,P))=g(n)? m

n-dimensional poset (X, P) for which dim (X, P)
n) < 2n—2 by proving that dim (Sn X
ture that f(m,n) =m+n—2
is much closer to max{m,n}

In [59] Trotter showed f(n,7) _<_ 9( :
S,) = 2n—2 for n > 3. It is tempting to cONJeC
and g(n) = 2n — 2, but I believe that f(m,n)




inois
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and g(ﬁ) is much closer to n. We Jjust don’t know enough about posets to
come up with the right examples.
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