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ABSTRACT

We show that the game chromatic number of a planar graph is at
most 33. More generally, there exists a function f: f\l --+ f\l so that
for each n E f\l. if a graph does not contain a homeomorph of Kn•
then its game chromatic number is at most f(n). In particular, the
game chromatic number of a graph is bounded in terms of its genus.
Our proof is motivated by the concept of p-arrangeability, which was
first introduced by Guantao and Schelp in a Ramsey theoretic setting.
© 1994 John Wiley & Sons, Inc.

1. INTRODUCTION

Let G = (V, E) be a finite graph, and let X be a set whose elements will
be referred to as colors. A function c: V --+ X is called a proper coloring
(or just coloring for short) if c(x) '* c( y) whenever x and y are distinct
nodes from V with xy E E. If I{c(x): x E V}I = t, the coloring c is also
called a t-coloring. The chromatic number of G, denoted X(G), is the least
positive integer t for which there exists a coloring c of G using a set X with
IXI = t as the set of colors.

In this paper, we will be concerned primarily with planar graphs. Because
it is important to the spirit of the results that follow, we note that there is
an elementary (and very fast) algorithm for coloring a planar graph with
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6 colors. By Euler's formula, a planar graph always has a node of degree at
most 5. Given a graph G = (V, E) with n nodes, we can then label the nodes
Xl. X2, ••. ,Xn so that for each i = 2,3, ... ,n, there are at most 5 neighbors
of Xi in the set {x{ 1 ::s j < i}. The graph can then be 6-colored by applying
First-Fit to the nodes in the order of their subscripts in this labeling, i.e., a
node is colored with the least positive integer distinct from the colors given
to those neighbors that precede it in the labeling.

We now consider a modified graph coloring problem posed as a two
person game, with one person (Alice) trying to color a graph and the other
(Bob) trying to prevent this from happening. Let G = (V, E) be a graph, let
t be a positive integer, and let Xbe a set of colors with IXI = t. Alice and
Bob compete in a two-person game lasting at most n = IVI moves. They
alternate turns, with Alice having the first move. A move consists of selecting
a previously uncolored node X and assigning it a color from X distinct from
the colors assigned previously (by either player) to neighbors of x. If after n
moves, the graph is colored, Alice is the winner. Bob wins if an impass is
reached before all nodes in the graph are colored, i.e., for every uncolored
node X and every color a from X, x is adjacent to a node having color
a. The game chromatic number of a graph G = (V,E), denoted Xg(G), is
the least t for which Alice has a winning strategy. This parameter is well
defined, since Alice always wins when t = IVI.

Example. Consider the planar graph shown in Figure 1. This graph has
game chromatic number 6. To see that the game chromatic number is
at least 6, here is a winning strategy for Bob if the set X of colors is
{I, 2, 3, 4, 5}. Note that for each j = 1,2, ... ,6, the two-element set {aj, bj}
is a dominating set, i.e., every other node in the graph is adjacent to at least
one of these two nodes. Each time Alice colors a node from {aj,bJ, say

FIGURE 1
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with color a, Bob responds by assigning color a to the other node in this
set. It follows that a cannot be used by either player to color any other node
in the graph. We leave it as an exercise to show that the game chromatic
number is at most 6.

The game chromatic number of a family J of graphs, denoted X(J),
is then defined to be max{Xg(G): G E J}, provided this value is finite;
otherwise, we say that Xg(J) is infinite.

The concept of game chromatic number was introduced by Bodlaender
[I], who showed that the game chromatic number of the family of trees is
at least 4 and at most 5. In [6], Faigle, Kern, Kierstead, and Trotter show
that the game chromatic number of the family of trees is 4. In this paper, it
is also shown that the family of bipartite graphs has infinite game chromatic
number.

With these remarks as background, we can now state the principal result
of this paper.

1.1 Theorem. The game chromatic number of the family of planar graphs
is at most 33. I

Furthermore, we will produce a very fast procedure for implementing the
winning strategy. As an added bonus, we obtain the following more general
result.

1.2 Theorem. There exists a function f: N -+ N so that for each n E N,
if a graph does not contain a homeomorph of Ki; then its game chromatic
number is at most fen). I

It follows from Theorem 1.2 that there exists a function g: N -+ N so
that G is a graph of genus n; then the game chromatic number of G is at
most g(n).

2. ARRANGEABILlTV AND RAMSEY THEORY

Let G = (V, E) be a graph and let L be a linear order on the node set
V. For each node x E V, we define the back degree of x relative to L
as I{y E V: xy E E and x > y in L}I. The back degree of L is then the
maximum back degree of the nodes relative to L. The graph G = (V, E) is
said to be k-degenerate if there is a linear order L on V that has back degree
at most k. If Gis k-degenerate, then X(G) S k + 1, since First-Fit will use
at most k + I colors when the nodes are processed in the linear order that
witnesses that the graph is k-degenerate.

Again, let L be a linear order on the node set V of a graph G = (V, E), and
let x E V. We define the arrangeability ofx relative to L as I{ y E V: y S x
in L and there is some z E V with yz E E, xz E E and x < Z in L}I. In
Figure 2, we illustrate a linear order L on the nodes of a graph. In this
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FIGURE 2

example, the back degree of the node x is 2. The set S = {x, yJ, Y2, Y3}
shows that the arrangeability of x relative to L is 4.

The arrangeability of L is then the maximum value of the arrangeability
of the nodes relative to L. Following G. Chen and R. Schelp [3], we say
that the graph G is p-arrangeable if there is a linear order L on the nodes
having arrangeability at most p.

2.1 Proposition. A p-arrangeable graph G = (V, E) is p-degenerate.

Proof. A linear order L on V that has arrangeability at most p also has
back degree at most p. I

We now present a brief discussion of the Ramsey theoretic problems that
led Chen and Schelp [3] to introduce and investigate the concept of p
arrangeability. Let G = (V,E) be a graph. Define the Ramsey number of
G, denoted r(G), as the least positive integer t so that if the edges of a
complete graph K, on t nodes are colored with two colors, then there is
always a monochromatic copy of G. If IVI = n, then the Ramsey number
r(G) satisfies

(2.1) (
2n - 2)2n - I ~ r(G) ~ .
n - 1

The lower bound in this inequality is trivial, and the upper bound is just
the well-known bound of Erdos and Szekeres [5] for the Ramsey number
r(Kn ) . On the one hand, the exponential form of this upper bound is correct
in the sense that r(Kn ) ~ 2n/2• On the other hand, there are some interesting
cases where the lower bound is closer to the truth. Examples include cycles
and trees.

Recall that the arboricity of a graph G = (V, E) is the least t so that
the edge set E can be partitioned into t forests. The following beautiful
conjecture was made 17 years ago by S. Burr and P. Erdos [2].

2.2 Conjecture. For each positive integer a, there exists a positive constant
e so that if G is an n-node graph having arboricity at most a, then the Ramsey
number of G satisfies r(G) ~ en. I
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Progress in resolving this conjecture has been slow. However, in 1983,
V. Chvatal, V. Rodl, E. Szemeredi, and W. T. Trotter proved [4] a linear
bound on the Ramsey numbers of graphs of bounded maximum degree.

2.3 Theorem. For each positive integer d, there is a positive constant e so
that if G is an n-node graph and the maximum degree of G is at most d,
then the Ramsey number of G satisfies r(G) ::5 en. I

In [3], G. Chen and R. Schelp develop an interesting strengthening of
Theorem 2.3.

2.4 Theorem. For each positive integer p, there is a positive constant e
so that if G is an n-ncde graph and G is p-arrangeable, then the Ramsey
number of G satisfies r(G) ::5 en. I

In order to demonstrate that their theorem applied to important examples
not covered under Theorem 2.3, Chen and Schelp [3] then proved the
following result, which is of primary importance in this paper.

2.5 Theorem. Every planar graph is 76 l-arrangeable, I

Before closing this section, we make three remarks concerning
Theorem 2.5 and the concept of arboricity. First, it is not immediately clear
to us why planar graphs are p-arrangeable for any value of p, regardless
of how large p is taken to be. Second, the proof of Theorem 2.3 depends
heavily on Szemeredi's regularity lemma [8] that he first used to resolve
the Erdos/Turan conjecture: Any subset of the positive integers having
positive upper density contains arbitrarily long arithmetic progressions. The
regularity lemma has become a much used tool in combinatorics (see [9]
for a short proof of the lemma), but it involves constants that are just barely
finite. For this reason, Chen and Schelp were not motivated to find the least
value of p for which every planar graph is p-arrangeable. Third, the family
of bipartite graphs used in [6] to show that the family of bipartite graphs has
infinite game chromatic number is also a family of graphs of arboricity 2.
So bounded arboricity is not enough to bound the game chromatic number.

3. ARRANGEABILITY AND GRAPH COLORING

Let G = (V, E) be a graph and let L be a linear order on V. For each node
x E V, we say that a subset S C; V is admissible for x if (I) y ::5 x in
L, for every yES, and (2) there is an injection f that maps the subset
Sf = {y E S: xy fl. E} to V so that yf(y) E E, xf(y) E E and x < f(y)
in L, for every y E Sf. The admissibility ofx relative to L is then defined as
the maximum size of a subset S that is admissible for x, and the admissibility
of L is the maximum value of the admissibility of the nodes relative to L.
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A graph G = (V, E) is m-admissible if there is a linear order L on V that
has admissibility at most m. For the example given in Figure 2, note that
the set S = {x, Yz, Y3, Y4,Ys} is admissible for x relative to L.

The following results are immediate.

3.1 Proposition. An m-admissible graph is m-degenerate. I

3.2 Proposition. A p-arrangeable graph is 2p-admissible. I

3.3 Proposition. An m-admissible graph is mZ
- m + l-arrangeable. I

Throughout the remainder of the paper, we let [q] denote the set
[I, 2, ... , q}. The next theorem explains why the concepts of arrangeability
and admissibility are important in the adversarial graph coloring environ
ment.

3.4 Theorem. Let G = (V, E) be an m-admissible graph, and let X (G) =
r . Then the game chromatic number of G is at most rm + 1.

Proof We take the set X of colors as {*} U {(a,j): a E [r ],j E Em]}.
As the game is played, we will denote the color assigned to a node x be
denoted by g(x). When g(x) = (a,j) for some j E [r], we let g\(x) = a.

We now describe a winning strategy for Alice. This strategy is given in
terms of a decision process for selecting a node to color and for then coloring
it with one of the colors from X. The fact that the strategy results in a win
for Alice requires us to prove that this decision process always results in a
legitimate assignment. Alice's strategy is based on a fixed r-coloring c of G
and a linear order L of the node set that has admissibility at most m.

In the remainder of the argument, we will describe a number of different
subsets of the set of nodes. In order to assist the reader in keeping track of
these sets, they will be defined as acronyms of capital letters.

At some intermediate point in the game, we let C denote the set of colored
nodes, and we let U denote the set of uncolored nodes. For each node x, let
P(x) denote the set of nodes that precede x in L, let F(x) denote the set of
nodes that/ollow x in L, and let N(x) denote the set of neighbors of x. Then
let CN(x) = C n N(x), let PN(x) = P(x) n N(x), PU(x) = P(x) n U,
PUN(x) = P(x) nun N(x), etc.

For Y E C, let T(y) = {x E UN(y): if g(y) * *, then g\(y) = c(x)},
and for x E U, let D(x) = {y E CN(x): if g(y) * *, then g\(y) = c(x)}.

On her first turn, Alice colors the L-Ieast node v with the color (c(v), 1).
At each succeeding turn, she selects the node she will color as follows:

Selection Rule. Let v denote the node colored by Bob on his last turn. If
PT(v) * 0, let x denote the L-Ieast node in PT(v). If PT(v) = 0, let x
be the L-Ieast node in U.
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Next we describe a scheme for coloring the selected node. Let x be the
node that will be colored, and let c(x) = a.

Coloring Rule. If CN(x) contains a subset {zr, ... ,Zm} and these nodes
have already been assigned distinct colors from {(a, 1), ... ,(a,m)), assign
color * to x. Otherwise, assign color (a, j) to x, where j is the least positive
integer for which x is not adjacent to a node assigned color (a,j).

We will now show that these rules yield a legitimate color for the
node Alice has selected. In fact, we show something stronger. We show
that the same rules could-on any tum-be used by either player, under
the assumption that they have always been followed by Alice. This will
show that neither player can ever be trapped without a legal move. First,
observe that by following the rules given above, a player is avoiding (almost
all) conflict with color assignments made previously by Alice. This is
accomplished by the expedient of using a two-coordinate color where the
first coordinate is taken from a proper r-coloring of G. A player using this
coloring scheme must avoid conflicts with nodes colored by Bob and nodes
that one of the two players has colored *.

Claim. At any stage in the game, if the next player uses the Selection Rule
to determine a node x to be colored and Alice has consistently followed both
the Selection Rule and the Coloring Rule at each preceding tum, then

IPUN(x) U D(x)1 ~ m.

Proof. We proceed by induction on the number of turns. The base step is
trivial since there are no colored nodes at the start of the game. Now consider
the inductive step. Let x be the uncolored node that has been selected, and let
c(x) = a. Since Alice has always used the Selection Rule and the Coloring
Rule, we know that all the nodes in D(x) except possibly those assigned
color * have been colored by Bob. We now show that any node in FD(x)
has been colored by Bob.

Suppose to the contrary that Alice colored some node y E FD(x) with
*. Since Alice has consistently played by the rules, we know that at the
moment she colors y, it is adjacent to at least m nodes in D(y). Note
that x E PUN(y). Thus IPUN(y) U D(y)1 > m, which contradicts the
inductive hypothesis.

For each Z E FD(x), let yz denote the element that Alice chooses to
color immediately after Bob colors z. Then let Y = {yz: Z E FD(x)}.
Note that if y E Y, then Alice has colored y, unless y = x. In particular,
Y n PUN(x) = 0. We now show that Y n PD(x) = 0.

Suppose to the contrary that y E Y n PD(x). Choose Z E FD(x) so that
y * yz. Since y E D(x) and Alice colored y, we know that Alice assigned
it color *. If Bob assigned color * to z, then our inductive hypothesis would
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have been violated when Bob colored z, so we may assume that g(z) "* *.
Since z E D(x), we conclude that g(z) = (a,j), for some j E [r]. Now
the fact that Alice chose to color y rather than x implies that c( y) = a. This
is a contradiction, since x and y are adjacent.

Thus IPUN(x) U D(x)1 = IPUN(x) U PD(x) U YI -s m, since IFD .
(x)1 = IYI and PUN(x) U PD(x) U Y is an admissible set for x. •

To complete the proof of our theorem, we need only remark that if a player
uses the Selection Rule to choose x, then the Coloring Rule can always be
used to provide x with a legal color. •

4. PLANAR GRAPHS ARE 8-ADMISSIBLE

In this section, we present the following theorem, which also yields an
improvement of the bound in Theorem 2.5.

4.1 Theorem. Let G = (V, E) be a planar graph. Then there is a linear
order L of node set V that has back degree at most 5, admissibility at most
8 and arrangeability at most 10.

Proof. Fix a plane drawing of G that has no edge crossings. We will
define the linear order L as a labeling x), X2, •.• , X n of the nodes in V. The
definition proceeds in reverse order and begins with the choice of Xn as a
node of degree at most five in G. Note that the admissibility of Xn is at most
5 and the arrangeability of X n is O.

At step i, we assume that we have chosen nodes Xi+),Xi+2, ... ,Xn , and
that each of these nodes have back degree at most 5, admissibility at most 8
and arrangeability at most 10. Next, we describe how the node Xi is chosen.
The ordering on the nodes x), X2, .•• ,X6 is arbitrary so we may assume that
i > 7.

We call the nodes in the set C = {Xi+),Xi+2,""Xn} the chosen nodes,
and we let U = V - C denote the unchosen nodes. Of course, the node
Xi will be chosen from U. We refer to the edges in E as real edges. Let
G' = (V, E') denote the planar graph obtained by removing all real edges
with both end points in C. For each z E C, let U; denote the unchosen
neighbors of z, and let d, = IUzl. Then let C' = {z E C: d, ;:::: 2}.

For each z E C', we let Az = {ez(x,y): x,y E Ui,» "* y}. Then set
A = U{A z: z E C'}. We refer to the elements in A as artificial edges, and
we consider ez(x,y) as an edge having x and y as end points. We intend
to distinguish between the edges ez(x,y) and ez'(x,y) whenever z "* z'. Of
course, we also distinguish between real and artificial edges.

For each z E C', we label the nodes in U; as u,(z), U2(Z), ... , Ud(Z), where
d = d, and the labeling proceeds in clockwise order around z (see Figure 3).
The choice of the starting node u, (z) is arbitrary.
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FIGURE 3

Then let SA(z) = {ez(u/z), Uj+l (zl): j E Ed]}. Of course, we intend this
definition to be interpreted cyclically so that Ul (z) = Ud+l (z). Then let
SA = U{SA(z): z E C'}. Edges in SA are called strong artificial edges. As
remarked previously, we also intend that SA(z) n SA(z') = 0 when z *- z'.
Now let Gil = (V, E' U SA), and note that Gil is a planar multigraph. In
fact, Gil can be drawn so that if z E C' and d, 2: 4, elements of Gil in the
interior of the star-shaped region R, bounded by the strong artificial edges
with end points in U, are the node z and real edges of the form xu/z)
(see Figure 4).

Now let Uo denote the subgraph of Gil induced by the unchosen nodes.
By successively removing strong artificial edges that belong to two-sided
faces, we obtain a planar multigraph U1 such that the following holds:

(1) U1 contains no two-sided faces.
(2) If z E C and d, 2: 4, then U1 contains a face F, whose boundary

cycle consists of the nodes from Uz • Furthermore the edges of F;
belong to E USA.

(3) If z, z' E C, d, 2: 4 and dZI 2: 4, then the face F, contains z in its
interior while z' is in its exterior.

FIGURE 4
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For each z E C' with dz :::: 4 and for each j E [d z], let
WA/z) = {ez(u/z), v(z)): v E U; and v f£. {Uj+\> Uj_I}}' We let
WA(z) = U{WAj(z): j E [dz]} and WA = U{WA(z): z E Ci d, :::: 4}.
The edges in WA are called weak artificial edges.

Let E(Vd denote the edge set of VI. For each j E [l , 2, ... , 5}, let
H j = (U, E j) be the multigraph with

E, = E(Vd U U{Aj(z): z E Ct d, = 5} U U{A1(z): z E Ci d, = 4}.

For each j E {6,7, ... , IO}, let H, = (U, Ej ) be the multigraph with

E, = E(V1) U U{A j- 5 : z E Ci d; = 5} U U{A2(z): z E Ccd, = 4}.

For each j E [10], the multigraph H, is planar. Furthermore, H, can
be drawn without crossings by inserting each weak artificial edge of the
form e,(x,y) present in H, in the star-shaped region Rz , which is always
contained inside the face Fj in the drawing of V I, In Figure 5, we illustrate
how this process works for the node z of Figures 3 and 4 in the drawing of
H 5 . In this instance, the face F, has been formed by deleting (at least) three
strong artificial edges with both end points in Uz•

It is important to note that for such a drawing of Hj, there are no two-sided
faces. Now for each j E [10] and for each x E U, let degj(x) denote the
degree of x in Hj. Also, let J{ = {H\>H 2 , ... ,H IO} . That each H, E J{
is a planar multigraph with no two-sided faces implies that

21Ej l = L degj(x) < 6Iu\.
xEU

It follows that there is a node x = Xi E U for which

10

total degree(x) = L degj(x) < 60.
j~1

FIGURE 5
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We now show that x has back degree at most 5, admissibility at most 8,
and arrangeability at most 10. The first statement is trivial since xy E E,
for every j E [10] whenever y E U and xy E E. Let T = T(x) = {y E
U: xy E E} U {y E U: there is some z E C' with ez(x,y) E SA(z)} and
let Z = Z(x) = {z E C: d, ;::: 4,x E Uz}. Our arguments for the last two
statements are simplified by the following observation concerning the
relative sizes of these two sets.

Claim. ITI;::: tzt.

Proof. For each z E Z, the edge xz lies (except for the end
point x) entirely in the interior of the face F, whose boundary edges
belong to E U SA. Each such F, contains 2 boundary edges incident
with x, and these edges are either real or strong artificial edges.
Since an edge is a boundary edge of at most two faces, the claim
follows. •

Now let S be an admissible set for x. We show that lsi ::5 8; in fact, we
show that Is - {xli ::5 7. Note that any node in S - {x} is adjacent to x by
a real edge or an artificial edge. Let S\ = {y E S - [x}: xy E E} U {y E
S - {x}: there is some z E C with d, ;::: 4 and ez(x,y) E SA(z)}. Note
that SI ~ T. Let S2 = {y E S - S\: y =1= x}. For each y E S2, there is a
unique z = z, E Z with yz E E. It follows that the weak artificial edge
ez(x, y) appears in at least 4 of the 10 planar multigraphs. This implies that
the total degree of x is at least IOITI + 4(IS21, so that 10lTI + 41S21 < 60.
Using the claim, we know that ITI ;::: Izi ;::: IS21. These two inequalities
imply that ITI + IS21 ::5 7, so that lsi ::5 8.

We now show that the arrangeability of x is at most 10. Let S be an
arrangeable set for x. As before, let S\{Y E S - {x}: xy E E} U {y E
S - [x}: there is some z E C with d, ;::: 4 and ez(x,y) E SA(z)}. Also,
let S2 = {y E S - SI: y =1= x}.

For each z E Z, there are at most 2 nodes in Uz n S2' It follows that
IS21 ::5 ztz]. By the claim, IS21 ::5 21TI. Since the total degree of x is at least
IOITI + 41zl, it follows that IT U s21 ::5 9. Since S~ {x} U T U S2, we
conclude that lSI ::5 10. This completes the proof of our theorem. •

4.2 Corollary (Theorem 1.1). The game chromatic number of planar graph
is at most 33. •

4.3 Corollary. If G is an outerplanar graph, then there exists a linear order
L on the node set that has back degree at most 2, arrangeability at most 3,
and admissibility at most 3.

Proof. It is straightforward to modify the proof of Theorem 4.1 to
construct the desired linear order. In fact, in this case, we do not even have
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to consider a family of outerplanar multigraphs. By maintaining the property
that the back degree of L is at most 2, all artificial edges are strong. I

4.4 Corollary. The game chromatic number of an outerplanar graph is at
most 10. I

5. LOWER BOUNDS

In this section, we produce lower bounds on the game chromatic number,
admissibility, and arrangeability of planar graphs. The result for admissibility
is tight, and the gap for arrangeability is modest, but we leave a relatively
large gap with our lower bound on game chromatic number.

In Section 1, we gave an example of a planar graph with game chromatic
number 6. We can do just a bit better.

5.1 Theorem. The game chromatic number of the class of planar graphs
is at least 7.

Proof. Consider the planar graph G] shown in Figure 6. This diagram
is intended to suggest that for each pair selected from {a, b, c}, there are 7
common neighbors of degree 2.

Then form a planar graph Gz by taking two copies of G and identifying
the nodes labeled WI. Then form G3 by taking two disjoint copies of Gz.

x

a

FIGURE 6

c
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We show that the game chromatic number of G3 is at least 7 by providing
a winning strategy for Bob when the colors come from [6].

On her first move, Alice colors a node from one of the copies of Gz.
Bob will color only in the other copy of Gz, and on his first tum assigns
color 1 to the node x. Alice makes her second move, and Bob then selects
one of the copies of G 1 containing the node he colored on his first tum, but
containing no nodes colored by Alice. In this copy, Bob assigns color 2 to
y. Note that the nodes in T = {a, b, c} form a triangle, and each node in T
is adjacent to both x and y. Let S = {3,4, 5, 6}. As the game progresses, we
will delete nodes from T and colors to S. Also, it will always be the case
that the nodes in T must be assigned colors from S.

Alice now makes her third move. Bob's strategy unfolds as follows.

(1) Bob will never color a node from T. Until Alice colors a node from
T, Bob colors nodes of degree 2 adjacent to both a and b with distinct
colors from S. Clearly, Alice must eventually color a node from T.

(2) When Alice first assigns color a to a node u from T, Bob assigns a
color f3 E S - {a} to one of the nodes of degree 2 adjacent to the
other two nodes in T. Let S = S - {a, f3}, and T = T - {u}. Note
that ITI = lSI = 2, and that the two nodes in T must be assigned
colors from S.

(3) Now Bob colors nodes of degree 2 that are adjacent to both nodes of
T with distinct colors from S until Alice colors a node from T.

(4) When Alice assigns color 'Y E S to a node vET, let S = S 
{y} = {8} and T = T - {v} = {w}. Bob then assigns color 8 to one
of the degree 2 nodes adjacent to w.

(5) Bob wins because w is adjacent to 6 nodes assigned distinct colors
from [6]. I

In the argument to follow, we let c- denote the planar dual of the graph G.

5.2 Theorem. There is a planar graph with admissibility 8.

Proof. Consider the planar graph G shown in Figure 7.
Observe that G is constructed as follows. Begin with the 8 node cube. Add

the 6 nodes and 12 edges of the planar dual of the cube. Perform a Y - ~

transformation at each node of degree 3. Insert a 4-gon at each place where
edges of the cube and its dual cross. Now let H = Gd denote its planar
dual. For each node x in H, let N (x) denote the set of neighbors of x. It is
straightforward to verify the following properties of H.

(1) There are 24 nodes of degree 8.
(2) Each node of degree 8 is adjacent to four other nodes of degree 8,

three nodes of degree 4 and one node of degree 3.
(3) If x is a node of degree 8 and Zh Zz, and Z3 are its three neighbors

of degree 4, then there are three nodes xI. Xz, and X3 so that for each
i E [3]:



582 JOURNAL OF GRAPH THEORY

FIGURE 7

(a) The degree of Xi is 8;
(b) X and Xi are not adjacent; and
(c) Xi and Zi are adjacent.

Now let L be any linear order on the nodes of H, and let X be the last
node of degree 8 to occur in L. We show that the admissibility of X in L is at
least 8. Let YJ,YZ,Y3, and Y4 be the four neighbors of X that have degree 8.
Note that Yi < x in L for each i E [4]. Now let {XJ,XZ,X3,ZJ,ZZ,Z3} be the
set of 6 nodes satisfying the third property listed above. For each j E [3], let
Uj = z, if z, < x in L; otherwise, let Uj = Xj' Finally, let w be the unique
node of degree 3 adjacent to x. Set v = w if w < x in L; otherwise, set
v = x. It follows that the set S = {yJ, Yz, Y3, Y4, UJ, Uz, U3, v} is admissible
for x. •

5.3 Corollary. There is a planar graph with arrangeability at least 8.

Proof. Let G be any planar graph with admissibility 8. Form a planar
graph H from G as follows. For each edge e = xy in G add 7 new nodes
of degree 2 each adjacent to both x and y. We claim that the arrangeability
of H is at least 8. To show this, let L be any linear order of the nodes of
H. Then let M be the restriction of L to the nodes of G. Choose a node x
and set S of 8 nodes from G so that S is admissible for x relative to M. If
S is arrangeable for x relative to L, then the arrangeability of L is at least 8.
Now suppose that S is not arrangeable for x relative to L. Then there is a
node yES so that xy is an edge in G, but none of the 8 nodes of degree 2
adjacent to both x and Y added in the formation of H follows x in L. This
implies that the back degree of x in L is at least 8, so that the arrangeability
of L is at least 8. •

By this time, the reader may enjoy the task of constructing an example to
provide a lower bound on the game chromatic number of outerplanar graphs.
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5.4 Exercise. There is an outerplanar graph with game chromatic number
at least 5. •

6. CONCLUDING REMARKS AND OPEN PROBLEMS

Two obvious open problems that remain are to tighten the bounds we have
produced for the game chromatic number of planar and outerplanar graphs.
We have recently shown that the game chromatic number of the class of
planar graphs is at least 8, and by the results presented in this paper, it is at
most 33. For the class of outerplanar graphs, our bounds are 6 and 8.

A third open problem is to determine the least p for which every planar
graph is p-arrangeable. We suspect that the upper bound of 10 provided
in Theorem 4.1 is tight. For outerplanar graphs, the upper bound of 3 on
the arrangeability and admissibility provided by Corollary 4.3 is tight-for
both parameters.

Let C; be the class of graphs that do not contain the subdivision of the
complete graph K; on n vertices as a subgraph. Then it is well known that
there is some constant c = c; so that the average degree of any graph in C;
is at most c. It is then easy to modify the proof of Theorem 4.1 to obtain a
bound on the admissibility and arrangeability of graphs in en. In particular,
the game chromatic number of any proper minor closed class of graphs is
bounded. Also, there is a bound on the game chromatic number of a graph
in terms of its genus. We have no feel for what the best bounds for these
functions might be.

We do not have a good lower bound for the inequality in Theorem 3.4,
and we do not know if the bound in Theorem 3.5 is tight.

More generally, it seems to us to make good sense to investigate
general classes of optimization problems that exhibit the key features of
the uncooperative (adversarial) graph coloring problem we have studied in
this paper.
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