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ON-LINE AND FIRST-FIT COLORING OF GRAPHS
THAT DO NOT INDUCE P5 *

HENRY A. KIERSTEAD, STEPHEN G. PENRICE, AND WILLIAM T. TROTTER

Abstract. For a graph H, let Forb(H) be the class of graphs that do not induce H, and let
P5 be the path on five vertices. In this article, we answer two questions of Gyrfs and Lehel. First,
we show that there exists a function f(w) such that for any graph G E Forb(Ph), the on-line coloring
algorithm First-Fit uses at most f(w(G)) colors on G, where w(G) is the clique size of G. Second, we
show that there exists an on-line algorithm A that will color any graph G E Forb(P5 with a number
of colors exponential in w(G). Finally, we extend some of our results to larger classes of graphs defined
in terms of a list of forbidden subgraphs.
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Introduction. An on-line graph is a structure G< (V, E, <), where G (V, E)
is a graph and < is a linear ordering of V. We allow V to be finite or countably
infinite. We call G< an on-line presentation of the graph G. The on-line subgraph
of G< induced by a subset S c Y is the on-line graph G<[S] (S,E’, <’), where
E is the set of edges in E both of whose end points are in S, and < is < restricted
to S. We shall always assume that V {xl,x2,...}, where xi < xj iff < j. Let
t {xj’j <_ i} and G G<[]. An algorithm for coloring the vertices of G< is
said to be on-line if the color of a vertex vi is determined solely by G. Intuitively,
the algorithm colors the vertices of G< one at a time in some externally determined
order x1,..., Xn, and at the time a color is irrevocably assigned to the vertex xi, the
algorithm can only see G< A simple but important example of an on-line algorithm is
the algorithm First-Fit, denoted by FF, which colors the vertices of G with an initial
sequence of the colors {1, 2,...} by assigning to the vertex xi the least possible color,:

not already assigned to any vertex of

_
1, adjacent to x.

The clique size and chromatic number of a graph G are denoted by w(G) and
respectively. Let A be an on-line graph-coloring algorithm. Then XA(G<) denotes
the number of colors A uses to color the on-line graph G< and XA(G) denotes the
maximum of XA (G<) over all on-line presentations G< of G. A class of graphs F is said
to be x-bounded if there exists a function f such that for all G E F, X(G) _< f(w(G)).
The function f is called a x-binding function for F. Easy examples of x-bounded classes
include the class of perfect graphs, the class of line graphs, and, more generally, the
class of claw-free graphs. Similarly, for an on-line algorithm A, the class F is XA-
bounded if there exists a function f such that for all G E F, XA(G) <_ f(w(G)). In this
case we say that A is a x-binding algorithm for F and f is an on-line x-binding function
for F. The class F is on-line x-bounded if F is XA-bounded for some on-line algorithm
A. In this article, we are interested in classes of graphs that are on-line x-bounded.
The class of perfect graphs is not on-line x-bounded. In fact, the subclass of trees is
not on-line x-bounded (see, for example, Bean [1]). However, the class of claw-free
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graphs is on-line x-bounded. Here we shall be interested in other classes defined by
forbidding certain induced subgraphs.

For a graph H, let Forb(H) be the class of graphs that do not induce H. Similarly,
let Forb(H1,... ,HE) be the class of graphs that do not induce any of the graphs
HI,..., HE. Gyrfs [3] and Sumner [15] independently conjectured that if T is a tree,
then Forb(T) is x-bounded. Gyrfs [4] has shown this to be the case when T is a
path. Gyrfs, Szemer6di, and Tuza [8] verified the conjecture for triangle-free graphs
in Forb(T) when T is a radius-two tree, and Kierstead and eenrice [11] extended this
result by showing that Forb(T) is x-bounded whenever T has radius two.

Gyrf and Lehel [7], [6] opened up an exciting and unexpected new area for
study when they proved that Forb(P5) is on-line x-bounded, where Pn is a path on n
vertices. They also showed that Forb(P6) is not on-line x-bounded. These results led
to many interesting questions. The Gyrf-Lehel algorithm was quite complicated
and gave a superexponential on-line x-binding function. They asked whether Forb(P5)
had an exponential on-line x-binding function and whether the simple algorithm First-
Fit was an x-binding algorithm for Forb(P5). In this article we prove the following
theorems.

THEOREM 1.1. There exists an on-line algorithm A and an exponential function
f(w) (4 1)/3 such that XA(G)

_
f(w(G)), for any graph G E Forb(P5).

THEOREM 2.1. Forb(P5) is XFF-bounded.
The smallest function known to be an (off-line) x-binding function for Forb(P5)

is 2n. Our on-line x-binding function for Forb(P5) is within a power of two of this
function. In light of the Gyrfs-Sumner conjecture, one is led to ask for which trees
T, Forb(T) is on-line x-bounded. Since Forb(P6) is not on-line x-bounded, neither is

Forb(T) if T has radius greater than two. The authors [13] have recently proved that
Forb(T) is on-line x-bounded if T has radius at most two.

Theorem 2.1, together with some observations of Gyrfs and Lehel [5], allow us
to characterize those trees T for which Forb(T) is XFF-bounded.

THEOREM 2.2. Let T be a tree. Forb(T) is XFF-bounded if and only if T does
not induce K2 + 2K1.

For other trees T, we shall try to determine reasons why Forb(T) is not XFF-
bounded, in [11] Kierstead and Penrice showed that for any tree T and integer t,
Forb(T, Kt,t) is XFF-bounded. This fact is used in [13] to prove that Forb(T) is on-
line x-bounded for any radius-two tree T. However, the fact that a graph contains
Kt,t does not explain why it might have a large First-Fit chromatic number. Let Bt
be the graph obtained from Kt,t by removing a perfect matching M. If Bt< is the
on-line presentation of Bt, where adjacent vertices of M appear consecutively, then
it is easy to see (and is explained in more detail in the proof of Theorem 2.2) that
XFF(Bt<) is t. Thus if a graph induces Bt, then we have a certificate that its First-Fit
chromatic number is at least t. We shall prove the following two theorems which are
quite satisfying from this point of view. The trees Dk and P5,1 are shown in Figs. 1
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and 2 (also see the definition at the end of this section).
THEOREM 2.3. For every positive integer k, Forb(Ph,l,Bt) is XFF-bounded.
THEOREM 2.4. For every positive integer k, Forb(Dk,Bt) is XFF-bounded.
It should be noted that B3 is just the six cycle C6.
Finally, we mention some related results on First-Fit. Woodall [16] showed that

the class of interval graphs is XFF-bounded. Gyrfs and Lehel [5] gave an improved
bound for this problem and introduced the notion of a wall, which we shall also use.
Recently Kierstead [10] showed that the binding function is linear. Interval graphs
are cocomparability graphs of interval orders. The class of comparability graphs con-
tains the class of trees and so is not on-line x-bounded. However, Kierstead [12] has
proved that the class of comparability graphs of interval orders is XFF-bounded. A
consequence of a theorem of Chvtal [2] is that First-Fit uses exactly w(G) colors to
color G E Forb(P4), where T is the path on four vertices.

Theorem 1.1 is proved in 1. Theorems 2.1-2.4 are proved in 2. In 3, we discuss
some problems for further research. In the remainder of this section we review our
terminology and notation.

Let G (V, E) be a graph. Adjacency between two vertices x and y is denoted
by x y and nonadjacency is denoted by x y. The neighborhood of a vertex
x is denoted by N(x) {y e Y y x}. The clique number, the independence
number, the chromatic number, and the number of vertices of G are denoted by
w(G), c(G), x(G), and (G), respectively. The following special notation is used to
denote certain graphs.

Pk path on k vertices.

Sk star with k leaves, i.e., a star on k + 1 vertices.

Dk tree obtained by adding k- 1 leaves to the second and third vertices of P4.
Lk tree obtained by adding k- 1 leaves to the second and fourth vertices of P5

(see Fig. 3).
Pn,k tree obtained by adding k leaves to the third vertex of Pn.
p2, broom obtained by adding k- 1 leaves to the second vertex of Pnk

LSk tree on 2k + 1 vertices consisting of k independent edges and a vertex which
is adjacent to exactly one vertex of each of these edges.

Ks clique on s vertices.
Kt,t complete bipartite graph with t vertices in each part.
Bt bipartite graph obtained by deleting a perfect matching from Kt,t.
For a set S, let [S] 2 {A c S: ISI 2}. We may write (a > Z) for the two

element set {a,Z} to denote that a > /. For a coloring p: IS]: -- {1,...,n}, we
say that H c S is homogeneous if p restricted to [HI 2 is constant. Let R(t) be the
Ramsey function such that for every coloring p: IS] 2 {1,...,i}, with IS _> Ri(t),
there exists a homogeneous subset H c S such that IHI t. Similarly, let R(tl,..., t)
be the aamsey function such that for every coloring p: IS] 2 - {1,..., i}, with ISI _>
R(tl,..., ti), there exists a homogeneous set H with IHI tj such that p(a > Z) J,
for all a, H with /. Note that if G is a graph such that -(G) >_ R(w, a), then
either w(G) >_ w or a(G) _> a.

1. An exponential on-line algorithm for Ps-free graphs. In this section
we prove Theorem 1. Before starting the proof, we establish two useful properties of
Forb(Ph).

LEMMA 1.2. Suppose G Forb(Ph). If MI and M2 are distinct maximal cliques
in the same connected component of G, then there exist vertices x M1 and y M:
such that x is adjacent to y.
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Proof. Suppose not. Then M1 and M2 are disjoint. Since M1 and M2 are in
the same connected component, there exists a path from M1 to M2, i.e., a path
P (Xl,... ,Xm) such that Xl E Ml,x, M2. Let P be a shortest such path. Then
P is an induced path and, by our initial assumption, rn >_ 3. Since M1 is a maximal
clique, there exists x0 M1 not adjacent to x.. Since P is a shortest path, y is not
adjacent to xi for _> 3. Similarly, there exists Xm+l M2 such that Xm+l is not
adjacent to xi for _< m- 1. Thus xo + P + Xm+ is an induced path of length at least
five, which is a contradiction.

COROLLARY 1.3. If x is a cut vertex of a connected graph G in Forb(Ph) and M1
and M2 are maximal cliques in distinct components of G- x, then either M1 A {x} or

M [J {x} is a clique.

Proof of Theorem 1.1. We first present an on-line algorithm A and then prove that
it properly colors any on-line presentation G< of a graph G Forb(Ph) with at most
f(w(G)) colors. An important point is that the algorithm must be independent of the
clique size of G. For this reason, the algorithm is defined recursively. Let A(x, G<)
denote the color A assigns to x, when x is considered as a vertex of the on-line graph
G<. When a new vertex xi is presented, the algorithm first assigns xi to one of the
sets Sj,k, where 1 _< j _< 4 and k is the clique size of the connected component of x
in G. This will be done so that for j < 4, each Sj,k has clique size less than k and
each S4,k is an independent set. Then A assigns xi a color derived from the color
A(x, G<[Sj,k]) obtained by a recursive call of itself. Vertices in distinct Sj,k receive
colors from disjoint sets of colors. Note that the exponential function f(w) (4w-1)/3
is defined recursively by f(1) 1 and f(k) 4f(k 1) + 1.

At each stage of the algorithm, each connected component C of G will have a
special maximum clique K, called the active clique. Once a clique becomes active, it
remains active until a larger clique is formed in its component. The choice of which
Sj,k in which to put x is completely determined by w(C) and the adjacencies between
xi and elements of K, where C denotes the connected component of xi in G< and K
denotes the active clique of C.

Suppose A has colored Gi-1. We specify how A assigns a color to the next ver-
tex xi.

ALGORITHM A(x, G<).
Find C, the connected component of xi in G, and set k w(C).
Case 1: k > w(C- {xi}). Put xi in $4,. [Claim 1: S4,k is independent.] Set

A(xi, G<) f(k). Let g be a k-clique in C. Deactivate any active cliques of C- {xi}
and designate K as the active clique of C.

Case 2: k w(C-{xi}). Let g be the active clique of C. [Claim 2: K is unique.]
Case 2a: For some v K, both xi v and u v, for all u E C N Sl,k. Put xi

in Sl,k. [Claim 3: W(Sl,k) < k.] Set A(xi, G<) f(k- 1)+ A(xi, G<[SI,]).
Case 2b: Not Case 2a and for some v K, both xi v and u v, for all

u C N S2,a. Put xi in S2,k. [Claim 4: w(S2,k) < k.] Set A(xi, G<) 2f(k- 1)+
A(xi, G< [S.,k]).

Case 2c: Not Case 2a or Case 2b. Put x in S3,k. [Claim 5: w(S3,k) < k.] Set
A(xi, G<) 3f(k- 1)+ A(xi, G<[S3,k]).

Next we show that the algorithm produces a proper f(w(G))-coloring of G<,
assuming the five claims above. Then we shall verify the claims. We argue by induction
on w(G). If w(G) 1, then every point is isolated. Thus each x is assigned to the
independent set $4,1 and colored f(1) 1.
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FIG. 5

Now suppose ca(G) k > 1. By Claims 3-5, for each j < 3 and m < k,w(Sj,,) <
k- 1. By the induction hypothesis, Sj,m is properly colored with colors from the
set {jf(m 1) + 1,..., (j + 1)f(m 1)}, since A(xi, G<[Sj,m]) < f(m 1) for each
xi E Sj,k. By Claim 1, for each m _< k, the set Sa,m is independent and colored with

f(m) 4f(m- 1) + 1. Since these sets of colors are easily seen to be pairwise dis-
joint, we are done.

Claim 3 is easy because all vertices in the same connected component of Sl,k have
a common neighbor in their active k-clique. Claim 4 is similar. We shall prove Claims
1 and 2 by induction on i. When 1, both claims are trivial. Suppose i > 1. If
Claim 1 fails, then by induction xi is adjacent to some xj Sa,, where j < i. Clearly
the component C’ of xj in G is contained in C since xj S4,k,w(C’) k, which
contradicts w(C- {x}) < k. By the induction hypothesis, the only way that Claim
2 could fail is if xi is a cut vertex of C and two distinct components of C- {xi}
contain k-cliques. Then by Corollary 1.3, xi is in a (k + 1)-clique of C, contradicting

k.
It remains to prove Claim 5. Suppose it is false. Let M be a k-clique in S3,k. Let

vii,..., vik be the vertices of M with il < i2 < ik. If K is the active clique of vii
in G, it is easy to show by induction that K is the active clique of the component
of vi in G.< whenever 1 < j < k, since K could only be deactivated by the addition
of a vertex which raised the clique size of the component. But in that case, vik would
have been assigned to Sj,k, for some j < 4, k > k. We consider two cases.

Case 1. There exist s S2,k andm Msuchthat s m. Sincew(C) k,
there exists m’ $2, such that m’ s. (See Fig. 4.) Since m and m’ are not in S2,k,
there exists k E K such that k s, k m, and k 7 m. Also since m, m, and s are
not in $1,, there exists k K such that k m, k m, and k 7 s. But this is a

contradiction, since (k’, k, s, m, m’) is an induced Ph.
Case 2. For all s S2,k and m M, s 7 m. (See Fig. 5.) By Lemma 1.2 there

exist m M and k E K such that m k. Also there exists m M such that k m.
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Since m

_
S2,k, there exists s E S2,k such that s k. Since neither m nor m is in

S2,k, there exists k E K such that s k, m k’, and m k’. By the hypothesis
of this case, s m and s m’. Thus (s, k’, k, m, m’) is an induced Ph, which is a
contradiction.

2. First-Fit. We begin this section with the proof of Theorem 2.2 assuming
Theorem 2.1. We then state and prove a series of lemmas which lead eventually to
the proofs of Theorems 2.3 and 2.4. Along the way we pause to prove Theorem 2.1.

Proof of Theorem 2.2. The reader may check that if T does not induce K2 + 2K1,
then T is either a star or a path on 5 or fewer vertices. Thus it suffices to show that
Forb(K2 + 2K1)is not XFF-bounded, whereas Forb(Sk) and Forb(Ph) are.

Gyrfs and Lehel [5] noted that Forb(K2 + 2K1) is not XFF-bounded as follows.
Recall that Bt is the graph formed by deleting a perfect matching from a complete
bipartite graph with t vertices in each part. Let {al,...,at} and {51,...,bt} be
the independent sets of the bipartition of Bt, and assume that the pairs {hi, bi} are
independent. It is easy to check that, for all positive integers t, Bt does not induce
K2 + 2K1 and that First-Fit will use t colors on Bt if the vertices are presented in the
order al, bl, a2, b2,..., at, bt.

Now note that Forb(St) is XFF-bounded. If G Forb(St) and w(G) k, First-Fit
will use no more than R(k, t) colors on G. If a vertex x receives color R(k, t) + 1, it
must have R(k, t) neighbors. Because w(G) k,x must in fact have t independent
neighbors, which, together with x, form an induced St.

Forb(Ph) is XFF-bounded by Theorem 2.1, and thus we are done. [:]

For the arguments to follow, it is useful to be able to analyze the performance of
First-Fit in terms of static substructures rather than on-line presentations of graphs.
To this end, we introduce the notion of a wall, which is due originally to Gyrfs
and Lehel [5]. A colored graph is a pair W (G(W), f(W)), where G(W) (V(W),
E(W)) is a graph and f(W) is a proper coloring of G(W). Let C(W) be the range of
f(W). For I C C(W), let [I]w denote the set of vertices in G which are colored with
some color in I. If I {c}, we may write [a]w for [{a}]w. The colored graph W is
called a wall if, for all a > in C(W) and for every vertex x [a]w, there exists a
vertex y []w such that x is adjacent to y. The color classes of the wall, [a]w, are
called levels, and we say that [a]w is a higher level than []w, if a >/. The height
h(W) of a wall W is IC(W)I, or, equivalently, the number of levels. A wall W is said
to support a vertex x if x is adjacent to some vertex at every level of W. We say that
a wall W is in a graph G if G(W) is an induced subgraph of G. We say that a colored
graph W’ is an induced subwall of a wall W if W’ is a wall in G(W) and f(W’) is
the restriction of f(W) to W’. Note that if W is a wall, then [I]w induces a subwall
of W for any I c C(W). We call [I]w a level induced subwall. The following easy
observation allows us to discuss walls rather than on-line graphs when considering
First-Fit.

LEMMA 2.5. Let G be a graph. Then XFF(G) max h(W), where the maximum
is taken over all walls in G.

Proof. Suppose G< is an on-line presentation of G with XFF(G<) t. Then (G, f)
is a wall of height t, where f is the coloring produced by First-Fit when applied to
G<. Alternatively, suppose that W is a wall in G with h(W) t. Then XFF(G<)

_
t

if G< is any on-line presentation in which the vertices of the lowest level of W precede
the vertices of the second-lowest level, which precede those of the third level, and so
on through W, and all vertices of W precede all vertices of G- W.

Let W be a wall in G, which supports a vertex x. Define a coloring p pw,x on
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the two element subsets of C(W) by p( >/) c, where

c 1 iff (a) 2y e ([c]w fq N(x)) Vz e ([]w f3 N(x))(y z) and

(b) 2y’ e ([c]w- g(x)) Vz’ e ([/]w- N(x))(y’75 z’);
c 2 iff not (a); and

c 3 iff both (a) and not (b).

If (a) holds for y, we call y a left witness point for the pair (a, ). Note that since
W is a wall, in this case y must be adjacent to some vertex z’ E []w N(x). If (b)
holds for y we call y’ a right witness point for the pair (a, ). Note that y is adjacent
to some vertex z E [f]w fq N(x). W is said to have the cross property if for some
x, pw,x(a >/?) 1, for every pair of colors a, C(W). The following observation is
crucial to our arguments. If p(a > Z) 2 for every pair c,/ e C(W), then W fq N(x)
is a wall, and if p(a > Z) 3 for every pair a, C(W), then W N(x) is a wall.

The path number 7rc(W) r(W) of a wall W in G is the length of the longest
induced path P (xl,... ,Xn) in G such that xl [a]w, where a is the largest color
in C(W), and no vertex of (x2,... ,Xn) is adjacent to any vertex of W {x }.

LEMMA 2.6. There exists a function g(h) such that for any graph G (V, E), if
W is a wall in G such that h(W) > g(h), then there exists an induced subwall W’ of
W such that h(W) > h and

(i) W is a level induced subwall and has the cross property; or

(ii) w(W’) < w(W); or
(iii) both w(W’) w(W) and 7r(W’) > 7r(W).
Proof First note that for any induced subwall W’ of W,w(W’) < w(W). Let

g g(h) R3(2h) + 1. Suppose W is a wall in G with h(W) > g. Let P (x
x,... ,x) be a path that witnesses the value of 7r(W). Let 1 be the set of the g 1
smallest colors of C(W) and W0 [I]w. Let p PWo, be the coloring of 2-subsets of
I defined above. By Ramsey’s theorem there exists a homogeneous 2h-subset H c 1.
Let p(a > fl) c, for any

Case 1. c 1. Then H’ [H]w is a level induced subwall of W with the cross
property and h(W’) > h.

Case 2. c 2. Then W’= [H]wnN(z) is a wall with h(W’) > h. Since V(W’) c
g(x) and x e V(W),w(W’) < w(W).

Case 3. c 3. Then [H]w-N(x) is
be the two largest colors in H and let y be a left witness point for the pair (a, fl).
Let J {7 e g’y z’, for some z’ e [7]w -g(x)}. If IJI _> h- 1, let W’
{y} t.J [J]w-N(x). Then y + P witnesses that 7r(W’) > 7r(W). See Fig. 6. Otherwise
let W’ [(H J)
[]- N(x), witnesses that 7r(W’) > 7r(W). In either case, h(W’) >_ h and w(W’) <
w(W). See Fig. 7.

We now use Lemma 2.6 to give an inductive proof of Theorem 2.1.
Proof of Theorem 2.1. Consider a graph G E Forb(Ph). First note (1) if W is a

wall in G with the cross property, then h(W) 1 Otherwise, let y and y be left and
right witness points for the pair (c,), where {c, fl} C C(W). Thus by our remark
above, there exist z’ e []w- N(x) and z e []w fq g(x) such that y z’ and y’ z.
Since y and y are witness points, y z and y’ 7 z’. Thus {z, y,x, z, y’} induces Ph,
which is a contradiction. See Fig. 8.

Next note (2) if W is a wall in G with r(W) >_ 3, then W contains an induced
subwall W0 such that h(Wo) h(W)-I and w(Wo) < w(W). Suppose P (Xl,X2,X3)
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P P

N(x) W-N(x) N(x) W-N(x)

FIG. 6. FIG.

is a path that witnesses that r(W) _> 3. If Wo W N N(x) is an induced wall, we
are clearly done; otherwise there exist ( > E C(Wo) and yl E [a]Wo such that yl

is not supported in []Wo. Thus Yi is supported by some y2 [/]w N(x). But then
Xl yl,yl y2,xl ? y2, and {x3,x2,xl,y2,y3} induces P5, which is a contradiction.

Let g be the function defined in Lemma 2.6. We claim that the function f, defined
recursively by f(1) 1 and f(w + 1) g o g(1 + f(w)), is a XFF-binding function for
Forb(P5). We show by induction on w that if G Forb(P5) and w(G) <_ w, then
XFF(G) _< f(w). The base step is trivial. For the inductive step, suppose w(G) <_ w
and XFF(G) > f(w). By Lemma 2.5, G contains a wall W of height XFF(G). Thus by
Lemma 2.6, G has a wall W1 of height g(l+f(w)) such that either (i) W1 has the cross
property, (ii) w(W1) < w, or (iii) r(W1) w and r(W1) _> 2. But (i) is impossible
by (1) above and (ii) is impossible by the induction hypothesis and Lemma 2.5. Thus
(iii) holds. Applying Lemma 2.6 to W1, and using the same reasoning, we obtain a
wall W2 such that h(W2) >_ 1 + f(w) and r(W2) _> 3. Thus by (2) above, W2 contains
an induced subwall W3 such that w(W3) < w and h(W3) _> f(w) > f(w(W3)), which,
using Lemma 2.5, contradicts the induction hypothesis.

Let W be a wall, which has the cross property with respect to x. Then for every
a > 3 in C(W), there exists a right witness point Y3 in [c]w V)N(x) for the pair
(c, ). However, for different values of/, the right witness points y3 may be distinct.
We say that y [a]w g N(x) is a left *-witness point for a if y is a left witness point
for every pair (, ), with 3 C(W) and > 3-Similarly, y’ []w -N(x) is a
right *-witness point for a if y is a right witness point for every pair (a, 3), with

C(W) and a > . We say that W has *-witnesses for a if there exist left and
’ight *-witnesses for c. We say that W has the strong cross property if for every color
a C(W), W has *-witnesses for a. In order to establish the existence of a relatively
high wall with the strong cross property, we need the following lemma.

LEMMA 2.7. There exists a function j(h) such that, if W is a wall in a graph
G, W has height j j(h), and W supports a vertex x, then there exists an induced
subwall W’ of W such that W’ supports x, h(W’) >_ h, and (*) for every vertex y in
W’ and for all a > in C(W’), y is a left or right witness for (a, 3) iff y is a left or
right *-witness for (.

Proof Let j(h) 22. We construct W one level at a time starting at the top.
At each new level, we must add points to support all the points from higher levels
already added to W. In order to ensure that regardless of how we later add points
at lower levels, these new points will satisfy (*), we remove certain lower levels from
consideration. This idea is formalized as follows.
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x W

N(x) W-N(x)

FIG. 8.

Stage O. Let Io C(W), I , and v0 x.
Stage s + 1. Suppose we have constructed V (v0,..., Vn}, In, and g such that:
(1) n<2,[I[_>j2-n,and Ig[=s;
(2)
(3) [P]wny is a wall which supports x and satisfies (*);
(4) Vy (g(x)n V) Va, fl Ig,

[Sz e ([aJw N(x))(y z)] , [2z ([]w N(x)(y z)];

and

(5) Vy (V N(x)) , I,

[Sz e ([a]w N(x))(y z)] , [2z e ([/]w N(x))(y- z)].

Let c be the largest color in In. Set I8+1 I t2 {a}. For each vi E Vs, choose
v,+i E [a]w such that vi Vn+i. Set V+I {V0,...,V2n}. Define Ii, for i n +
1,..., 2n by induction on i as follows. Suppose Ii has been defined. Let J {-y
I" 3z [/]W[Vn+i+i z and (Vn+i+i X Z X)]}. If Igl _> Ilil/2, set Ii+ J;
otherwise set Ii+1 Ii (g t_J {a}). It is easy to check that conditions (1)-(5) are
maintained. This completes the proof. [:]

Lemma 2.7 allows us to strengthen Lemma 2.6 as follows.
LEMMA 2.8. There exists a function g*(h) such that for any graph G (V, E),

if W is a wall in G and h(W) >_ g*(h), then there exists an induced subwall W’ ofW
with h(W) > h and

(i) W has the strong cross property; or
(ii) w(W’) < w(W); or

(iii) both w(W’) <_ w(W) and 7r(W’) > 7r(W).
Proof. Let g*(h) j o g(h). Suppose h(W) > g*(h). Then by Lemma 2.7 there

exists an induced subwall W1 c W such that h(W) >_ g(h) and W1 satisfies (*). By
Lemma 2.6, there exists an induced subwall W’ c W with h(W’) >_ h, and either W’
is a level induced subwall of W1 and has the cross property, w(W’) < w(W), or both
w(W’) <_ w(W) and 7r(W’) > 7r(W). In the latter two cases, we are immediately done.
In the first case we are also done, since W satisfies (*) and W’ is a level induced
subwall of W.

LEMMA 2.9. There exists a function e(h,w) such that if W is a wall in a graph
G with G Forb(Ph,1),h(W) >_ e(h), and w(G) <_ w, then there exists an induced
subwall W’ C W such that h(W’) >_ h and W’ has the strong cross property.

Proof. The proof is essentially the same as the proof of Theorem 2.1, with Lemma
2.6 replaced by Lemma 2.8 and observation (2) replaced by the following remark: (2’)
if W is a wall in a graph G with r(W) >_ 3, then W contains a subwall W0 such that
h(Wo) h(W)- 1 and w(Wo) < w(W). Let P-- (Xl,X2,X3) be a path that witnesses
that r(W) >_ 3. If Wo W;3N(x) is a wall, we are clearly done; otherwise, there exist
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P

x W

3 -Y2

N(x W-N(xl)

FIG. 9.

yl E [O]W with Xl Yl and Y2, Y3 E [/]w, such that Yl y2,xl y2, and Xl Y3,
where a > /. But then {x3,x2,xl,yl,y2,y3} induces P5,1, which is a contradiction.
See Fig. 9.

We note that Lemma 2.9 holds with P5,1 replaced by Pn, or P2n,k. However, we
as yet have no application for such results. We need one more lemma for the proof of
Theorem 2.3.

LEMMA 2.10. Let G be a graph in Forb(P5,) with w(G) <_ w, let x be a vertex of
G, and let W be a wall in G such that both h(W) >_ R(w + 1, t) and W has the strong
cross property with respect to x. Then G induces Bt.

Proof. Let r R(w + 1, t), and for 1 _< a _< r, let y and y’ denote the left
and right *-witnesses for a. First observe that for 1 _</ < a _< r, y’ is adjacent to
yz. Otherwise, since y’ is a right *-witness point, there exists z N(x) N [/]w such
that z y. Since y is a left *-witness point, there exists z’ []w N(x) such
that y z’. But then {z,y,x,z,y’,yZ} induces P5,1, which is a contradiction. In
particular, if a >/, then the left *-witness for supports some vertex in [c]w- N(x).
See Fig. 10.

We call a vertex z’ [’]w N(x) special for -), if, for all a -, y z’. We
next show that for every color 7 C(W), there exists a vertex z that is special
for -),. For each a :/: 7, let N {z’ E [’]w-N(x)" y z’}. We must show
that NN g. Each N is nonempty. If a > 7, then this follows from the
definition of y, and if a < -, then it follows from the observation above. Thus it
suffices to show that for all a, f C(W) {’y}, N C NZ or NZ c N. Suppose not.
Then there exist z’, w’ [’)’]w N(x) such that y z’ yz and y w’ yz. But
then {z’, y, x, y, w, y.} induces P5,, which is a contradiction. See Fig. 11.

Finally, by the choice of r, there exists a subset H C C(W) such that III t and
{z’7 I} is independent. Then the set {Yr")’ I} U {z’7 E I} induces Bt.

Theorem 2.3 now follows easily from Lemmas 2.5, 2.9, and 2.10.
Proof of Theorem 2.3. Fix t. We claim that f(w) e(R(w + 1, t),w) is a

binding function for Forb(P5,,Bt). Suppose not. Then there exists a graph G in
Forb(P5,,Bt) such that XFF(G) _> f(w(G)). By Lemma 2.5, there is a wall W in G
such that h(W) >_ f(w(G)). Thus by Lemma 2.9, there exists a wall W in G such that
h(W) >_ R(w + 1, t) and W has the strong cross property. Thus by Lemma 2.10, G
induces Bt, which is a contradiction.

Proof of Theorem 2.4. Since we are not concerned with finding an optimal binding
function, we may assume that k t. Let f be defined recursively by f(1) 1 and
f(w + 1) j o R(1 + f(w), 1 + R16(max{2t, w + 1})), where j is the function from
Lemma 2.7. We shall show by induction on w that, if G Forb(Dt, St) and w(G) <_ w,
then XFF(G) _< f(w(G)). The base step is trivial, so suppose the result holds for w
and suppose both w(G) w + 1 and XFF(G) > f(w + 1). Then, by Lemma 2.5, there
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N(x) W- N(x) N(x) W- N(x)

FIG. 10 FIG. 11

exists a wall W in G of height f(w + 1) that supports a vertex x. We shall obtain
a contradiction in two steps. We first show (1) there exists a set of vertices X
{x,y, al,...,as,bl,...,bs} such that s R16(m3x{2t, cd + 1}),x y, {al,...,as} C

N(x)- N(y), {bl,..., bs} C N(y)- N(x), and ai bi for all i. We then show (2) there
exists a subset of X that induces either Dt or Bt.

By Lemma 2.7 there exists an induced subwall W0 c W such that W0 supports
x,h(Wo) >_ R(1 + f(w), 1 +R16(max{2t, k+ 1}), and (*) holds. Define a coloring q on
the two element subsets of C(Wo) by q(a > fi/) c, where

c 2 iff 3y E ([c]Wo N N(x)) z ([]Wo N N(x))(y z) and
c 1 otherwise.

By Ramsey’s theorem, there exists a homogeneous subset H C C(Wo) such that either
q(a>j3)= 1 for alla,H, and IHI l+f(w) orq(c>) =2foralla,U,
and ]HI 1 + R16(max{2t, w + 1}). In the first case, W1 [U]wo is a wall such that
w(W1) _< w and h(W1) >_ 1 + f(w), which by Lemma 2.5 contradicts the induction
hypothesis. In the second case, for each C(W1), there exists a left *-witness y
for ,. Let y ya, where a is the largest color in C(W), and let ai y, where % is
the ith smallest color of C(W1). Finally choose b []w1, so that y b. It is now
easy to check that X {x, y, a,..., as, bl,..., bs } has the desired properties for (1).

Define a coloring r on the two element subsets of Is] by r(/ > ) Y, where
Y is the image of the graph G, G[{az, bz, a, b}] under the graph isomorphism
that maps az, b, a, b to 1, 2, 3, 4, respectively. There are 16 possibilities for such
graphs depending on which of four possible edges are present. Thus, by Ramsey’s
theorem, there exists a homogeneous subset U such that IHtl _> max{2t, w + 1} and
r(/ > ) Y, for all/, E St. Let A {hi: Ut} and B {b: Ht}. Since

IHI >_ w + 1 and A c N(y), 1 3 in Y, i.e., A is an independent set. Similarly 2 4
in Y and B is an independent set. This leaves four possibilities, which are illustrated
in Figs. 12-15, for Y. If Y has no edges, then G[X] contains an induced D2; if Y
has one edge, then G[X] contains an induced D; and if Y has two edges, then G[X]
contains an induced B2. Each possibility is a contradiction, so we are done. [3

3. Open problems. The problem of determining whether Forb(Ph) has a poly-
nomial on-line x-binding function remains open. In fact, this problem is open even in
the off-line case; all that is known is that if f is a x-binding function for Forb(Ph),
then f satisfies c(w/logw)2

_
f(w) _< 2. The lower bound follows from an obser-

vation of Gyrf [4]: if a(G) < 3, then G Forb(Ph) and x(G) >_ (G)/2, and
thus (R(w, 3)- 1)/2 <: f(w). The result then follows from a well-known lower bound
on R(3, w). The upper bound is only a small improvement on the on-line x-binding
function presented here.

For trees T for which Forb(T) is not XFF-bounded, it may be possible to determine
the reason why. We have previously noted that Forb(T, Kt,t) is XFF-bounded for any
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V_-

G(X)

x y

a b

a b

a b

a b4

FIG. 12

V--

x y

a b
O(X)

a2 b

a3 b

a b4

FIG. 13

tree. However, this does not tell us why Forb(T) is not x-bounded. Our result that
Forb(T, Bt) is x-bounded for T Dk or Pk,1 is more informative, since XFF(Bt) t.
It would be interesting to prove similar results for other trees. However, the following
two negative examples show that some caution is in order.

GyrfAs and Lehel’s proof [7] that Forb(P6) is not on-line x-bounded actually
shows more. Since the graphs they constructed do not induce B3, their arguments
show that Forb(P6, B3) is not on-line x-bounded. Thus if T is a tree with radius
greater than two, then Forb(T, Bt) is not on-line x-bounded. In particular, it is not
XFF-bounded.

We next present an example which provides a general construction for graphs
which force the First-Fit algorithm to use a large number of colors. This example
includes Bt as a special case.

Example 3.1. Let t _> 2 and let H (V, E) be a graph such that
1. V A1UA2U...LAt;
2. Aj {alj,a2j,... ,ajj} is a set of j independent vertices for j 1,2,... ,t;
3. Ay N A+I O for j 1,2,...,t- 1;
4. aij 7 aij+l whenever 1 _< _< j <_ t- 1; and
5. aij akj+l whenever 1 <_ < k _< j + 1 <_ t.
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V-..

x y

a b
G(X)

a b

a b

a b

FIG. 14

Y-

x y

a b

G(X)
a b

a b

a b

FIG. 15

Note that we do not require that Aj fq Aj, when IJ’-Jl -> 2. Now let

IVI n and let Vl < v2 < < vn be a linear order on V so that a </ whenever
Va aij, v/3 Vkj+l, and 1 < < k < j + 1 < t. Then an easy inductive argument
shows that the First-Fit algorithm will color H with t colors when the vertices are
presented in this order; in fact, FF will color a vertex v aij with color i.

The graph Bt (actually Bt with a single vertex removed) is obtained if aij aij+2
whenever 1 < < j < t- 2. More generally, suppose there is some k _> 2 so that
aij aij+k whenever 1 < < j < t- k, and the only adjacencies in G are those
required by property 5 above. Then the chromatic number of the graph is three if k
is odd and two if k is even.

On the other hand, if the sets A1, A2,..., At are pairwise disjoint and independent
whenever IJ il > 2, then we obtain a bipartite graph H which is the complement of
a comparability graph (a cocomparability graph). In [9], Kierstead used this example
to show that First-Fit can be forced to use arbitrarily many cliques to cover a com-
parability graph with independence number two. Of course this implies that First-Fit
can be forced to use arbitrarily many chains to cover a width-two ordered set.
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Since covering a comparability graph with cliques is equivalent to coloring a co-
comparability graph, and cocomparability graphs induce neither LS nor B3, it follows
that Forb(LS3, B3) is not XFF-bounded.

Motivated by the results presented previously nd the examples discussed above,
we suggest the following problems.

Problem 1. Given a tree T, do there exist a function g(w, X) and an integer r such
that if G Forb(T) and XFF(() > g(w(G), X), then there exists an induced subgraph
H of G with x(H) <_ r and XFF(H)

_
X.7

Problem 2. Given a tree T, does there exist a function h(w, X) such that if G
Forb(T) nd XFF(G) > g(w(G), (), then G contains n induced subgraph H of the
type constructed in Example 3.1 with XFF(H)

_
X.7

Problem 3. Is Forb(Lk, Bt) XFF-bounded?
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